Skip to content
2000
Volume 3, Issue 1
  • ISSN: 2666-7312
  • E-ISSN: 2666-7339

Abstract

Introduction

To bring new materials with high performance, a large number of composites, among others, such as starch-laminated double hydroxides (Starch/ZnCr-LDH), have been produced, which have shown significant adsorption predisposition to remove heavy metals and dyes. These LDHs display great adsorption potential due to their high anion exchange capacity, large surface area, and good thermal stability.

Objective

This study aimed to develop starch-ZnCr-hydroxide composite (S/ZnCr-LDH) as a new material and investigate its performance in removing various anionic dyes compared to ZnCr-LDH.

Methods

The starch-ZnCr-laminated double hydroxides (S/ZnCr-LDH) and ZnCr-LDH composites were prepared by the co-precipitation method and their structures were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), differential thermogravimetric/thermal analysis (TG/DTA) Scanning electron microscopy (SEM), and Energy Dispersive X-rays Spectroscopy (EDX).

Results

The effects of different operating parameters, such as pH, initial CR concentration, contact time, and adsorbent dose, on CR removal were studied. The results showed that the S/ZnCr-LDH composite is more efficient for CR removal, reaching 99% at pH 3, while ZnCr-LDH presented a removal efficiency of 90%. Isothermal data were processed according to the Langmuir, Freundlich, and Temkin models. According to the results, Langmuir's isothermal model best matched the experimental data, with a maximum adsorption capacity of 252.92 and 236.98 mg/g for S/ZnCr-LDH and ZnCr-LDH, respectively. The adsorption kinetics corresponded to the PSO model. CR dye molecules were adsorbed to different sites on the S/ZnCr-LDH composite based on various interactions, such as electrostatic interactions, hydrogen bonds, and Van der Waals forces.

Conclusions

S/ZnCr-LDH composite displays the highest capacity to remove CR dye molecules compared to ZnCr-LDH.

Loading

Article metrics loading...

/content/journals/cam/10.2174/0126667312332482241003051640
2024-01-01
2025-09-07
Loading full text...

Full text loading...

