Skip to content
2000
Volume 21, Issue 10
  • ISSN: 1567-2050
  • E-ISSN: 1875-5828

Abstract

Background

Alzheimer's Disease (AD) is a long-term brain disorder that worsens over time. A cholinesterase inhibitor called Donepezil HCl (DNZ) is used to treat and control AD. Due to its failure to reach the appropriate concentration in the brain cells, its efficacy upon oral administration is limited, and thus investigation of alternative administration route is necessary.

Objective

The objective of this study was to develop donepezil HCl-loaded Nanostructured Lipid Carriers (NLCs) that can bypass the blood-brain barrier and thus be directly delivered to the brain through the nasal route. This method improves availability at the site of action, reduces the negative effects of oral medication, and ensures an expedited commencement of action.

Methods

High-pressure homogenization and ultrasonication were used to formulate NLCs. Glyceryl Monostearate (GMS) as a solid lipid, Tween 80 as a surfactant, and Poloxamer 407 as a co-surfactant were used. In this study, argan oil was employed as a liquid lipid as well as a penetration enhancer.

Results

The chosen NLCs displayed a particle size of 137.34 ± 0.79 nm, a PDI of 0.365 ± 0.03, and a zeta potential of -10.4 mV. The selected formulation showed an entrapment efficiency of 84.05 ± 1.30% and a drug content of 77.02 ± 0.23%. The concentration of the drug in the brain after intravenous and intranasal administration of DNZ NLCs at 1 h was found to be 0.490 ± 0.007 and 4.287 ± 0.115, respectively. Thus, the concentration of DNZ achieved in the brain after intranasal administration of DNZ NLCs was approximately 9 times more than the concentration when administered by intravenous route.

Conclusion

The DNZ-loaded NLCs, when administered nasal route, showed markedly improved drug availability in the brain, suggesting an efficient drug delivery strategy to treat Alzheimer's disease.

Loading

Article metrics loading...

/content/journals/car/10.2174/0115672050288659240229080535
2024-03-05
2025-12-09
Loading full text...

Full text loading...

