Skip to content
2000
Volume 6, Issue 1
  • ISSN: 2452-2716
  • E-ISSN: 2452-2724

Abstract

Background

The oral route is the primary route for both acute and chronic treatment of epilepsy. However, lack of oral access during the seizures and high drug resistance limit the anti-epileptogenic effects of most antiepileptic drugs. Therefore, alternative routes and novel drug delivery systems are required. In this study, polymeric microneedles were formulated and characterized for possible intranasal administration of Tiagabine (TIA) in order to overcome the blood-brain barrier (BBB).

Methods

In our study, carboxymethyl cellulose (CMC) and Eudragit® S 100 (ES100) based polymeric microneedles were formulated by micromolding method. Scanning electron microscopy (SEM), differential scanning calorimetry (DSC), X-ray diffractometry (XRD), fourier transform infrared spectroscopy (FT-IR) and proton nuclear magnetic resonance (1H-NMR), release, and texture analyses were performed. For the stability analyses, formulations were kept at 25°C ± 2°C (60 ± 5% Relative Humidity; RH), 40°C ± 2°C (75 ± 5% RH) and 5°C ± 3°C for six months.

Results

Analysis results revealed that robust microneedles were formulated successfully by micromolding method with adjustable needle lengths. Depending on the polymer type, sustained TIA releases up to 72 hours were achieved. Structural integrities were maintained at all storage conditions during the storage period of six months.

Conclusion

TIA-loaded microneedles have the potential with less invasive properties, even with small amounts of TIA, through the unconventional nasal route for effective treatment of epilepsy.

This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/caps/10.2174/2452271606666230427091330
2023-05-25
2025-09-05
Loading full text...

Full text loading...

/deliver/fulltext/caps/6/1/CAPS-6-1-48.html?itemId=/content/journals/caps/10.2174/2452271606666230427091330&mimeType=html&fmt=ahah