References

  1. Benselka-Hadj AbdelkaderN. BentouamiA. DerricheZ. BettaharN. de MénorvalL-C. Synthesis and characterization of Mg–Fe layer double hydroxides and its application on adsorption of Orange G from aqueous solution.Chem. Eng. J.20111691-323123810.1016/j.cej.2011.03.019
    [Google Scholar]
  2. El KhanchaouiA. SajieddineM. MansoriM. MoubarikA. EssoumhiA. Removal of single dye and dye mixture from aqueous solution with alginate-coated calcined layered double hydroxide and illite clay composite beads.Mater. Res. Innov.202327535537010.1080/14328917.2022.2163112
    [Google Scholar]
  3. PandeyG. SinghS. HitkariG. Synthesis and characterization of polyvinyl pyrrolidone (PVP)-coated Fe3O4 nanoparticles by chemical co-precipitation method and removal of Congo red dye by adsorption process.Int. Nano Lett.20188211112110.1007/s40089‑018‑0234‑6
    [Google Scholar]
  4. MooreL. Textiles and clothing.1999416
    [Google Scholar]
  5. LiS. HanK. LiJ. LiM. LuC. Preparation and characterization of super activated carbon produced from gulfweed by KOH activation.Microporous Mesoporous Mater.201724329130010.1016/j.micromeso.2017.02.052
    [Google Scholar]
  6. TangS. YaoY. ChenT. KongD. ShenW. LeeH.K. Recent advances in the application of layered double hydroxides in analytical chemistry: A review.Anal. Chim. Acta20201103324810.1016/j.aca.2019.12.065 32081187
    [Google Scholar]
  7. YuJ. WangQ. O’HareD. SunL. Preparation of two dimensional layered double hydroxide nanosheets and their applications.Chem. Soc. Rev.201746195950597410.1039/C7CS00318H 28766671
    [Google Scholar]
  8. AlibakhshiE. GhasemiM. MahdavianB. RamezanzadehM. ManaY. The effect of interlayer spacing on the inhibitor release capability of layered double hydroxide based nanocontainers.J. Clean. Prod.2020251119676
    [Google Scholar]
  9. Es-sahbanyH. El HachimiM.L. HsissouR. Adsorption of heavy metal (Cadmium) in synthetic wastewater by the natural clay as a potential adsorbent (Tangier-Tetouan-Al Hoceima – Morocco region).Mater. Today Proc.2021457299730510.1016/j.matpr.2020.12.1102
    [Google Scholar]
  10. GuptaA.D. RawatK.P. BhadauriaV. SinghH. Recent trends in the application of modified starch in the adsorption of heavy metals from water: A review.Carbohydr. Polym.202126911776310.1016/j.carbpol.2021.117763 34294282
    [Google Scholar]
  11. HaqF. YuH. WangL. Advances in chemical modifications of starches and their applications.Carbohydr. Res.2019476123510.1016/j.carres.2019.02.007 30884443
    [Google Scholar]
  12. KärkkäinenJ. WikT.R. NiemeläM. LappalainenK. JoensuuP. LajunenM. 1H NMR-based DS determination of barley starch sulfates prepared in 1-allyl-3-methylimidazolium chloride.Carbohydr. Polym.201613672172710.1016/j.carbpol.2015.09.097 26572405
    [Google Scholar]
  13. MenzelC. SeisenbaevaG. AgbackP. GällstedtM. BoldizarA. KochK. Wheat starch carbamate: Production, molecular characterization, and film forming properties.Carbohydr. Polym.201717236537310.1016/j.carbpol.2017.05.053 28606545
    [Google Scholar]
  14. KumarP. PrakashK.S. JanK. Effects of gamma irradiation on starch granule structure and physicochemical properties of brown rice starch.J. Cereal Sci.20177719420010.1016/j.jcs.2017.08.017
    [Google Scholar]
  15. XiaoZ. WangL. LvC. Preparation and characterization of pH-responsive Pickering emulsion stabilized by grafted carboxymethyl starch nanoparticles.Int. J. Biol. Macromol.202014340141210.1016/j.ijbiomac.2019.10.261 31760022
    [Google Scholar]
  16. ZhangK. ChengF. ZhangK. Synthesis of long-chain fatty acid starch esters in aqueous medium and its characterization.Eur. Polym. J.201911913614710.1016/j.eurpolymj.2019.07.021
    [Google Scholar]
  17. BrașoveanuM. NemțanuM-R. Aspects on starches modified by ionizing radiation processing.Applications of Modified Starches.London, UKIntechOpen201810.5772/intechopen.71626
    [Google Scholar]
  18. KshirsagarA.C. SinghalR.S. Optimization of starch oleate derivatives from native corn and hydrolyzed corn starch by response surface methodology.Carbohydr. Polym.200769345546110.1016/j.carbpol.2007.01.007
    [Google Scholar]
  19. TranH. ChinB.K. ChangA.S.T. Chiang. Dye adsorption in ZIF-8: The importance of external surface area.Microporous Mesoporous Mater.2018277149153
