Skip to content
2000
Volume 21, Issue 10
  • ISSN: 1567-2050
  • E-ISSN: 1875-5828

Abstract

Alzheimer's disease, a progressive neurodegenerative disorder, severely impacts cognitive function and daily living. The current treatment provides only symptomatic relief, and thus, disease-modifying therapies targeting underlying causes are needed. Although several potential therapies are in various stages of clinical trials, bringing a new Alzheimer's drug to market remains challenging. Hence, researchers are also exploring monoclonal antibodies, tau protein inhibitors, and anti-inflammatory drugs as treatment options. Conventionally designed dosage forms come with limitations like poor absorption, first-pass metabolism, and low bioavailability. They also cause systemic adverse effects because these designed systems do not provide target-specific drug delivery. Thus, in this review, the authors highlighted the current advancements in the development of intranasal nanoformulations for the treatment of Alzheimer’s disease. This strategy of delivering anti-Alzheimer drugs through the nasal route may help to target the drug exactly to the brain, achieve rapid onset of action, avoid first-pass metabolism, and reduce the side effects and dose required for administration. Delivering drugs to the brain through the nasal route for treating Alzheimer's disease is crucial due to the limited efficacy of existing treatments and the profound impact of the disease on patients and their families. Thus, by exploring innovative approaches such as nose-to-brain drug delivery, it is possible to improve the quality of life for individuals living with Alzheimer's and alleviate its societal burden.

Loading

Article metrics loading...

/content/journals/car/10.2174/0115672050290462240222092303
2024-02-29
2025-12-10
Loading full text...

Full text loading...

References

  1. GauglerJ. JamesB. JohnsonT. ReimerJ. SolisM. WeuveJ. BuckleyR.F. HohmanT.J. Alzheimer’s disease facts and figures.Alzheimers Dement.202218470078910.1002/alz.1263835289055
    [Google Scholar]
  2. World Health OrganizationRisk reduction of cognitive decline and dementia: Who guidelines.Available from: https://www.who.int/publications-detail-redirect/9789241550543
  3. World Health OrganizationGlobal action plan on the public health response to dementia 2017–2025.Available from: https://www.who.int/publications-detail-redirect/9789241513487
  4. HippiusH. NeundörferG. The discovery of Alzheimer’s disease.Dialogues Clin. Neurosci.20035110110810.31887/DCNS.2003.5.1/hhippius22034141
    [Google Scholar]
  5. MartyrA. RaviM. GambleL.D. MorrisR.G. RustedJ.M. PentecostC. MatthewsF.E. ClareL. IDEAL study team. Trajectories of cognitive and perceived functional decline in people with dementia: Findings from the IDEAL programme.Alzheimers Dement.20232041042010.1002/alz.074066
    [Google Scholar]
  6. LivingstonG. HuntleyJ. SommerladA. AmesD. BallardC. BanerjeeS. Dementia prevention, intervention, and care: 2020 report of The Lancet Commission.The Lancet.20203961024841344610.1016/S0140‑6736(20)30367‑6
    [Google Scholar]
  7. SchachterA.S. DavisK.L. Alzheimer’s disease.Dialogues Clin. Neurosci.2000229110010.31887/DCNS.2000.2.2/asschachter22034442
    [Google Scholar]
  8. ReisbergB. FerrisS.H. de LeonM.J. CrookT. The global deterioration scale for assessment of primary degenerative dementia.Am. J. Psychiatry198213991136113910.1176/ajp.139.9.11367114305
    [Google Scholar]
  9. ZanettiO. SolerteS.B. CantoniF. Life expectancy in Alzheimer’s disease (AD).Arch. Gerontol. Geriatr.200949S123724310.1016/j.archger.2009.09.03519836639
    [Google Scholar]
  10. BurnsA. JacobyR. LuthertP. LevyR. Cause of death in Alzheimer’s disease.Age Ageing199019534134410.1093/ageing/19.5.3412251969
    [Google Scholar]
  11. GoateA. HarlinC.M.C. MullanM. BrownJ. CrawfordF. FidaniL. GiuffraL. HaynesA. IrvingN. JamesL. MantR. NewtonP. RookeK. RoquesP. TalbotC. VanceP.M. RosesA. WilliamsonR. RossorM. OwenM. HardyJ. Segregation of a missense mutation in the amyloid precursor protein gene with familial Alzheimer’s disease.Nature1991349631170470610.1038/349704a01671712
