Skip to content
2000
Volume 8, Issue 1
  • ISSN: 2452-2716
  • E-ISSN: 2452-2724
Preview this article:

There is no abstract available.

Loading

Article metrics loading...

/content/journals/caps/10.2174/0124522716403558250620120111
2025-07-01
2025-09-28
Loading full text...

Full text loading...

/deliver/fulltext/caps/8/1/CAPS-8-E24522716403558.html?itemId=/content/journals/caps/10.2174/0124522716403558250620120111&mimeType=html&fmt=ahah

References

  1. ZhangL YanS LiuW Mechanical metamaterials with negative Poisson’s ratio: A review.Eng Struct 202532911983810.1016/j.engstruct.2025.119838
    [Google Scholar]
  2. MetamaterialAvailable from: https://en.wikipedia.org/wiki/Metamaterial?utm_source=chatgpt.com
  3. Lecina-TejeroÓ. PérezM.Á. García-GaretaE. BorauC. The rise of mechanical metamaterials: Auxetic constructs for skin wound healing.J. Tissue Eng.2023142041731423117783810.1177/2041731423117783837362902
    [Google Scholar]
  4. MariamM. Murtaza-NajabatA. JavariaS. UmarA. Review of mechanics and applications of auxetic structures.Adv. Mater. Sci. Eng.2014202475349610.1155/2014/753496
    [Google Scholar]
  5. ChenX.Y. HamdiO. RodrigueD. Conversion of low density polyethylene foams into auxetic metamaterials.Polym. Adv. Technol.202334122823710.1002/pat.5880
    [Google Scholar]
  6. ChoH. SeoD. KimD.N. Mechanics of auxetic materials. SchmauderS. ChenC.S. ChawlaK. ChawlaN. ChenW. KagawaY. SingaporeSpringer201810.1007/978‑981‑10‑6855‑3_25‑1
    [Google Scholar]
  7. MoroneyC. AldersonA. AllenT. SanamiM. The application of auxetic material for protective sports apparel.Proceedings2018225110.3390/proceedings2060251
    [Google Scholar]
  8. ChenX.Y. RodrigueD. Conversion of Polypropylene (PP) foams into auxetic metamaterials.Macromol20233346347610.3390/macromol3030028
    [Google Scholar]
  9. ChenX.Y. RodrigueD. Auxetic closed cell nylon foams produced by vacuum and mechanical compression (VMC).Macromol. Rapid Commun.2025461240027410.1002/marc.20240027439614872
    [Google Scholar]
  10. ChenXY UnderhillRS RodrigueD A simple method to convert cellular polymers into auxetic metamaterials.Appl Sci (Basel)2023132114810.3390/app13021148.
    [Google Scholar]
  11. AminF. AliM.N. AnsariU. MirM. MinhasM.A. ShahidW. Auxetic coronary stent endoprosthesis: Fabrication and structural analysis.J. Appl. Biomater. Funct. Mater.201513212713510.5301/jabfm.500021325363078
    [Google Scholar]
  12. AbbaslouM. HashemiR. Novel hybrid 3D-printed auxetic vascular stent based on re-entrant and meta-trichiral unit cells: Finite nlm simulation with experimental verifications.Mater. Today Commun.20233510574210.1016/j.mtcomm.2023.105742
    [Google Scholar]
  13. SiniauskayaV. WangH. LiuY. ChenY. ZhuravkovM. LyuY. A review on the auxetic mechanical metamaterials and their applications in the field of applied engineering.Front. Mater.202411145390510.3389/fmats.2024.1453905
    [Google Scholar]
  14. ChekkalI RemillatC ScarpaF Acoustic properties of auxetic foamsWIT Press20121241192910.2495/HPSM120111.
    [Google Scholar]
  15. DykstraD.M. LentingC. MasurierA. CoulaisC. Buckling metamaterials for extreme vibration damping.Advanced materials20233535230179710.1002/adma.202301747
    [Google Scholar]
  16. ZhengY. WangH.H. Auxetic materials and their potential applications in textiles.Text. Res. J.2014841516001611
    [Google Scholar]
  17. Metamaterials market size, share and trends.2025Available from: https://www.marketsandmarkets.com/Market-Reports/metamaterials-market-139795737.html
  18. GaoY. WangX. ChenY. Light-driven soft microrobots based on hydrogels and LCEs: Development and prospects.RSC Advances20241420142781428810.1039/D4RA00495G38694551
    [Google Scholar]
  19. FardanM.F. LengganaB.W. UbaidillahU. ChoiS.B. SusiloD.D. KhanS.Z. Revolutionizing prosthetic design with auxetic metamaterials and structures: A review of mechanical properties and limitations.Micromachines 2023146116510.3390/mi1406116537374750
    [Google Scholar]
  20. SunM. HuX. TianL. YangX. MinL. Auxetic biomedical metamaterials for orthopedic surgery applications: A comprehensive review.Orthop. Surg.20241681801181510.1111/os.1414238961661
    [Google Scholar]
  21. JiangY. ShiK. ZhouL. 3D-printed auxetic-structured intervertebral disc implant for potential treatment of lumbar herniated disc.Bioact. Mater.20232052853810.1016/j.bioactmat.2022.06.00235846840
    [Google Scholar]
  22. HamdiO. RodrigueD. Auxetic polymer foams: Production, modeling and applications.Curr. Appl. Polym. Sci.20234e30112119842110.2174/2452271604666211130123921
    [Google Scholar]
  23. BalanP.M. MertensA.J. Bahubalendruni MVAR. Auxetic mechanical metamaterials and their futuristic developments: A state-of-art review.Mater. Today Commun.20233410528510.1016/j.mtcomm.2022.105285
    [Google Scholar]
  24. HuQ. ZhangX. ZhangJ. LuG. TseK.M. A review on energy absorption performance of auxetic composites with fillings.Thin-walled Struct.202420511234810.1016/j.tws.2024.112348
    [Google Scholar]
  25. YangJ. ZhaoS. YangJ. Recent advances in graphene origami-enabled auxetic metamaterial structures.Eng. Struct.202533312020310.1016/j.engstruct.2025.120203
    [Google Scholar]
/content/journals/caps/10.2174/0124522716403558250620120111
Loading
/content/journals/caps/10.2174/0124522716403558250620120111
Loading

Data & Media loading...


  • Article Type:
    Editorial
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test