References

  1. TekadeA.R. SuryavanshiM.R. ShewaleA.B. PatilV.S. Design and development of donepezil hydrochloride loaded nanostructured lipid carriers for efficient management of Alzheimer’s disease.Drug Dev. Ind. Pharm.202349959060010.1080/03639045.2023.226203537733474
    [Google Scholar]
  2. ScheltensP. De StrooperB. KivipeltoM. HolstegeH. ChételatG. TeunissenC.E. CummingsJ. van der FlierW.M. Alzheimer’s disease.Lancet2021397102841577159010.1016/S0140‑6736(20)32205‑433667416
    [Google Scholar]
  3. LaneC.A. HardyJ. SchottJ.M. Alzheimer’s disease.Eur. J. Neurol.2018251597010.1111/ene.1343928872215
    [Google Scholar]
  4. VazM. SilvestreS. Alzheimer’s disease: Recent treatment strategies.Eur. J. Pharmacol.202088717355410.1016/j.ejphar.2020.17355432941929
    [Google Scholar]
  5. Pardo-MorenoT. González-AcedoA. Rivas-DomínguezA. García-MoralesV. García-CozarF.J. Ramos-RodríguezJ.J. Melguizo-RodríguezL. Therapeutic approach to Alzheimer’s disease: Current treatments and new perspectives.Pharmaceutics2022146111710.3390/pharmaceutics1406111735745693
    [Google Scholar]
  6. IsmailZ. CreeseB. AarslandD. KalesH.C. LyketsosC.G. SweetR.A. BallardC. Psychosis in Alzheimer disease: Mechanisms, genetics and therapeutic opportunities.Nat. Rev. Neurol.202218313114410.1038/s41582‑021‑00597‑334983978
    [Google Scholar]
  7. JoeE. RingmanJ.M. Cognitive symptoms of Alzheimer’s disease: Clinical management and prevention.bmj2019636710.1136/bmj.l6217
    [Google Scholar]
  8. LanctôtK.L. AmatniekJ. Ancoli-IsraelS. ArnoldS.E. BallardC. Cohen-MansfieldJ. IsmailZ. LyketsosC. MillerD.S. MusiekE. OsorioR.S. RosenbergP.B. SatlinA. SteffensD. TariotP. BainL.J. CarrilloM.C. HendrixJ.A. JurgensH. BootB. Neuropsychiatric signs and symptoms of Alzheimer’s disease: New treatment paradigms.Alzheimers Dement.20173344044910.1016/j.trci.2017.07.00129067350
    [Google Scholar]
  9. SarafS. AlexanderA. Nose-to-brain drug delivery approach: A key to easily accessing the brain for the treatment of Alzheimer’s disease.Neural Regen. Res.201813122102210410.4103/1673‑5374.24145830323136
    [Google Scholar]
  10. KumarR. GulatiM. Road from N2B for treatment of Alzheimer: The bumps and humps. CNS & neurological disorders-drug targets.Formerly Current Drug Targets-CNS & Neurological Disorders202019966367510.2174/1871527319666200708124726
    [Google Scholar]
  11. AgrawalM. SarafS. SarafS. AntimisiarisS.G. ChouguleM.B. ShoyeleS.A. AlexanderA. Nose-to-brain drug delivery: An update on clinical challenges and progress towards approval of anti-Alzheimer drugs.J. Control. Release201828113917710.1016/j.jconrel.2018.05.01129772289
    [Google Scholar]
  12. MohsinN.A. AhmadM. Donepezil: A review of the recent structural modifications and their impact on anti-Alzheimer activity.Braz. J. Pharm. Sci.202056e1832510.1590/s2175‑97902019000418325
    [Google Scholar]
  13. KareemR.T. AbedinifarF. MahmoodE.A. EbadiA.G. RajabiF. VessallyE. The recent development of donepezil structure-based hybrids as potential multifunctional anti-Alzheimer’s agents: Highlights from 2010 to 2020.RSC Advances20211149307813079710.1039/D1RA03718H35498922
    [Google Scholar]
  14. EspinozaL.C. Silva-AbreuM. ClaresB. Rodríguez-LagunasM.J. HalbautL. CañasM.A. CalpenaA.C. Formulation strategies to improve nose-to-brain delivery of donepezil.Pharmaceutics20191126410.3390/pharmaceutics1102006430717264
    [Google Scholar]
  15. SahooL. Nanostructured lipid carrier (NLC)—a promising drug delivery for transdermal application.J Pharm Sci Res.2020124475487
    [Google Scholar]
  16. SabirF. IsmailR. CsokaI. Nose-to-brain delivery of antiglioblastoma drugs embedded into lipid nanocarrier systems: Status quo and outlook.Drug Discov. Today202025118519410.1016/j.drudis.2019.10.00531629966