    [Google Scholar]
  12. Levy-LahadE. WascoW. PoorkajP. RomanoD.M. OshimaJ. PettingellW.H. YuC. JondroP.D. SchmidtS.D. WangK. CrowleyA.C. FuY-H. GuenetteS.Y. GalasD. NemensE. WijsmanE.M. BirdT.D. SchellenbergG.D. TanziR.E. Candidate gene for the chromosome 1 familial Alzheimer’s disease locus.Science1995269522697397710.1126/science.76386227638622
    [Google Scholar]
  13. MaccioniR.B. TapiaJ.P. MartinezG.L. Pathway to tau modifications and the origins of Alzheimer’s disease.Arch. Med. Res.201849213013110.1016/j.arcmed.2018.05.00229861329
    [Google Scholar]
  14. CacciottoloM. WangX. DriscollI. WoodwardN. SaffariA. ReyesJ. SerreM.L. VizueteW. SioutasC. MorganT.E. GatzM. ChuiH.C. ShumakerS.A. ResnickS.M. EspelandM.A. FinchC.E. ChenJ.C. Particulate air pollutants, APOE alleles and their contributions to cognitive impairment in older women and to amyloidogenesis in experimental models.Transl. Psychiatry201771e102210.1038/tp.2016.28028140404
    [Google Scholar]
  15. CuyversE. SleegersK. Genetic variations underlying Alzheimer’s disease: Evidence from genome-wide association studies and beyond.Lancet Neurol.201615885786810.1016/S1474‑4422(16)00127‑727302364
    [Google Scholar]
  16. DelabioR. RasmussenL. MizumotoI. VianiG.A. ChenE. VillaresJ. CostaI.B. TureckiG. LindeS.A. SmithM.C. PayãoS.L. PSEN1 and PSEN2 gene expression in Alzheimer’s disease brain: A new approach.J. Alzheimers Dis.201442375776010.3233/JAD‑14003324927704
    [Google Scholar]
  17. GardnerA. Alzheimer’s disease: The 7 stages of the disease.2023Available from: https://www.webmd.com/alzheimers/alzheimers-disease-stages
  18. ThalD.R. AttemsJ. EwersM. Spreading of amyloid, tau, and microvascular pathology in Alzheimer’s disease: findings from neuropathological and neuroimaging studies.J. Alzheimers Dis.201442S4S421S42910.3233/JAD‑14146125227313
    [Google Scholar]
  19. TerryR.D. MasliahE. SalmonD.P. ButtersN. DeTeresaR. HillR. HansenL.A. KatzmanR. Physical basis of cognitive alterations in alzheimer’s disease: Synapse loss is the major correlate of cognitive impairment.Ann. Neurol.199130457258010.1002/ana.4103004101789684
    [Google Scholar]
  20. GrossbergG.T. Cholinesterase inhibitors for the treatment of Alzheimer’s disease: getting on and staying on.Curr. Ther. Res. Clin. Exp.200364421623510.1016/S0011‑393X(03)00059‑624944370
    [Google Scholar]
  21. LiptonS.A. Paradigm shift in NMDA receptor antagonist drug development: Molecular mechanism of uncompetitive inhibition by memantine in the treatment of Alzheimer’s disease and other neurologic disorders.J. Alzheimers Dis.20056S6S61S7410.3233/JAD‑2004‑6S61015665416
    [Google Scholar]
  22. van DyckC.H. SwansonC.J. AisenP. BatemanR.J. ChenC. GeeM. KanekiyoM. LiD. ReydermanL. CohenS. FroelichL. KatayamaS. SabbaghM. VellasB. WatsonD. DhaddaS. IrizarryM. KramerL.D. IwatsuboT. Lecanemab in early Alzheimer’s disease.N. Engl. J. Med.2023388192110.1056/NEJMoa221294836449413
    [Google Scholar]
  23. WalshS. MerrickR. MilneR. BrayneC. Aducanumab for Alzheimer’s disease?BMJ2021374n168210.1136/bmj.n168234226181
    [Google Scholar]
  24. UrichE. SchmuckiR. RuderischN. KitasE. CertaU. JacobsenH. SchweitzerC. BergadanoA. EbelingM. LoetscherH. FreskgårdP.O. Cargo delivery into the brain by in vivo identified transport peptides.Sci. Rep.2015511410410.1038/srep1410426411801
    [Google Scholar]
  25. SalvalaioM. RigonL. BellettiD. D’AvanzoF. PederzoliF. RuoziB. MarinO. VandelliM.A. ForniF. ScarpaM. TomaninR. TosiG. Targeted polymeric nanoparticles for brain delivery of high molecular weight molecules in lysosomal storage disorders.PLoS One2016115e015645210.1371/journal.pone.015645227228099
    [Google Scholar]
  26. KarbowskiJ. Scaling of brain metabolism and blood flow in relation to capillary and neural scaling.PLoS One2011610e2670910.1371/journal.pone.002670922053202
    [Google Scholar]
  27. KayaM. AhishaliB. Basic physiology of the blood-brain barrier in health and disease: A brief overview Tissue Barriers,202191184091310.1080/21688370.2020.184091333190576