    [Google Scholar]
  20. ChenD. LiY. ZhangJ. ZhouJ.Z. GuoY. LiuH. Magnetic Fe3O4/ZnCr-layered double hydroxide composite with enhanced adsorption and photocatalytic activity.Chem. Eng. J.2012185–186120126
    [Google Scholar]
  21. HaroonM. WangL. YuH. Chemical modification of starch and its application as an adsorbent material.RSC Advances201667826478285
    [Google Scholar]
  22. GuptaV.K. AgarwalS. SinghP. PathaniaD. Acrylic acid grafted cellulosic Luffa cylindrical fiber for the removal of dye and metal ions.Carbohydr. Polym.20139811214122110.1016/j.carbpol.2013.07.019 23987466
    [Google Scholar]
  23. MallakpourS. RashidimoghadamS. Starch/MWCNT-vitamin C nanocomposites: Electrical, thermal properties and their utilization for removal of methyl orange.Carbohydr. Polym.2017169233210.1016/j.carbpol.2017.03.081 28504141
    [Google Scholar]
  24. DarmograiG. PrelotB. GenesteA. De MenorvalL-C. ZajacJ. Removal of three anionic orange-type dyes and Cr(VI) oxyanion from aqueous solutions onto strongly basic anion-exchange resin. The effect of single-component and competitive adsorption.Colloids Surf. A Physicochem. Eng. Asp.201650824025010.1016/j.colsurfa.2016.08.063
    [Google Scholar]
  25. El KhanchaouiA. BoukontarN. SajieddineM. HniniK. EssoumhiA. Noticeable improvement in adsorption capacity of glycine-modified MgAl-LDH in the removal of methyl orange dye compared to urea standard method.Mater. Res. Innov.2023273152162
    [Google Scholar]
  26. MohiuddinI. GroverA. AulakhJ.S. Starch-Mg/Al layered double hydroxide composites as an efficient solid phase extraction sorbent for non-steroidal anti-inflammatory drugs as environmental pollutants.J. Hazard. Mater.202140112378210.1016/j.jhazmat.2020.123782 33113735
    [Google Scholar]
  27. ZubairM JarrahN Starch-NiFe-layered double hydroxide composites: Efficient removal of methyl orange from aqueous phase.J. Mol. Liq.201824925426410.1016/j.molliq.2017.11.022
    [Google Scholar]
  28. El KhanchaouiA. SajieddineM. MansoriM. EssoumhiA. Anionic dye adsorption on ZnAl hydrotalcite-type and regeneration studies based on “memory effect”.Int. J. Environ. Anal. Chem.2022102153542356010.1080/03067319.2020.1772769
    [Google Scholar]
  29. El JemliY. MansoriM. Gonzalez DiazO. BarakatA. SolhyA. AbdelouahdiK. Controlling the growth of nanosized titania via polymer gelation for photocatalytic applications.RSC Advances20201033194431945310.1039/D0RA03312J 35515433
    [Google Scholar]
  30. DottoG.L. PintoL.A.A. Adsorption of food dyes onto chitosan: Optimization process and kinetic.Carbohydr. Polym.201184123123810.1016/j.carbpol.2010.11.028
    [Google Scholar]
  31. LafiR. CharradiK. DjebbiM.A. Ben Haj AmaraA. HafianeA. Adsorption study of Congo red dye from aqueous solution to Mg–Al–layered double hydroxide.Adv. Powder Technol.201627123223710.1016/j.apt.2015.12.004
    [Google Scholar]
  32. LuY. JiangB. FangL. High performance NiFe layered double hydroxide for methyl orange dye and Cr(VI) adsorption.Chemosphere201615241542210.1016/j.chemosphere.2016.03.015 26999751
    [Google Scholar]
  33. Mu’azuN.D. HaladuS.A. JarrahN. ZubairM. EssaM.H. AliS.A. Polyaspartate extraction of cadmium ions from contaminated soil: Evaluation and optimization using central composite design.J. Hazard. Mater.2018342586810.1016/j.jhazmat.2017.08.013 28822250
    [Google Scholar]
  34. ZubairM. JarrahN. ManzarM.S. Adsorption of eriochrome black T from aqueous phase on MgAl-, CoAl- and NiFe- calcined layered double hydroxides: Kinetic, equilibrium and thermodynamic studies.J. Mol. Liq.201723034435210.1016/j.molliq.2017.01.031
    [Google Scholar]
  35. RhamanM.M. KarimM.R. HyderM.M. AhmedY. NathR.K. Removal of chromium (VI) from effluent by a magnetic bioadsorbent based on jute stick powder and its adsorption isotherm, kinetics and regeneration study.Water Air Soil Pollut.202023118
    [Google Scholar]
  36. Molano-MendozaM. Donneys-VictoriaD. Marriaga-CabralesN. MuesesM.A. Li PumaG. Machuca-MartínezF. Synthesis of Mg-Al layered double hydroxides by electrocoagulation.MethodsX2018591592310.1016/j.mex.2018.07.019
    [Google Scholar]