    [Google Scholar]
  17. BourganisV. KammonaO. AlexopoulosA. KiparissidesC. Recent advances in carrier mediated nose-to-brain delivery of pharmaceutics.Eur. J. Pharm. Biopharm.201812833736210.1016/j.ejpb.2018.05.00929733950
    [Google Scholar]
  18. ÜnerM. Preparation, characterization and physico-chemical properties of solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC): Their benefits as colloidal drug carrier systems.Die pharmazie-an Int. J. Pharmaceut. Sci.2006615375386
    [Google Scholar]
  19. KhosaA. ReddiS. SahaR.N. Nanostructured lipid carriers for site-specific drug delivery.Biomed. Pharmacother.201810359861310.1016/j.biopha.2018.04.05529677547
    [Google Scholar]
  20. JaiswalP. GidwaniB. VyasA. Nanostructured lipid carriers and their current application in targeted drug delivery.Artif. Cells Nanomed. Biotechnol.2016441274010.3109/21691401.2014.90982224813223
    [Google Scholar]
  21. SalviV.R. PawarP. Nanostructured lipid carriers (NLC) system: A novel drug targeting carrier.J. Drug Deliv. Sci. Technol.20195125526710.1016/j.jddst.2019.02.017
    [Google Scholar]
  22. SharmaA. BaldiA. Nanostructured lipid carriers: A review.J. Dev. Drugs2018721510.4172/2329‑6631.1000191
    [Google Scholar]
  23. El-HelwA.R. FahmyU. Improvement of fluvastatin bioavailability by loading on nanostructured lipid carriers.Int. J. Nanomedicine2015105797580410.2147/IJN.S9155626396513
    [Google Scholar]
  24. HuF.Q. JiangS.P. DuY.Z. YuanH. YeY.Q. ZengS. Preparation and characterization of stearic acid nanostructured lipid carriers by solvent diffusion method in an aqueous system.Colloids Surf. B Biointerfaces2005453-416717310.1016/j.colsurfb.2005.08.00516198092
    [Google Scholar]
  25. MendesI.T. RuelaA.L.M. CarvalhoF.C. FreitasJ.T.J. BonfilioR. PereiraG.R. Development and characterization of nanostructured lipid carrier-based gels for the transdermal delivery of donepezil.Colloids Surf. B Biointerfaces201917727428110.1016/j.colsurfb.2019.02.00730763792
    [Google Scholar]
  26. RabimaR. SariM.P. Entrapment efficiency and drug loading of curcumin nanostructured lipid carrier (NLC) formula.Pharmaciana20199229930610.12928/pharmaciana.v9i2.13070
    [Google Scholar]
  27. SachanA.K. GuptaA. AroraM. Formulation & characterization of nanostructured lipid carrier (NLC) based gel for topical delivery of etoricoxib.J. Drug Deliv. Ther.20166241310.22270/jddt.v6i2.1222
    [Google Scholar]
  28. ChinsriwongkulA. ChareanputtakhunP. NgawhirunpatT. RojanarataT. Sila-onW. RuktanonchaiU. OpanasopitP. Nanostructured lipid carriers (NLC) for parenteral delivery of an anticancer drug.AAPS PharmSciTech201213115015810.1208/s12249‑011‑9733‑822167418
    [Google Scholar]
  29. RapalliV.K. KaulV. GorantlaS. WaghuleT. DubeyS.K. PandeyM.M. SinghviG. UV Spectrophotometric method for characterization of curcumin loaded nanostructured lipid nanocarriers in simulated conditions: Method development, in-vitro and ex-vivo applications in topical delivery.Spectrochim. Acta A Mol. Biomol. Spectrosc.202022411739210.1016/j.saa.2019.11739231330421
    [Google Scholar]
  30. 0] Prathyusha CH, TEGK M. Compatibility studies of Donepezil with different excipients by using HPLC and FTIR.J. Adv. Pharm. Educ. Res.201333273-278
    [Google Scholar]
  31. KharbachM. KamalR. BousrabatM. Alaoui MansouriM. BarraI. AlaouiK. CherrahY. Vander HeydenY. BouklouzeA. Characterization and classification of PGI Moroccan Argan oils based on their FTIR fingerprints and chemical composition.Chemom. Intell. Lab. Syst.201716218219010.1016/j.chemolab.2017.02.003
    [Google Scholar]
  32. GhanS.Y. SiowL.F. TanC.P. CheongK.W. ThooY.Y. Influence of soya lecithin, sorbitan and glyceryl monostearate on physicochemical properties of organogels.Food Biophys.202015338639510.1007/s11483‑020‑09633‑z