    [Google Scholar]
  28. Strategies to circumvent vascular barriers of the central nervous systemAvailable from: https://pubmed.ncbi.nlm.nih.gov-/9766315/
    [Google Scholar]
  29. DomínguezA. ÁlvarezA. HilarioE. Suarez-MerinoB. Goñi-de-CerioF. Central nervous system diseases and the role of the blood-brain barrier in their treatmentNeurosci. Discov.,201311310.7243/2052‑6946‑1‑3
    [Google Scholar]
  30. YasudaK. ClineC. VogelP. OnciuM. FatimaS. SorrentinoB.P. ThirumaranR.K. EkinsS. UradeY. FujimoriK. SchuetzE.G. Drug transporters on arachnoid barrier cells contribute to the blood-cerebrospinal fluid barrier Drug Metab. Dispos.,2013414923-93110.1124/dmd.112.05034423298861
    [Google Scholar]
  31. ZeynalM. Unexpected effects of cerebrospinal fluid on the prevention of cerebral thromboembolism and blood–brain barrier disruption: First experimental study.Eurasian J. Med.2023551505310.5152/eurasianjmed.2023.2231736861866
    [Google Scholar]
  32. PardridgeW. Molecular Trojan horses for blood–brain barrier drug delivery.Curr. Opin. Pharmacol.20066549450010.1016/j.coph.2006.06.00116839816
    [Google Scholar]
  33. PardridgeW.M. Blood–brain barrier delivery of protein and non-viral gene therapeutics with molecular Trojan horses.J. Control. Release2007122334534810.1016/j.jconrel.2007.04.00117512078
    [Google Scholar]
  34. CharabatiM. RabanelJ.M. RamassamyC. PratA. Overcoming the brain barriers: From immune cells to nanoparticles.Trends Pharmacol. Sci.2020411425410.1016/j.tips.2019.11.00131839374
    [Google Scholar]
  35. ChowdhuryR.R. HendersonJ.W. RahaA.A. VuonoR. BickertonA. JonesE. FinchamR. AllinsonK. HollandA. ZamanS.H. Choroid plexus acts as gatekeeper for Trem2, abnormal accumulation of ApoE, and fibrillary tau in Alzheimer’s disease and in Down syndrome dementia.J. Alzheimers Dis.20196919110910.3233/JAD‑18117930909239
    [Google Scholar]
  36. RawalS.U. PatelB.M. PatelM.M. New drug delivery systems developed for brain targeting.Drugs202282774979210.1007/s40265‑022‑01717‑z35596879
    [Google Scholar]
  37. ShenD. ArtruA. AdkisonK. Principles and applicability of CSF sampling for the assessment of CNS drug delivery and pharmacodynamics.Adv. Drug Deliv. Rev.200456121825185710.1016/j.addr.2004.07.01115381336
    [Google Scholar]
  38. LangletF. MullierA. BouretS.G. PrevotV. DehouckB. Tanycyte‐like cells form a blood–cerebrospinal fluid barrier in the circumventricular organs of the mouse brain.J. Comp. Neurol.2013521153389340510.1002/cne.2335523649873
    [Google Scholar]
  39. StrazielleN. EgeaG.J.F. Physiology of blood-brain interfaces in relation to brain disposition of small compounds and macromolecules.Mol. Pharm.20131051473149110.1021/mp300518e23298398
    [Google Scholar]
  40. ThalD.R. The pre-capillary segment of the blood-brain barrier and its relation to perivascular drainage in Alzheimer’s disease and small vessel disease.Sci. World J2009955756310.1100/tsw.2009.7219578713
    [Google Scholar]
  41. AbbottN.J. PizzoM.E. PrestonJ.E. JanigroD. ThorneR.G. The role of brain barriers in fluid movement in the CNS: Is there a ‘glymphatic’ system?Acta Neuropathol.2018135338740710.1007/s00401‑018‑1812‑429428972
    [Google Scholar]
  42. GuerrieroF. SgarlataC. FrancisM. MauriziN. FaragliA. PernaS. RondanelliM. RolloneM. RicevutiG. Neuroinflammation, immune system and Alzheimer disease: Searching for the missing link.Aging Clin. Exp. Res.201729582183110.1007/s40520‑016‑0637‑z27718173
    [Google Scholar]
  43. GorléN. Van CauwenbergheC. LibertC. VandenbrouckeR.E. The effect of aging on brain barriers and the consequences for Alzheimer’s disease development.Mamm. Genome2016277-840742010.1007/s00335‑016‑9637‑827143113
    [Google Scholar]
  44. PanY. NicolazzoJ.A. Impact of aging, Alzheimer’s disease and Parkinson’s disease on the blood-brain barrier transport of therapeutics.Adv. Drug Deliv. Rev.2018135627410.1016/j.addr.2018.04.00929665383
    [Google Scholar]
  45. DeaneR. ZlokovicB. Role of the blood-brain barrier in the pathogenesis of Alzheimer’s disease.Curr. Alzheimer Res.20074219119710.2174/15672050778036224517430246