References

  1. QuintanaM. FonsecaE. Sánchez-LópezJ. The economic burden of newly diagnosed epilepsy in Spain.Epilepsy Behav.202112510839510839510.1016/j.yebeh.2021.108395 34781064
    [Google Scholar]
  2. KalserJ. CrossJ.H. New epilepsy treatment in children: Upcoming strategies and rewind to ancient times and concepts.Paediatr. Child Health2018281047447910.1016/j.paed.2018.07.008
    [Google Scholar]
  3. ZybinaA. AnshakovaA. MalinovskayaJ. Nanoparticle-based delivery of carbamazepine: A promising approach for the treatment of refractory epilepsy.Int. J. Pharm.20185471-2102310.1016/j.ijpharm.2018.05.023 29751140
    [Google Scholar]
  4. CutilloG. TolbaH. HirschL.J. Anti-seizure medications and efficacy against focal to bilateral tonic-clonic seizures: A systematic review with relevance for SUDEP prevention.Epilepsy Behav.202111710781510781510.1016/j.yebeh.2021.107815 33640562
    [Google Scholar]
  5. AntimisiarisS.G. MaraziotiA. KannavouM. Overcoming barriers by local drug delivery with liposomes.Adv. Drug Deliv. Rev.2021174538610.1016/j.addr.2021.01.019 33539852
    [Google Scholar]
  6. YasirM. SaraU.V.S. Solid lipid nanoparticles for nose to brain delivery of haloperidol: In vitro drug release and pharmacokinetics evaluation.Acta Pharm. Sin. B20144645446310.1016/j.apsb.2014.10.005 26579417
    [Google Scholar]
  7. KhanA.R. LiuM. KhanM.W. ZhaiG. Progress in brain targeting drug delivery system by nasal route.J. Control. Release201726836438910.1016/j.jconrel.2017.09.001 28887135
    [Google Scholar]
  8. MatarazzoA.P. EliseiL.M.S. CarvalhoF.C. Mucoadhesive nanostructured lipid carriers as a cannabidiol nasal delivery system for the treatment of neuropathic pain.Eur. J. Pharm. Sci.202115910569810569810.1016/j.ejps.2020.105698 33406408
    [Google Scholar]
  9. BruinsmannF. PiganaS. AguirreT. Chitosan-coated nanoparticles: Effect of chitosan molecular weight on nasal transmucosal delivery.Pharmaceutics20191128610.3390/pharmaceutics11020086 30781722
    [Google Scholar]
  10. ZafarA. AfzalM. QuaziA.M. Chitosan-ethyl cellulose microspheres of domperidone for nasal delivery: Preparation, in-vitro characterization, in-vivo study for pharmacokinetic evaluation and bioavailability enhancement.J. Drug Deliv. Sci. Technol.20216310247110247110.1016/j.jddst.2021.102471
    [Google Scholar]
  11. LuppiB. BigucciF. CerchiaraT. ZecchiV. Chitosan-based hydrogels for nasal drug delivery: From inserts to nanoparticles. Expert Opinion on Drug Delivery.Informa Healthcare2010Vol. 781182810.1517/17425247.2010.495981
    [Google Scholar]
  12. García-GonzálezC.A. SosnikA. KalmárJ. Aerogels in drug delivery: From design to application.J. Control. Release2021332406310.1016/j.jconrel.2021.02.012 33600880
    [Google Scholar]
  13. SunM. YuX. WangT. BiS. LiuY. ChenX. Nasal adaptive chitosan-based nano-vehicles for anti-allergic drug delivery.Int. J. Biol. Macromol.20191351182119210.1016/j.ijbiomac.2019.05.188 31154036
    [Google Scholar]
  14. Tiozzo FasioloL. MannielloM.D. TrattaE. Opportunity and challenges of nasal powders: Drug formulation and delivery.Eur. J. Pharm. Sci.201811321710.1016/j.ejps.2017.09.027 28942007
    [Google Scholar]
  15. SonjeA.G. MahajanH.S. Nasal inserts containing ondansetron hydrochloride based on Chitosan–gellan gum polyelectrolyte complex: In vitro–in vivo studies.Mater. Sci. Eng. C20166432933510.1016/j.msec.2016.03.091 27127060
    [Google Scholar]
  16. KimJ.H. ShinJ.U. KimS.H. Successful transdermal allergen delivery and allergen-specific immunotherapy using biodegradable microneedle patches.Biomaterials2018150384810.1016/j.biomaterials.2017.10.013 29032329
    [Google Scholar]
  17. SanjayS.T. ZhouW. DouM. Recent advances of controlled drug delivery using microfluidic platforms.Adv. Drug Deliv. Rev.201812832810.1016/j.addr.2017.09.013 28919029
    [Google Scholar]
  18. AryaJ. HenryS. KalluriH. McAllisterD.V. PewinW.P. PrausnitzM.R. Tolerability, usability and acceptability of dissolving microneedle patch administration in human subjects.Biomaterials20171281710.1016/j.biomaterials.2017.02.040 28285193
