Skip to content
2000
Volume 5, Issue 2
  • ISSN: 2452-2716
  • E-ISSN: 2452-2724

Abstract

Background

Bio-based nanomaterials such as cellulose nanocrystals (CNCs) have been increasingly explored in nanotechnology owing to their chemophysical properties, self-assembly, and low toxicity.

Introduction

CNCs can be isolated from various cellulosic biomass sources. Textiles which are mostly made of cotton, are under-utilized biomass that after their lifetime is either burned or dumped into landfills.

Methods

In this study, cotton-based textiles are studied as a source of CNCs. CNCs were extracted from textiles with and without bleaching before the acid hydrolysis step, and further comparing them with the properties of industrial microcrystalline cellulose-derived CNCs. Nanocrystals were synthesized from the three different sources and their morphology, thermal properties, and colloidal stability were compared.

Results

The result show similar thermal properties and morphological characteristics for the three synthesized CNCs, and similar colloidal stability between the two textile-based CNC dispersions, suggesting that the dyes on CNCs do not impact the quality of the product. Removing the bleaching pre-treatment -a water-demanding and toxically harmful step- before CNC extraction provides cost and environmental benefits without compromising on the CNC quality.

Conclusion

This project seeks to streamline the CNC synthesis process with the long-term goal of eventually facilitating the textile recycling industry.

Loading

Article metrics loading...

/content/journals/caps/10.2174/2452271605666220823102507
2022-10-27
2025-09-19
Loading full text...

Full text loading...