    [Google Scholar]
  46. NoelR.L. BattsA.J. JiR. PouliopoulosA.N. BaeS. SchoderK.A.R. KonofagouE.E. Natural aging and Alzheimer’s disease pathology increase susceptibility to focused ultrasound-induced blood–brain barrier opening.Sci. Rep.2023131675710.1038/s41598‑023‑30466‑637185578
    [Google Scholar]
  47. MishraA. KumarR. MishraJ. DuttaK. AhlawatP. KumarA. DhanasekaranS. GuptaA.K. SinhaS. BishiD.K. GuptaP.K. NayakS. Strategies facilitating the permeation of nanoparticles through blood-brain barrier: An insight towards the development of brain-targeted drug delivery system.J. Drug Deliv. Sci. Technol.20238610469410.1016/j.jddst.2023.104694
    [Google Scholar]
  48. ShanZ. LagopoulosJ. Precision medicine for brain disorders: New and emerging approaches.J. Pers. Med.202313587210.3390/jpm1305087237241042
    [Google Scholar]
  49. WangZ. XiongG. TsangW.C. SchätzleinA.G. UchegbuI.F. Nose-to-brain delivery.J. Pharmacol. Exp. Ther.2019370359360110.1124/jpet.119.25815231126978
    [Google Scholar]
  50. GängerS. SchindowskiK. Tailoring formulations for intranasal nose-to-brain delivery: A review on architecture, physico-chemical characteristics and mucociliary clearance of the nasal olfactory mucosa.Pharmaceutics201810311610.3390/pharmaceutics1003011630081536
    [Google Scholar]
  51. YangL. WangW. ChenJ. WangN. ZhengG. A comparative study of resveratrol and resveratrol‐functional selenium nanoparticles: Inhibiting amyloid β aggregation and reactive oxygen species formation properties.J. Biomed. Mater. Res. A2018106123034304110.1002/jbm.a.3649330295993
    [Google Scholar]
  52. DhasN. MehtaT. Cationic biopolymer functionalized nanoparticles encapsulating lutein to attenuate oxidative stress in effective treatment of Alzheimer’s disease: A non-invasive approach.Int. J. Pharm.202058611955310.1016/j.ijpharm.2020.11955332561306
    [Google Scholar]
  53. DhasN. MehtaT. Intranasal delivery of chitosan decorated PLGA core /shell nanoparticles containing flavonoid to reduce oxidative stress in the treatment of Alzheimer’s disease.J. Drug Deliv. Sci. Technol.20216110224210.1016/j.jddst.2020.102242
    [Google Scholar]
  54. MengQ. WangA. HuaH. JiangY. WangY. MuH. WuZ. SunK. Intranasal delivery of Huperzine A to the brain using lactoferrin-conjugated N-trimethylated chitosan surface-modified PLGA nanoparticles for treatment of Alzheimer’s disease.Int. J. Nanomedicine20181370571810.2147/IJN.S15147429440896
    [Google Scholar]
  55. Sánchez-LópezE. EttchetoM. EgeaM.A. EspinaM. CanoA. CalpenaA.C. CaminsA. CarmonaN. SilvaA.M. SoutoE.B. GarcíaM.L. Memantine loaded PLGA PEGylated nanoparticles for Alzheimer’s disease: In vitro and in vivo characterization.J. Nanobiotechnol20181613210.1186/s12951‑018‑0356‑z29587747
    [Google Scholar]
  56. ZhangJ. LiuR. ZhangD. ZhangZ. ZhuJ. XuL. GuoY. Neuroprotective effects of maize tetrapeptide-anchored gold nanoparticles in Alzheimer’s disease.Colloids Surf. B Biointerfaces202120011158410.1016/j.colsurfb.2021.11158433508658
    [Google Scholar]
  57. LiuY. ZhouH. YinT. GongY. YuanG. ChenL. LiuJ. Quercetin-modified gold-palladium nanoparticles as a potential autophagy inducer for the treatment of Alzheimer’s disease.J. Colloid Interface Sci.201955238840010.1016/j.jcis.2019.05.06631151017
    [Google Scholar]
  58. GeorgievaD. NikolovaD. VassilevaE. KostovaB. Chitosan-based nanoparticles for targeted nasal galantamine delivery as a promising tool in Alzheimer’s disease therapy.Pharmaceutics202315382910.3390/pharmaceutics1503082936986689
    [Google Scholar]
  59. WasiakT. MarcinkowskaM. PieszynskiI. ZablockaM. CaminadeA.M. MajoralJ.P. MaculewiczK.B. Cationic phosphorus dendrimers and therapy for Alzheimer’s disease.New J. Chem.20153964852485910.1039/C5NJ00309A
    [Google Scholar]
  60. AsoE. MartinssonI. AppelhansD. EffenbergC. CasesB.N. CladeraJ. GourasG. FerrerI. KlementievaO. Poly(propylene imine) dendrimers with histidine-maltose shell as novel type of nanoparticles for synapse and memory protection.Nanomedicine20191719820910.1016/j.nano.2019.01.01030708052
    [Google Scholar]