    [Google Scholar]
  19. MogusalaN.R. DevadasuV.R. VenisettyR.K. Fabrication of microneedle molds and polymer based biodegradable microneedle patches: A novel method.American Journal of Drug Delivery and Therapeutics2015226071
    [Google Scholar]
  20. AndersenT.E. AndersenA.J. PetersenR.S. NielsenL.H. KellerS.S. Drug loaded biodegradable polymer microneedles fabricated by hot embossing.Microelectron. Eng.2018195576110.1016/j.mee.2018.03.024
    [Google Scholar]
  21. WangM. HuL. XuC. Recent advances in the design of polymeric microneedles for transdermal drug delivery and biosensing.Lab Chip20171781373138710.1039/C7LC00016B 28352876
    [Google Scholar]
  22. NguyenH.X. BozorgB.D. KimY. Poly (vinyl alcohol) microneedles: Fabrication, characterization, and application for transdermal drug delivery of doxorubicin.Eur. J. Pharm. Biopharm.20181298810310.1016/j.ejpb.2018.05.017 29800617
    [Google Scholar]
  23. LeeK. GoudieM.J. TebonP. Non-transdermal microneedles for advanced drug delivery.Adv. Drug Deliv. Rev.2020165-166415910.1016/j.addr.2019.11.010 31837356
    [Google Scholar]
  24. SuriyaampornP. OpanasopitP. NgawhirunpatT. RangsimawongW. Computer-aided rational design for optimally Gantrez® S-97 and hyaluronic acid-based dissolving microneedles as a potential ocular delivery system.J. Drug Deliv. Sci. Technol.20216110231910231910.1016/j.jddst.2020.102319
    [Google Scholar]
  25. SV H Darji V, Patel J, Patel B.Stability Indicating Rp-Hplc Method Development and Validation for Estimation of.2018050428362861
    [Google Scholar]
  26. VosslerD.G. MorrisG.L.III HardenC.L. Tiagabine in clinical practice: Effects on seizure control and behavior.Epilepsy Behav.201328221121610.1016/j.yebeh.2013.05.006 23770680
    [Google Scholar]
  27. DaviesJ.A. Tiagabine. xPharm: The Comprehensive Pharmacology Reference.200714Available from : https://doi.org/ 10.1016/B978‑008055232‑3.62759‑X
  28. SillsG.J. RogawskiM.A. Mechanisms of action of currently used antiseizure drugs.Neuropharmacology202016810796610796610.1016/j.neuropharm.2020.107966 32120063
    [Google Scholar]
  29. PatilS. AsemaS.U.K. MirzaS. Method development and validation for quantitative analysis of tigabine HCl by ultraviolet spectrophotometry.Int. J. Chem. Sci.200861413416
    [Google Scholar]
  30. LunnG. HPLC methods for recently approved pharmaceuticals.New Jersey, USAJohn Wiley and Sons2005173810.1002/0471711683
    [Google Scholar]
  31. ICH Q2 R1 I. ICH Topic Q 2 (R1) Validation of Analytical Procedures: Text and Methodology.2020Available from: https://database.ich.org/sites/default/files/Q2%28R1%29%20Guideline.pdf
  32. ChoiI.J. KangA. AhnM.H. Insertion-responsive microneedles for rapid intradermal delivery of canine influenza vaccine.J. Control. Release201828646046610.1016/j.jconrel.2018.08.017 30102940
    [Google Scholar]
  33. PandaA. ShettarA. SharmaP.K. RepkaM.A. MurthyS.N. Development of lysozyme loaded microneedles for dermal applications.Int. J. Pharm.202159312010412010410.1016/j.ijpharm.2020.120104 33278495
    [Google Scholar]
  34. ZhangY. HuoM. ZhouJ. DDSolver: An add-in program for modeling and comparison of drug dissolution profiles.AAPS J.201012326327110.1208/s12248‑010‑9185‑1 20373062
    [Google Scholar]
  35. MönkäreJ. PontierM. van KampenE.E.M. Development of PLGA nanoparticle loaded dissolving microneedles and comparison with hollow microneedles in intradermal vaccine delivery.Eur. J. Pharm. Biopharm.201812911112110.1016/j.ejpb.2018.05.031 29803720
    [Google Scholar]
  36. VilarG. Tulla-PucheJ. AlbericioF. Polymers and drug delivery systems.Curr. Drug Deliv.20129436739410.2174/156720112801323053 22640038
    [Google Scholar]
  37. Başaran E, Aykaç K, Yenilmez E, Büyükköroğlu G, Tunali Y, Demirel M. Formulation and characterization studies of inclusion complexes of voriconazole for possible ocular application.Pharm. Dev. Technol.202227222824110.1080/10837450.2022.2037635 35107405