  37. ShanR. YanL. YangY. Highly efficient removal of three red dyes by adsorption onto Mg–Al-layered double hydroxide.J. Ind. Eng. Chem.20152156156810.1016/j.jiec.2014.03.019
    [Google Scholar]
  38. LiuY XuY YanY HuD YangL ShenR. Application of Raman spectroscopy in structure analysis and crystallinity calculation of corn starch.Starch/Staerke2015676129
    [Google Scholar]
  39. PalapaN.R. TaherT. RahayuB.R. MohadiR. RachmatA. LesbaniA. CuAl LDH/Rice husk biochar composite for enhanced adsorptive removal of cationic dye from aqueous solution.Bull. Chem. React. Eng. Catal.202015252553710.9767/bcrec.15.2.7828.525‑537
    [Google Scholar]
  40. ForanoC. CostantinoU. PrévotV. GuehoC.T. Layered double hydroxides (LDH).Developments in Clay Science2013574578210.1016/B978‑0‑08‑098258‑8.00025‑0
    [Google Scholar]
  41. KaramiZ. JouyandehM. AliJ.A. Epoxy/layered double hydroxide (LDH) nanocomposites: Synthesis, characterization, and excellent cure feature of nitrate anion intercalated Zn-Al LDH.Prog. Org. Coat.201913610521810.1016/j.porgcoat.2019.105218
    [Google Scholar]
  42. ElhatimiW. BouragbaF.Z. LahkaleR. Electric and dielectric behavior of copper-chromium layered double hydroxide intercalated with dodecyl sulfate anions using impedance spectroscopy.Solid State Sci.201879232910.1016/j.solidstatesciences.2018.03.006
    [Google Scholar]
  43. CocheciL. LupaL. LazăuR. VodăR. PodeR. Zinc recovery from waste zinc ash - A new “green” route for the preparation of Zn-Al layered double hydroxide used for molybdate retention.J. Alloys Compd.201978733234310.1016/j.jallcom.2019.02.035
    [Google Scholar]
  44. BrunaF. PereiraM.G. PolizeliM.L.T.M. ValimJ.B. Starch biocatalyst based on α-amylase-Mg/Al-layered double hydroxide nanohybrids.ACS Appl. Mater. Interfaces2015733188321884210.1021/acsami.5b05668 26259168
    [Google Scholar]
  45. AmiriF. KabiriK. BouhendiH. AbdollahiH. NajafiV. KaramiZ. High gel-strength hybrid hydrogels based on modified starch through surface cross-linking technique.Polym. Bull.20197684047406810.1007/s00289‑018‑2593‑6
    [Google Scholar]
  46. ShaoH. LiuX. ZhouZ. ZhaoB. ChenZ. XuM. Elemental mercury removal using a novel KI modified bentonite supported by starch sorbent.Chem. Eng. J.201629130631610.1016/j.cej.2016.01.090
    [Google Scholar]
  47. TaoX. LiuD. CongW. HuangL. Controllable synthesis of starch-modified ZnMgAl-LDHs for adsorption property improvement.Appl. Surf. Sci.201845757257910.1016/j.apsusc.2018.06.264
    [Google Scholar]
  48. NaushadM. AhamadT. SharmaG. Synthesis and characterization of a new starch/SnO2 nanocomposite for efficient adsorption of toxic Hg2+ metal ion.Chem. Eng. J.201630030631610.1016/j.cej.2016.04.084
    [Google Scholar]
  49. SpositoG. On points of zero charge.Environ. Sci. Technol.199832192815281910.1021/es9802347
    [Google Scholar]
  50. MachrouhiA. TaoufikN. ElhalilA. TounsadiH. RaisZ. BarkaN. Patent blue V dye adsorption by fresh and calcined Zn/Al LDH: Effect of process parameters and experimental design optimization.J Compos Sci20226414
    [Google Scholar]
  51. DeSáF.P. CunhaB.N. NunesL.M. Effect of pH on the adsorption of Sunset Yellow FCF food dye into a layered double hydroxide (CaAl-LDH-NO3).Chem. Eng. J.2013215–216122127
    [Google Scholar]
  52. SonalS. PrakashP. MishraB.K. NayakG.C. Synthesis, characterization and sorption studies of a zirconium (IV) impregnated highly functionalized mesoporous activated carbons.RSC Advances20201023137831379810.1039/C9RA10103A 35493016
    [Google Scholar]
  53. GuechiE K HamdaouiO Biosorption of methylene blue from aqueous solution by potato (Solanum tuberosum) peel: Equilibrium modelling, kinetic, and thermodynamic studies. Desalin Water Treat201657027010285
  54. TaherT. RohendiD. MohadiR. LesbaniA. Congo red dye removal from aqueous solution by acid-activated bentonite from sarolangun: Kinetic, equilibrium, and thermodynamic studies. Arab.J. Basic Appl. Sci.201926125136
    [Google Scholar]
  55. TalbiS The high performance of multi-metal layered double hydroxides (LDHs) in the removal of organic dyes.Chem Proc202399112
    [Google Scholar]
  56. NguyenT.M.P. NguyenH.T. VanV.Q. Adsorption removal of ammonium from aqueous solution using Mg/Al layered double hydroxides-zeolite composite.Environ Technol Innov202225102244