  61. CasesB.N. MarimonA.E. AsoE. CarmonaM. KlementievaO. AppelhansD. FerrerI. CladeraJ. In situ identification and G4-PPI-His-Mal-dendrimer-induced reduction of early-stage amyloid aggregates in Alzheimer’s disease transgenic mice using synchrotron-based infrared imaging.Sci. Rep.20211111836810.1038/s41598‑021‑96379‑434526539
    [Google Scholar]
  62. CasesB.N. MarimonA.E. AsoE. CarmonaM. KlementievaO. AppelhansD. Neuroprotective Poly(propylene imine) dendrimers with histidine- maltose shell reduce early amyloid aggregates and fibrils in Alzheimer’s disease transgenic mice.Research Square202110.21203/rs.3.rs‑379309/v1
    [Google Scholar]
  63. IgartúaD.E. MartinezC.S. AlonsoD.V.S. PrietoM.J. Combined therapy for Alzheimer’s disease: Tacrine and pamam dendrimers co-administration reduces the side effects of the drug without modifying its activity.AAPS PharmSciTech202021311010.1208/s12249‑020‑01652‑w32215751
    [Google Scholar]
  64. GothwalA. KumarH. NakhateK.T. Ajazuddin DuttaA. BorahA. GuptaU. Lactoferrin coupled lower generation Pamam Dendrimers for brain targeted delivery of memantine in aluminum-chloride-induced Alzheimer’s disease in mice.Bioconjug. Chem.201930102573258310.1021/acs.bioconjchem.9b0050531553175
    [Google Scholar]
  65. BodurO.C. ÖzkanH.E. ÇolakÖ. ArslanH. SarıN. DişliA. ArslanF. Preparation of acetylcholine biosensor for the diagnosis of Alzheimer’s disease.J. Mol. Struct.2021122312916810.1016/j.molstruc.2020.129168
    [Google Scholar]
  66. AraújoA.R. CorreaJ. ArcaD.V. ReisR.L. MegiaF.E. PiresR.A. Functional gallic acid-based dendrimers as synthetic nanotools to remodel amyloid-β-42 into noncytotoxic forms. ACS Applied Materials &amp.ACS Appl. Mater. Interfaces20211350596735968210.1021/acsami.1c1782334874691
    [Google Scholar]
  67. IgartúaD.E. MartinezC.S. TempranaC.F. AlonsoS.V. PrietoM.J. PAMAM dendrimers as a carbamazepine delivery system for neurodegenerative diseases: A biophysical and nanotoxicological characterization.Int. J. Pharm.2018544119120210.1016/j.ijpharm.2018.04.03229678547
    [Google Scholar]
  68. SinghA. UjjwalR.R. NaqviS. VermaR.K. TiwariS. KesharwaniP. ShuklaR. Formulation development of tocopherol polyethylene glycol nanoengineered polyamidoamine dendrimer for neuroprotection and treatment of Alzheimer disease.J. Drug Target.202230777779110.1080/1061186X.2022.206329735382657
    [Google Scholar]
  69. UllahZ. Al-AsmariA. TariqM. FataniA. Preparation, characterization, and in vivo evaluation of intranasally administered liposomal formulation of donepezil.Drug Des. Devel. Ther.201620520510.2147/DDDT.S93937
    [Google Scholar]
  70. AdnetT. GrooA.C. PicardC. DavisA. CorvaisierS. SinceM. BounoureF. RochaisC. Le PluartL. DallemagneP. FréonM.A. Pharmacotechnical development of a nasal drug delivery composite nanosystem intended for Alzheimer’s disease treatment.Pharmaceutics202012325110.3390/pharmaceutics1203025132168767
    [Google Scholar]
  71. RajputA. ButaniS. Donepezil hcl liposomes: Development, characterization, cytotoxicity, and pharmacokinetic study.AAPS PharmSciTech20222327410.1208/s12249‑022‑02209‑935149912
    [Google Scholar]
  72. Al HarthiS. AlaviS.E. RadwanM.A. El KhatibM.M. AlSarraI.A. Nasal delivery of donepezil HCl-loaded hydrogels for the treatment of Alzheimer’s disease.Sci. Rep.201991956310.1038/s41598‑019‑46032‑y31266990
    [Google Scholar]
  73. HelalyN.E.S. Abd ElbaryA. KassemM.A. El-NabarawiM.A. Electrosteric stealth Rivastigmine loaded liposomes for brain targeting: Preparation, characterization, ex vivo, bio-distribution and in vivo pharmacokinetic studies.Drug Deliv.201724169270010.1080/10717544.2017.130947628415883
    [Google Scholar]
  74. SakaR. ChellaN. KhanW. Development of imatinib mesylate-loaded liposomes for nose to brain delivery: In vitro and in vivo evaluation.AAPS PharmSciTech202122519210.1208/s12249‑021‑02072‑034184160
    [Google Scholar]
  75. AndradeS. RamalhoM.J. LoureiroJ.A. PereiraM.C. Transferrin-functionalized liposomes loaded with vitamin VB12 for Alzheimer’s disease therapy.Int. J. Pharm.202262612216710.1016/j.ijpharm.2022.12216736075524