    [Google Scholar]
  38. SanandiyaN.D. SiddhantaA.K. Cellulose-based spreadable new thixo gels: Synthesis and their characterization.RSC Advances2016695929539296110.1039/C6RA19264E
    [Google Scholar]
  39. El-SakhawyM. KamelS. SalamaA. Hebat-AllahS.T. Preparation and infrared study of cellulose based amphiphilic materials.Cellulose chemistry and Technology 2018523–4193200
    [Google Scholar]
  40. ThakralN.K. RayA.R. MajumdarD.K. Eudragit S-100 entrapped chitosan microspheres of valdecoxib for colon cancer.J. Mater. Sci. Mater. Med.20102192691269910.1007/s10856‑010‑4109‑2 20535630
    [Google Scholar]
  41. MourdikoudisS. PallaresR.M. ThanhN.T.K. Characterization techniques for nanoparticles: Comparison and complementarity upon studying nanoparticle properties.Nanoscale20181027128711293410.1039/C8NR02278J 29926865
    [Google Scholar]
  42. SughirA. SkibaM. LameirasP. CoadouG. Lahiani-SkibaM. OulyadiH. Study of interaction between tiagabine HCl and 2-HPβCD: Investigation of inclusion process.J. Incl. Phenom. Macrocycl. Chem.2010681-2556310.1007/s10847‑009‑9732‑5
    [Google Scholar]
  43. PawarP. SharmaP. ChawlaA. MehtaR. Formulation and in vitro evaluation of Eudragit S-100 coated naproxen matrix tablets for colon-targeted drug delivery system.J. Adv. Pharm. Technol. Res.201341314110.4103/2231‑4040.107498 23662280
    [Google Scholar]
  44. ZhaoX. LiX. ZhangP. DuJ. WangY. Tip-loaded fast-dissolving microneedle patches for photodynamic therapy of subcutaneous tumor.J. Control. Release201828620120910.1016/j.jconrel.2018.07.038 30056119
    [Google Scholar]
  45. BeuleA.G. Physiology and pathophysiology of respiratory mucosa of the nose and the paranasal sinuses.GMS Curr. Top. Otorhinolaryngol. Head Neck Surg.20109Doc0710.3205/cto000071 22073111
    [Google Scholar]
  46. KhosaA. ReddiS. SahaR.N. Nanostructured lipid carriers for site-specific drug delivery.Biomed. Pharmacother.201810359861310.1016/j.biopha.2018.04.055 29677547
    [Google Scholar]
  47. FrancoP. De MarcoI. Eudragit: A novel carrier for controlled drug delivery in supercritical antisolvent coprecipitation.Polymers202012123410.3390/polym12010234 31963638
    [Google Scholar]
  48. SivasankaranS. JonnalagaddaS. Advances in controlled release hormonal technologies for contraception: A review of existing devices, underlying mechanisms, and future directions.J. Control. Release202133079781110.1016/j.jconrel.2020.12.044 33370578
    [Google Scholar]
  49. Center for Drug Evaluation and Research. Q2(R1) validation of analytical procedures: text and methodology.200310.32388/YOKP53
    [Google Scholar]
  50. CobanO. AytacZ. YildizZ.I. UyarT. Colon targeted delivery of niclosamide from β-cyclodextrin inclusion complex incorporated electrospun Eudragit® L100 nanofibers.Colloids Surf. B Biointerfaces202119711139111139110.1016/j.colsurfb.2020.111391 33129100
    [Google Scholar]
  51. ZhouB. LiuS. YinH. QiM. HongM. RenG.B. Development of gliclazide ionic liquid and the transdermal patches: An effective and noninvasive sustained release formulation to achieve hypoglycemic effects.Eur. J. Pharm. Sci.202116410591510591510.1016/j.ejps.2021.105915 34146681
    [Google Scholar]
  52. AbilovaG.K. KaldybekovD.B. OzhmukhametovaE.K. Chitosan/poly(2-ethyl-2-oxazoline) films for ocular drug delivery: Formulation, miscibility, in vitro and in vivo studies.Eur. Polym. J.201911631132010.1016/j.eurpolymj.2019.04.016
    [Google Scholar]
  53. SinghR.B. DasN. SinghG.K. SinghS.K. ZamanK. Synthesis and pharmacological evaluation of 3-[5-(aryl-[1,3,4]oxadiazole-2-yl]-piperidine derivatives as anticonvulsant and antidepressant agents.Arab. J. Chem.20201355299531110.1016/j.arabjc.2020.03.009
    [Google Scholar]
/content/journals/caps/10.2174/2452271606666230427091330
Loading
/content/journals/caps/10.2174/2452271606666230427091330
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test