    [Google Scholar]
  33. BhattH. RompicharlaS.V.K. KomanduriN. AashmaS. ParadkarS. GhoshB. BiswasS. Development of curcumin-loaded solid lipid nanoparticles utilizing glyceryl monostearate as single lipid using QbD approach: characterization and evaluation of anticancer activity against human breast cancer cell line.Curr. Drug Deliv.20181591271128310.2174/156720181566618050312011329732970
    [Google Scholar]
  34. VyasV. SanchetiP. KarekarP. ShahM. PoreY. Physicochemical characterization of solid dispersion systems of tadalafil with poloxamer 407.Acta Pharm.200959445346110.2478/v10007‑009‑0037‑419919934
    [Google Scholar]
  35. VrbincM. Jordan-KotarB. SmrkoljM. VrečerF. Characterization of physical forms of donepezil hydrochloride.Acta Chim. Slov.2007542
    [Google Scholar]
  36. LeivaG.E. SegatinN. MazzobreM.F. AbramovichH. AbramV. VidrihR. BueraM.D. PoklarU.N. Multi-analytical approach to oxidative stability of unrefined Argan, Chia.Rosa Mosqueta and Olive oils201610.4172/2155‑9600.1000450
    [Google Scholar]
  37. TaleleP. SahuS. MishraA.K. Physicochemical characterization of solid lipid nanoparticles comprised of glycerol monostearate and bile salts.Colloids Surf. B Biointerfaces201817251752510.1016/j.colsurfb.2018.08.06730212689
    [Google Scholar]
  38. AkkariA.C.S. PapiniJ.Z.B. GarciaG.K. FrancoM.K.K.D. CavalcantiL.P. GasperiniA. AlkschbirsM.I. YokaichyiaF. de PaulaE. TófoliG.R. de AraujoD.R. Poloxamer 407/188 binary thermosensitive hydrogels as delivery systems for infiltrative local anesthesia: Physico-chemical characterization and pharmacological evaluation.Mater. Sci. Eng. C20166829930710.1016/j.msec.2016.05.08827524024
    [Google Scholar]
  39. JoshiM. PatravaleV. Formulation and evaluation of Nanostructured Lipid Carrier (NLC)-based gel of Valdecoxib.Drug Dev. Ind. Pharm.200632891191810.1080/0363904060081467616954103
    [Google Scholar]
  40. WashingtonN. SteeleR.J.C. JacksonS.J. BushD. MasonJ. GillD.A. PittK. RawlinsD.A. Determination of baseline human nasal pH and the effect of intranasally administered buffers.Int. J. Pharm.2000198213914610.1016/S0378‑5173(99)00442‑110767563
    [Google Scholar]
  41. SunM. NieS. PanX. ZhangR. FanZ. WangS. Quercetin-nanostructured lipid carriers: Characteristics and anti-breast cancer activities in vitro.Colloids Surf. B Biointerfaces2014113152410.1016/j.colsurfb.2013.08.03224060926
    [Google Scholar]
  42. DevkarT.B. TekadeA.R. KhandelwalK.R. Surface engineered nanostructured lipid carriers for efficient nose to brain delivery of ondansetron HCl using Delonix regia gum as a natural mucoadhesive polymer.Colloids Surf. B Biointerfaces201412214315010.1016/j.colsurfb.2014.06.03725033434
    [Google Scholar]
  43. GuF. FanH. CongZ. LiS. WangY. WuC. Preparation, characterization, and in vivo pharmacokinetics of thermosensitive in situ nasal gel of donepezil hydrochloride.Acta Pharm.202070341142210.2478/acph‑2020‑003232074067
    [Google Scholar]
  44. IllumL. Transport of drugs from the nasal cavity to the central nervous system.Eur. J. Pharm. Sci.200011111810.1016/S0928‑0987(00)00087‑710913748
    [Google Scholar]
  45. ZhangQ.Z. ZhaL.S. ZhangY. JiangW.M. LuW. ShiZ.Q. JiangX.G. FuS.K. The brain targeting efficiency following nasally applied MPEG-PLA nanoparticles in rats.J. Drug Target.200614528129010.1080/1061186060072105116882548
    [Google Scholar]
  46. MadaneR.G. MahajanH.S. Curcumin-loaded nanostructured lipid carriers (NLCs) for nasal administration: design, characterization, and in vivo study.Drug Deliv.20162341326133410.3109/10717544.2014.97538225367836
    [Google Scholar]