    [Google Scholar]
  76. ZhengX. ShaoX. ZhangC. TanY. LiuQ. WanX. ZhangQ. XuS. JiangX. Intranasal H102 peptide-loaded liposomes for brain delivery to treat Alzheimer’s disease.Pharm. Res.201532123837384910.1007/s11095‑015‑1744‑926113236
    [Google Scholar]
  77. FernandesM. LopesI. MagalhãesL. SárriaM.P. MachadoR. SousaJ.C. BotelhoC. TeixeiraJ. GomesA.C. Novel concept of exosome-like liposomes for the treatment of Alzheimer’s disease.J. Control. Release202133613014310.1016/j.jconrel.2021.06.01834126168
    [Google Scholar]
  78. AndradeS. PereiraM.C. LoureiroJ.A. Caffeic acid loaded into engineered lipid nanoparticles for Alzheimer’s disease therapy.Colloids Surf. B Biointerfaces202322511327010.1016/j.colsurfb.2023.11327036996633
    [Google Scholar]
  79. KulkarniP. RawtaniD. BarotT. Design, development and in-vitro/in-vivo evaluation of intranasally delivered Rivastigmine and N-Acetyl Cysteine loaded bifunctional niosomes for applications in combinative treatment of Alzheimer’s disease.Eur. J. Pharm. Biopharm.202116311510.1016/j.ejpb.2021.02.01533774160
    [Google Scholar]
  80. AnsariM EslamiH Preparation and study of the inhibitory effect of nano-niosomes containing essential oil from artemisia absinthium on amyloid fibril formation.J. Nanotechnol.202073243250
    [Google Scholar]
  81. NerliG. RoblaS. BartalesiM. LuceriC. D’AmbrosioM. CsabaN. MaestrelliF. Chitosan coated niosomes for nose-to-brain delivery of clonazepam: Formulation, stability and permeability studies.Carbohydr. Polym. Technol. App.2023610033210.1016/j.carpta.2023.100332
    [Google Scholar]
  82. RinaldiF. HaniehP. ChanL. AngeloniL. PasseriD. RossiM. WangJ. ImbrianoA. CarafaM. MarianecciC. Chitosan glutamate-coated NIOSOMES: A proposal for nose-to-brain delivery.Pharmaceutics20181023810.3390/pharmaceutics1002003829565809
    [Google Scholar]
  83. RinaldiF. SeguellaL. GigliS. HaniehP.N. FaveroD.E. CantùL. PesceM. SarnelliG. MarianecciC. EspositoG. CarafaM. inPentasomes: An innovative nose-to-brain pentamidine delivery blunts MPTP parkinsonism in mice.J. Control. Release2019294172610.1016/j.jconrel.2018.12.00730529726
    [Google Scholar]
  84. PourdashtiO.S MirzaeiE HeidariR AshrafiH AzadiA Preparation and evaluation of NIOSOMAL chitosan-based in situ gel formulation for direct nose-to-brain methotrexate delivery.Int. J. Biol. Macromol.20222131115112610.1016/j.ijbiomac.2022.06.031
    [Google Scholar]
  85. GunayM.S. OzerA.Y. ErdoganS. BodardS. BaysalI. GulhanZ. GuilloteauD. ChalonS. Development of nanosized, pramipexole-encapsulated liposomes and NIOSOMES for the treatment of parkinson’s disease.J. Nanosci. Nanotechnol.20171785155516710.1166/jnn.2017.13799
    [Google Scholar]
  86. SitaV.G. JadhavD. VaviaP. Niosomes for nose-to-brain delivery of bromocriptine: Formulation development, efficacy evaluation and toxicity profiling.J. Drug Deliv. Sci. Technol.20205810179110.1016/j.jddst.2020.101791
    [Google Scholar]
  87. PatelP. BarotT. KulkarniP. Formulation, characterization and in-vitro and in-vivo evaluation of Capecitabine Loaded Niosomes.Curr. Drug Deliv.202017325726810.2174/156720181766620021411181532056523
    [Google Scholar]
  88. AzhariH. YounusM. HookS.M. BoydB.J. RizwanS.B. Cubosomes enhance drug permeability across the blood–brain barrier in zebrafish.Int. J. Pharm.202160012041110.1016/j.ijpharm.2021.12041133675926
    [Google Scholar]
  89. ElnaggarY. EtmanS. AbdelmonsifD. AbdallahO. Novel piperine-loaded Tween-integrated monoolein cubosomes as brain-targeted oral nanomedicine in Alzheimer’s disease: Pharmaceutical, biological, and toxicological studies.Int. J. Nanomedicine2015105459547310.2147/IJN.S8733626346130
    [Google Scholar]
  90. AhirraoM. ShrotriyaS. In vitro and in vivo evaluation of cubosomal in situ nasal gel containing resveratrol for brain targeting.Drug Dev. Ind. Pharm.201743101686169310.1080/03639045.2017.133872128574732
    [Google Scholar]
  91. WuH. LiJ. ZhangQ. YanX. GuoL. GaoX. QiuM. JiangX. LaiR. ChenH. A novel small odorranalectin-bearing cubosomes: Preparation, brain delivery and pharmacodynamic study on amyloid-β25–35-treated rats following intranasal administration.Eur. J. Pharm. Biopharm.201280236837810.1016/j.ejpb.2011.10.01222061263