    [Google Scholar]
  57. PahalagedaraM.N. SamaraweeraM. DharmarathnaS. KuoC.H. PahalagedaraL.R. GascónJ.A. SuibS.L. Removal of azo dyes: Intercalation into sonochemically synthesized NiAl layered double hydroxide.J. Phys. Chem. C2014118311780117809
    [Google Scholar]
  58. OladipoA.A. GaziM. YilmazE. Single and binary adsorption of azo and anthraquinone dyes by chitosan-based hydrogel: Selectivity factor and Box-Behnken process design.Chem. Eng. Res. Des.201510426427910.1016/j.cherd.2015.08.018
    [Google Scholar]
  59. GuoL. WuW. ZhouY. ZhangF. ZengR. ZengJ. Layered double hydroxide coatings on magnesium alloys: A review.J. Mater. Sci. Technol.20183491455146610.1016/j.jmst.2018.03.003
    [Google Scholar]
  60. GroverA. MohiuddinI. MalikA.K. Magnesium/aluminum layered double hydroxides intercalated with starch for effective adsorptive removal of anionic dyes.J. Hazard. Mater.202242412745410.1016/j.jhazmat.2021.127454
    [Google Scholar]
  61. AksuZ. TezerS. Equilibrium and kinetic modelling of biosorption of Remazol Black B by Rhizopus arrhizus in a batch system: Effect of temperature.Process Biochem.200036543143910.1016/S0032‑9592(00)00233‑8
    [Google Scholar]
  62. CheungC.W. PorterJ.F. McKayG. Elovich equation and modified second-order equation for sorption of cadmium ions onto bone char.J. Chem. Technol. Biotechnol.2000751196397010.1002/1097‑4660(200011)75:11<963:AID‑JCTB302>3.0.CO;2‑Z
    [Google Scholar]
  63. ShabaniS. DinariM. Cu-Ca-Al-layered double hydroxide modified by itaconic acid as an adsorbent for anionic dye removal: Kinetic and isotherm study.Inorg. Chem. Commun.202113310891410.1016/j.inoche.2021.108914
    [Google Scholar]
  64. El KhanchaouiM. Calcined ZnAl-LDH trapping performance in alginate beads for adsorption of Congo Red dye Calcined ZnAl-LDH trapping performance in alginate beads.Int. J. Environ. Anal. Chem.20231031866466661
    [Google Scholar]
  65. ZhangR. ZhangJ. ZhangX. DouC. HanR. Adsorption of Congo red from aqueous solutions using cationic surfactant modified wheat straw in batch mode: Kinetic and equilibrium study.J. Taiwan Inst. Chem. Eng.20144552578258310.1016/j.jtice.2014.06.009
    [Google Scholar]
  66. WangE. LeiS. ZhangS. HuangT. ZhongL. Removal of methyl orange from aqueous solution by mineral-based porous granulated material.J Wuhan Univ Technol Mater Sci Ed201530185192
    [Google Scholar]
  67. YaoY. BingH. FeifeiX. XiaofengC. Equilibrium and kinetic studies of methyl orange adsorption on multiwalled carbon nanotubes.Chem. Eng. J.20111701828910.1016/j.cej.2011.03.031
    [Google Scholar]
  68. SakrA. Cactus (Adsorption study of methylene blue on biomaterial using cactus).J. Mater. Environ. Sci.20156397406
    [Google Scholar]
  69. AlmoisheerN. AlserouryF.A. KumarR. AslamM. BarakatM.A. Adsorption and anion exchange insight of indigo carmine onto CuAl-LDH/SWCNTs nanocomposite: Kinetic, thermodynamic and isotherm analysis.RSC Advances20199156056810.1039/C8RA09562K 35521609
    [Google Scholar]
  70. HarracheZ. AbbasM. AksilT. TrariM. Thermodynamic and kinetics studies on adsorption of Indigo Carmine from aqueous solution by activated carbon.Microchem. J.201914418018910.1016/j.microc.2018.09.004
    [Google Scholar]
  71. VimonsesV. LeiS. JinB. ChowC.W.K. SaintC. Kinetic study and equilibrium isotherm analysis of Congo Red adsorption by clay materials.Chem. Eng. J.20091482-335436410.1016/j.cej.2008.09.009
    [Google Scholar]
  72. HuX. WangJ. LiuY. Adsorption of chromium (VI) by ethylenediamine-modified cross-linked magnetic chitosan resin: Isotherms, kinetics and thermodynamics.J. Hazard. Mater.2011185130631410.1016/j.jhazmat.2010.09.034 20889258
    [Google Scholar]
  73. LeiC. ZhuX. ZhuB. YuJ. HoW. Hierarchical NiO–SiO2 composite hollow microspheres with enhanced adsorption affinity towards Congo red in water.J. Colloid Interface Sci.201646623824610.1016/j.jcis.2015.12.035 26724707
    [Google Scholar]
/content/journals/cam/10.2174/0126667312332482241003051640
Loading
/content/journals/cam/10.2174/0126667312332482241003051640
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): adsorption; anionic dye; congo red; elovich model; LDH; starch; ZnCr-LDH
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test