  47. YangH. Nanoparticle-mediated brain-specific drug delivery, imaging, and diagnosis.Pharm. Res.20102791759177110.1007/s11095‑010‑0141‑720593303
    [Google Scholar]
  48. MüllerR.H. AlexievU. SinambelaP. KeckC.M. Nanostructured lipid carriers (NLC): The second generation of solid lipid nanoparticles. Percutaneous penetration enhancers chemical methods in penetration enhancement.Nanocarriers201616118510.1007/978‑3‑662‑47862‑2_11
    [Google Scholar]
  49. ApostolouM. AssiS. FatokunA.A. KhanI. The effects of solid and liquid lipids on the physicochemical properties of nanostructured lipid carriers.J. Pharm. Sci.202111082859287210.1016/j.xphs.2021.04.01233901564
    [Google Scholar]
  50. MuraP. MaestrelliF. D’AmbrosioM. LuceriC. CirriM. Evaluation and comparison of solid lipid nanoparticles (SLNs) and nanostructured lipid carriers (NLCs) as vectors to develop hydrochlorothiazide effective and safe pediatric oral liquid formulations.Pharmaceutics202113443710.3390/pharmaceutics1304043733804945
    [Google Scholar]
  51. SangsenY. LaochaiP. ChotsathidchaiP. WiwattanapatapeeR. Effect of solid lipid and liquid oil ratios on properties of nanostructured lipid carriers for oral curcumin delivery.Adv. Mat. Res.20141060626510.4028/www.scientific.net/AMR.1060.62
    [Google Scholar]
  52. KandimallaK.K. DonovanM.D. Localization and differential activity of P-glycoprotein in the bovine olfactory and nasal respiratory mucosae.Pharm. Res.20052271121112810.1007/s11095‑005‑5420‑316028013
    [Google Scholar]
  53. LeopoldoM. NardulliP. ContinoM. LeonettiF. LuurtsemaG. ColabufoN.A. An updated patent review on P-glycoprotein inhibitors (2011-2018).Expert Opin. Ther. Pat.201929645546110.1080/13543776.2019.161827331079547
    [Google Scholar]
  54. WerleM. Natural and synthetic polymers as inhibitors of drug efflux pumps.Pharm. Res.2008253500-51110.1007/s11095‑007‑9347‑8
    [Google Scholar]
  55. AraujoL. LöbenbergR. KreuterJ. Influence of the surfactant concentration on the body distribution of nanoparticles.J. Drug Target.19996537338510.3109/1061186990899684410342385
    [Google Scholar]
  56. HaroonH.B. HunterA.C. FarhangraziZ.S. MoghimiS.M. A brief history of long circulating nanoparticles.Adv. Drug Deliv. Rev.202218811439610.1016/j.addr.2022.11439635798129
    [Google Scholar]
  57. DanaeiM. DehghankholdM. AtaeiS. HasanzadehD.F. JavanmardR. DokhaniA. KhorasaniS. MozafariM. Impact of particle size and polydispersity index on the clinical applications of lipidic nanocarrier systems.Pharmaceutics20181025710.3390/pharmaceutics1002005729783687
    [Google Scholar]
  58. ButaniS. Fabrication of an ion-sensitive in situ gel loaded with nanostructured lipid carrier for N2B delivery of donepezil.Asian J. Pharm.201812410.22377/ajp.v12i04.2838
    [Google Scholar]
  59. YasirM. ZafarA. NoorullaK.M. TuraA.J. SaraU.V.S. PanjwaniD. KhalidM. HajiM.J. GobenaW.G. GebissaT. DalechaD.D. Nose to brain delivery of donepezil through surface modified NLCs: Formulation development, optimization, and brain targeting study.J. Drug Deliv. Sci. Technol.20227510363110.1016/j.jddst.2022.103631
    [Google Scholar]
  60. KhanM.F.A. Ur RehmanA. HowariH. AlhodaibA. UllahF. MustafaZ.U. ElaissariA. AhmedN. Hydrogel containing solid lipid nanoparticles loaded with argan oil and simvastatin: Preparation, in vitro and ex vivo assessment.Gels20228527710.3390/gels805027735621575
    [Google Scholar]
  61. GoikU. GoikT. ZałęskaI. The properties and application of argan oil in cosmetology.Eur. J. Lipid Sci. Technol.20191214180031310.1002/ejlt.201800313
    [Google Scholar]
/content/journals/car/10.2174/0115672050288659240229080535
Loading
/content/journals/car/10.2174/0115672050288659240229080535
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test