    [Google Scholar]
  92. PatilR.P. PawaraD.D. GudewarC.S. TekadeA.R. Nanostructured cubosomes in an in situ nasal gel system: An alternative approach for the controlled delivery of donepezil HCl to brain.J. Liposome Res.201929326427310.1080/08982104.2018.155270330501444
    [Google Scholar]
  93. ShivananjegowdaM.G. HaniU. OsmaniR.A.M. AlamriA.H. GhazwaniM. AlhamhoomY. RahamathullaM. ParanthamanS. GowdaD.V. SiddiquaA. Development and evaluation of solid lipid nanoparticles for the clearance of AB in Alzheimer’s disease.Pharmaceutics202315122110.3390/pharmaceutics1501022136678849
    [Google Scholar]
  94. DaraT. VatanaraA. SharifzadehM. KhaniS. VakilinezhadM.A. VakhshitehF. MeybodiN.M. MalvajerdS.S. HassaniS. MosaddeghM.H. Improvement of memory deficits in the rat model of Alzheimer’s disease by erythropoietin-loaded solid lipid nanoparticles.Neurobiol. Learn. Mem.201916610708210.1016/j.nlm.2019.10708231493483
    [Google Scholar]
  95. VedagiriA. ThangarajanS. Mitigating effect of chrysin loaded solid lipid nanoparticles against Amyloid β25–35 induced oxidative stress in rat hippocampal region: An efficient formulation approach for Alzheimer’s disease.Neuropeptides20165811112510.1016/j.npep.2016.03.00227021394
    [Google Scholar]
  96. VakilinezhadM.A. AminiA. JavarA.H. ZarandiB.B.B.F. MontaseriH. DinarvandR. Nicotinamide loaded functionalized solid lipid nanoparticles improves cognition in Alzheimer’s disease animal model by reducing Tau hyperphosphorylation.Daru201826216517710.1007/s40199‑018‑0221‑530386982
    [Google Scholar]
  97. RassuG. SodduE. PosadinoA.M. PintusG. SarmentoB. GiunchediP. GaviniE. Nose-to-brain delivery of BACE1 siRNA loaded in solid lipid nanoparticles for Alzheimer’s therapy.Colloids Surf. B Biointerfaces201715229630110.1016/j.colsurfb.2017.01.03128126681
    [Google Scholar]
  98. SunY. LiL. XieH. WangY. GaoS. ZhangL. BoF. YangS. FengA. primary studies on construction and evaluation of ion-sensitive in situ gel loaded with paeonol-solid lipid nanoparticles for intranasal drug deliveryInt. J. Nanomed2020153137316010.2147/IJN.S24793532440115
    [Google Scholar]
  99. SantonocitoD. RacitiG. CampisiA. SpositoG. PanicoA. SicilianoE. SarpietroM. DamianiE. PugliaC. Astaxanthin-loaded stealth lipid nanoparticles (AST-SSLN) as potential carriers for the treatment of Alzheimer’s disease: Formulation development and optimization.Nanomaterials202111239110.3390/nano1102039133546352
    [Google Scholar]
  100. LoureiroJ. AndradeS. DuarteA. NevesA. QueirozJ. NunesC. SevinE. FenartL. GosseletF. CoelhoM. PereiraM. Resveratrol and grape extract-loaded solid lipid nanoparticles for the treatment of Alzheimer’s disease.Molecules201722227710.3390/molecules2202027728208831
    [Google Scholar]
  101. De GaetanoF. CelestiC. PaladiniG. VenutiV. CristianoM.C. PaolinoD. IannazzoD. StranoV. GueliA.M. TommasiniS. VenturaC.A. StancanelliR. Solid lipid nanoparticles containing Morin: Preparation, characterization, and Ex Vivo Permeation Studies.Pharmaceutics2023156160510.3390/pharmaceutics1506160537376054
    [Google Scholar]
  102. SainiS. SharmaT. JainA. KaurH. KatareO.P. SinghB. Systematically designed chitosan-coated solid lipid nanoparticles of ferulic acid for effective management of Alzheimer’s disease: A preclinical evidence.Colloids Surf. B Biointerfaces202120511183810.1016/j.colsurfb.2021.11183834022704
    [Google Scholar]
  103. TekadeA.R. SuryavanshiM.R. ShewaleA.B. PatilV.S. Design and development of donepezil hydrochloride loaded nanostructured lipid carriers for efficient management of Alzheimer’s disease.Drug Dev. Ind. Pharm.202349959060010.1080/03639045.2023.226203537733474
    [Google Scholar]
  104. ShehataM.K. IsmailA.A. KamelM.A. Combined donepezil with astaxanthin via nanostructured lipid carriers effective delivery to brain for alzheimer’s disease in rat model.Int. J. Nanomedicine2023184193422710.2147/IJN.S41792837534058
    [Google Scholar]