References

  1. United States Environmental Protection Agency. Advancing sustainable materials management: 2016 and 2017 tables and figures.2019Available from: https://www.epa.gov/facts-and-figures-about-materials-waste-and-recycling/textiles-material-specific-data
    [Google Scholar]
  2. SandinG. PetersG. Environmental impact of textile reuse and recycling – A review.J. Clean. Prod.201818435336510.1016/j.jclepro.2018.02.266
    [Google Scholar]
  3. RanaS. KarunamoorthyS. ParveenS. FangueiroR. Life cycle assessment of cotton textiles and clothing.Handbook of Life Cycle Assessment (LCA) of textiles and clothing, woodhead publishing series in textiles. MuthuS.S. Elsevier Inc.201519521610.1016/B978‑0‑08‑100169‑1.00009‑5
    [Google Scholar]
  4. PiribauerB. BartlA. Textile recycling processes, state of the art and current developments: A mini review.Waste Manag. Res.2019372112119
    [Google Scholar]
  5. TracheD. TarchounA.F. DerradjiM. Nanocellulose: From fundamentals to advanced applications.Front Chem.2020839241510.3389/fchem.2020.00392 32435633
    [Google Scholar]
  6. LavoineN. DeslogesI. DufresneA. BrasJ. Microfibrillated cellulose - its barrier properties and applications in cellulosic materials: A review.Carbohydr. Polym.201290273576410.1016/j.carbpol.2012.05.026 22839998
    [Google Scholar]
  7. SoflaM.R.K. BrownR.J. TsuzukiT. RaineyT.J. A comparison of cellulose nanocrystals and cellulose nanofibres extracted from bagasse using acid and ball milling methods.Adv Nat Sci Nanosci Nanotechnol20167303500410.1088/2043‑6262/7/3/035004
    [Google Scholar]
  8. MoonR.J. MartiniA. NairnJ. SimonsenJ. YoungbloodJ. Cellulose nanomaterials review: Structure, properties and nanocomposites.Chem. Soc. Rev.20114073941399410.1039/c0cs00108b 21566801
    [Google Scholar]
  9. MahmudM.M. PerveenA. JahanR.A. Preparation of different polymorphs of cellulose from different acid hydrolysis medium.Int. J. Biol. Macromol.201913096997610.1016/j.ijbiomac.2019.03.027 30844460
    [Google Scholar]
  10. NishiyamaY. SugiyamaJ. ChanzyH. LanganP. Crystal structure and hydrogen bonding system in cellulose I(alpha) from synchrotron X-ray and neutron fiber diffraction.J. Am. Chem. Soc.200312547143001430610.1021/ja037055w 14624578
    [Google Scholar]
  11. WangZ. YaoZ. ZhouJ. ZhangY. Reuse of waste cotton cloth for the extraction of cellulose nanocrystals.Carbohydr. Polym.201715794595210.1016/j.carbpol.2016.10.044 27988013
    [Google Scholar]
  12. TangY. YangS. ZhangN. ZhangJ. Preparation and characterization of nanocrystalline cellulose via low-intensity ultrasonic-assisted sulfuric acid hydrolysis.Cellulose20142133534610.1007/s10570‑013‑0158‑2
    [Google Scholar]
  13. Ruiz-CaldasM-X. CarlssonJ. SadiktsisI. JaworskiA. NilssonU. MathewA.P. ACS Sustain. Chem.& Eng.202210113787379810.1021/acssuschemeng.2c00797
    [Google Scholar]
  14. SegalL. CreelyL. MartinA.E. ConradC.M. An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer.Text. Res. J.19592978679410.1177/004051755902901003
    [Google Scholar]
  15. HachaichiA. KouiniB. KianL.K. Nanocrystalline cellulose from microcrystalline cellulose of date palm fibers as a promising candidate for bio-nanocomposites: Isolation and characterization.Materials202114185313532510.1007/s10570‑012‑9714‑4
    [Google Scholar]
  16. BondesonD.P. MathewA.P. OksmanK. Optimization of the isolation of nanocrystals from microcrystalline cellulose by acid hydrolysis.Cellulose20061317118010.1007/s10570‑006‑9061‑4
    [Google Scholar]
  17. YueY. ZhouC. FrenchA. Comparative properties of cellulose nano-crystals from native and mercerized cotton fibers.Cellulose2012191173118710.3390/ma14185313 34576536
    [Google Scholar]
  18. BhattacharjeeS. DLS and zeta potential - What they are and what they are not?J. Control. Release2016235337351
    [Google Scholar]
  19. KumarA. DixitC. Methods for characterization of nanoparticles.Advances in Nanomedicine for the Delivery of Therapeutic Nucleic Acids. NimeshS. ChandraR. GuptaN. Elsevier2017435810.1016/B978‑0‑08‑100557‑6.00003‑1
    [Google Scholar]
  20. FosterE.J. MoonR.J. AgarwalU.P. Current characterization methods for cellulose nanomaterials.Chem. Soc. Rev.4782609267910.1039/C6CS00895J
    [Google Scholar]
  21. RomanM. WinterW.T. Effect of sulfate groups from sulfuric acid hydrolysis on the thermal degradation behavior of bacterial cellulose.Biomacromolecules2004551671167710.1021/bm034519+ 15360274
    [Google Scholar]
  22. VanderfleetO.M. ReidM.S. BrasJ. Insight into thermal stability of cellulose nanocrystals from new hydrolysis methods with acid blends.Cellulose20182650752810.1007/s10570‑018‑2175‑7
    [Google Scholar]
  23. CamareroE.S. KuhntT. FosterE.J. WederC. Isolation of thermally stable cellulose nanocrystals by phosphoric acid hydrolysis.Biomacromolecules20131441223123010.1021/bm400219u 23458473
    [Google Scholar]
  24. DriemeierC.E. CalligarisG.A. Theoretical and experimental developments for accurate determination of crystallinity of cellulose I materials.J. Appl. Cryst.20114418419210.1107/S0021889810043955
    [Google Scholar]
  25. XieQ. WangS. ChenX. Thermal stability and crystallization behavior of cellulose nanocrystals and their poly(l-lactide) nanocomposites: Effects of surface ionic group and poly(d-lactide) grafting.Cellulose2018256847686210.1007/s10570‑018‑2086‑7
    [Google Scholar]
  26. VoronovaM.I. SurovO.V. ZakharovA.G. Nanocrystalline cellulose with various contents of sulfate groups.Carbohydr. Polym.201398146546910.1016/j.carbpol.2013.06.004 23987369
    [Google Scholar]
  27. XiongR. ZhangX. TianD. ZhouZ. LuC. Comparing microcrystalline with spherical nanocrystalline cellulose from waste cotton fabrics.Cellulose2012191189119810.1007/s10570‑012‑9730‑4
    [Google Scholar]
  28. JordanJ.H. EassonM.W. CondonB.D. Alkali hydrolysis of sulfated cellulose nanocrystals: Optimization of reaction conditions and tailored surface charge.Nanomaterials201999115
    [Google Scholar]
  29. MacielM.M. BeniniK.C. VoorwaldH.J.C. CioffiM.O.H. Obtainment and characterization of nanocellulose from an unwoven industrial textile cotton waste: Effect of acid hydrolysis conditions.Int. J. Biol. Macromol.201912649650610.1016/j.ijbiomac.2018.12.202 30593806
    [Google Scholar]
  30. HuangS. TaoR. IsmailA. WangY. Cellulose nanocrystals derived from textile waste through acid hydrolysis and oxidation as reinforcing agent of soy protein film.Polymers202012411210.21748/am20.197
    [Google Scholar]
  31. ZhongT. DhandapaniR. LiangD. Nanocellulose from recycled indigo-dyed denim fabric and its application in composite films.Carbohydr. Polym.2020240911628311629910.1016/j.carbpol.2020.116283 32475567
    [Google Scholar]
  32. LeãoR.M. MiléoP.C. MaiaJ.M. LuzS.M. Environmental and technical feasibility of cellulose nanocrystal manufacturing from sugarcane bagasse.Carbohydr. Polym.201717551852910.1016/j.carbpol.2017.07.087 28917896
    [Google Scholar]
  33. StoudmannN. NowackB. SomC. Prospective environmental risk assessment of nanocellulose for Europe.Environ. Sci. Nano2019682520253110.1039/C9EN00472F
    [Google Scholar]
  34. DhaliK. GhasemlouM. DaverF. CassP. AdhikariB. A review of nanocellulose as a new material towards environmental sustainability.Sci. Total Environ.202177514587114588010.1016/j.scitotenv.2021.145871 33631573
    [Google Scholar]
/content/journals/caps/10.2174/2452271605666220823102507
Loading
/content/journals/caps/10.2174/2452271605666220823102507
Loading

Data & Media loading...

Supplements

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test