  105. WavikarP.R. VaviaP.R. Rivastigmine-loaded in situ gelling nanostructured lipid carriers for nose to brain delivery.J. Liposome Res.201525214114910.3109/08982104.2014.95412925203610
    [Google Scholar]
  106. WavikarP. PaiR. VaviaP. Nose to brain delivery of rivastigmine by in situ gelling cationic nanostructured lipid carriers: Enhanced brain distribution and pharmacodynamics.J. Pharm. Sci.2017106123613362210.1016/j.xphs.2017.08.02428923321
    [Google Scholar]
  107. AjalaT.O. AbrahamA. KeckC.M. OdekuO.A. ElufioyeT.O. OlopadeJ.O. Shea butter (Vitellaria paradoxa) and Pentaclethra macrophylla oil as lipids in the formulation of Nanostructured lipid carriers.Sci. Am.202113e0096510.1016/j.sciaf.2021.e00965
    [Google Scholar]
  108. HernandoS. HerránE. HernándezR.M. IgartuaM. Nanostructured lipid carriers made of Ω-3 polyunsaturated fatty acids: In vitro evaluation of emerging nanocarriers to treat neurodegenerative diseases.Pharmaceutics2020121092810.3390/pharmaceutics1210092833003360
    [Google Scholar]
  109. MusumeciT. BenedettoD.G. CarboneC. BonaccorsoA. AmatoG. Lo FaroM.J. BurgalettoC. PuglisiG. BernardiniR. CantarellaG. Intranasal administration of a TRAIL neutralizing monoclonal antibody adsorbed in PLGA nanoparticles and NLC nanosystems: An in vivo study on a mouse model of alzheimer’s disease.Biomedicines202210598510.3390/biomedicines1005098535625722
    [Google Scholar]
  110. CunhaS. ForbesB. LoboJ.M.S. SilvaA.C. Thermosensitive nasal in situ gels of lipid-based nanosystems to improve the treatment of alzheimer’s disease.Proceedings20207813710.3390/IECP2020‑08648
    [Google Scholar]
  111. CunhaS. ForbesB. Sousa LoboJ.M. SilvaA.C. Improving drug delivery for Alzheimer’s disease through nose-to-brain delivery using nanoemulsions, nanostructured lipid carriers (NLC) and in situ hydrogels.Int. J. Nanomed.2021164373439010.2147/IJN.S30585134234432
    [Google Scholar]
  112. MalvajerdS.S. IzadiZ. AzadiA. KurdM. DerakhshankhahH. SharifzadehM. JavarA.H. HamidiM. Neuroprotective potential of Curcumin-Loaded nanostructured lipid carrier in an animal model of Alzheimer’s disease: Behavioral and biochemical evidence.J. Alzheimers Dis.201969367168610.3233/JAD‑19008331156160
    [Google Scholar]
  113. TripathyS. PatelD.K. BarobL. NairaS.K. A review on phytosomes, their characterization, advancement & potential for transdermal application.J. Drug Deliv. Ther.20133314715210.22270/jddt.v3i3.508
    [Google Scholar]
  114. RajammaS.S. KrishnaswamiV. PrabuS.L. KandasamyR. Geophila repens phytosome-loaded intranasal gel with improved nasal permeation for the effective treatment of Alzheimer’s disease.J. Drug Deliv. Sci. Technol.20226910308710.1016/j.jddst.2021.103087
    [Google Scholar]
  115. NaikS.R. PilgaonkarV.W. PandaV.S. Evaluation of antioxidant activity of Ginkgo biloba phytosomes in rat brain.Phytother. Res.200620111013101610.1002/ptr.197616909446
    [Google Scholar]
  116. SalehiB. CalinaD. DoceaA. KoiralaN. AryalS. LombardoD. PasquaL. TaheriY. CastilloM.S.C. MartorellM. MartinsN. IritiM. SuleriaH. Sharifi-RadJ. Curcumin’s nanomedicine formulations for therapeutic application in neurological diseases.J. Clin. Med.20209243010.3390/jcm902043032033365
    [Google Scholar]
  117. BonaccorsoA. PriviteraA. GrassoM. SalamoneS. CarboneC. PignatelloR. MusumeciT. CaraciF. CarusoG. The therapeutic potential of novel carnosine formulations: Perspectives for Drug development.Pharmaceuticals202316677810.3390/ph1606077837375726
    [Google Scholar]
  118. DuboisB. PicardG. SarazinM. Early detection of Alzheimer’s disease: New diagnostic criteria.Dialogues Clin. Neurosci.200911213513910.31887/DCNS.2009.11.2/bdubois19585949
    [Google Scholar]
  119. MarcianiD.J. A retrospective analysis of the Alzheimer’s disease vaccine progress – The critical need for new development strategies.J. Neurochem.2016137568770010.1111/jnc.1360826990863
    [Google Scholar]
/content/journals/car/10.2174/0115672050290462240222092303
Loading
/content/journals/car/10.2174/0115672050290462240222092303
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test