Skip to content
2000
Volume 3, Issue 1
  • ISSN: 2666-7312
  • E-ISSN: 2666-7339

Abstract

Progress in nanotechnology and immunotherapy has facilitated the development of drug-loaded nanocarriers through encapsulation techniques that are aimed at treating cardiovascular disease (CVD). While these drug delivery systems have exhibited promising outcomes, several clinical limitations necessitate identification and resolution. This overview emphasizes novel drug delivery systems, particularly ghost stents, mesenchymal extracellular vesicles, microbubble therapy, and aptamers, tailored for CVD management. Moreover, we explore the drug release kinetics associated with these systems to discern their release profiles in human blood, operating on specific stimuli to maintain stable plasma drug concentrations. Presently, advanced drug delivery modalities such as polymeric nanoparticles, natural metallic nanoparticles, aptamers, microbubbles, exosomes, polymeric micelles, and drug-eluting stents are employed in CVD treatment. These systems effectively circumvent immune responses and enhance the quality of life for patients with cardiovascular disorders, thereby improving patient adherence and treatment efficacy. The described systems offer a promising avenue for drug delivery, presenting a potential strategy to enhance the efficacy of current therapies.

Loading

Article metrics loading...

/content/journals/cam/10.2174/0126667312310564240719053625
2024-07-22
2025-10-01
Loading full text...

Full text loading...

References

  1. Di MauroV. LautaF.C. ModicaJ. AppletonS.L. De FranciscisV. CatalucciD. Diagnostic and therapeutic aptamers.JACC Basic Transl. Sci.20239226027710.1016/j.jacbts.2023.06.01338510714
    [Google Scholar]
  2. ChandaranaM. CurtisA. HoskinsC. The use of nanotechnology in cardiovascular disease.Appl. Nanosci.2018871607161910.1007/s13204‑018‑0856‑z
    [Google Scholar]
  3. PanS. JeevanandamJ. AcquahC. Drug delivery systems for cardiovascular ailments. In: drug delivery devices and therapeutic systems.Elsevier2020256759910.3389/fddev.2022.913225
    [Google Scholar]
  4. XuM. ZhangK. SongJ. Targeted therapy in cardiovascular disease: A precision therapy era.Front. Pharmacol.20211262367410.3389/fphar.2021.62367433935716
    [Google Scholar]
  5. BegumSG MustafaD Various novel drug delivery systems in treatment of cardiovascular diseases.IJPBR201974010510.30750/ijpbr.7.4.1
    [Google Scholar]
  6. MohamedN.A. MareiI. CrovellaS. Abou-SalehH. Recent developments in nanomaterials-based drug delivery and upgrading treatment of cardiovascular diseases.Int. J. Mol. Sci.2022233140410.3390/ijms2303140435163328
    [Google Scholar]
  7. FaheemA.M. AbdelkaderD.H. Novel Drug Delivery Systems.DDS202010.1016/B978‑0‑08‑102548‑2.00001‑9
    [Google Scholar]
  8. LuY. ZhangE. YangJ. CaoZ. Strategies to improve micelle stability for drug delivery.Nano Res.201811104985499810.1007/s12274‑018‑2152‑330370014
    [Google Scholar]
  9. MiyamotoT. TsuchiyaK. NumataK. Endosome-escaping micelle complexes dually equipped with cell-penetrating and endosome-disrupting peptides for efficient DNA delivery into intact plants.Nanoscale202113115679569210.1039/D0NR08183C33595040
    [Google Scholar]
  10. KottaS. AldawsariH.M. Badr-EldinS.M. NairA.B. YtK. Progress in polymeric micelles for drug delivery applications.Pharmaceutics2022148163610.3390/pharmaceutics1408163636015262
    [Google Scholar]
  11. KacarG. Thermodynamic stability of ibuprofen loaded poloxamer micelles.Chem. Phys.202053311071310.1016/j.chemphys.2020.110713
    [Google Scholar]
  12. GençH EfthimiadouE CichaI. On-demand drug delivery: Recent advances in cardiovascular applicationsFront. Drug Deliv2022291322510.3389/fddev.2022.913225
    [Google Scholar]
  13. ChengM. LiuQ. LiuW. YuanF. FengJ. JinY. TuL. Engineering micelles for the treatment and diagnosis of atherosclerosis.J. Drug Deliv. Sci. Technol.20216310247310.1016/j.jddst.2021.102473
    [Google Scholar]
  14. MontelioneN. LoreniF. NennaA. CataneseV. ScurtoL. FerrisiC. JawabraM. GabelliniT. CodispotiF.A. SpinelliF. ChelloM. StiloF. Tissue engineering and targeted drug delivery in cardiovascular disease: The role of polymer nanocarrier for statin therapy.Biomedicines202311379810.3390/biomedicines1103079836979777
    [Google Scholar]
  15. AsaiT. Nanoparticle-mediated delivery of anticancer agents to tumor angiogenic vessels.Biol. Pharm. Bull.201235111855186110.1248/bpb.b21201323123455
    [Google Scholar]
  16. JhaS. DeshmukhR. TrivediV. Approaches and molecular tools for targeted drug delivery in malaria infected red blood cells.Combination Drug Delivery Approach as an Effective Therapy for Various Diseases: Academic Press2022814917210.1016/B978‑0‑323‑85873‑1.00014‑9
    [Google Scholar]
  17. SahooS. KariyaT. IshikawaK. Targeted delivery of therapeutic agents to the heart.Nat. Rev. Cardiol.202118638939910.1038/s41569‑020‑00499‑933500578
    [Google Scholar]
  18. PandeS. Liposomes for drug delivery: Review of vesicular composition, factors affecting drug release and drug loading in liposomes.Artif. Cells Nanomed. Biotechnol.202351142844010.1080/21691401.2023.224703637594208
    [Google Scholar]
  19. GuptaV SharmaN. Peer reviewed advances in liposomal drug delivery systems: Applications in oncology, infectious diseases, and beyond.PEXACY International Journal of Pharmaceutical Science202325
    [Google Scholar]
  20. BarungiS. Hernández-CamareroP. Moreno-TerribasG. Villalba-MontoroR. MarchalJ.A. López-RuizE. PeránM. Clinical implications of inflammation in atheroma formation and novel therapies in cardiovascular diseases.Front. Cell Dev. Biol.202311114876810.3389/fcell.2023.114876837009489
    [Google Scholar]
  21. KulkarniP. RawtaniD. KumarM. LahotiS.R. Cardiovascular drug delivery: A review on the recent advancements in nanocarrier based drug delivery with a brief emphasis on the novel use of magnetoliposomes and extracellular vesicles and ongoing clinical trial research.J. Drug Deliv. Sci. Technol.20206010202910.1016/j.jddst.2020.102029
    [Google Scholar]
  22. TabishT.A. CrabtreeM.J. TownleyH.E. Nitric oxide releasing nanomaterials for cardiovascular applications.JACC Basic Transl. Sci.2023
    [Google Scholar]
  23. Aranda-LaraL. GarcíaB.E.O. Isaac-OlivéK. Ferro-FloresG. Meléndez-AlafortL. Morales-AvilaE. Drug delivery systems‐based dendrimers and polymer micelles for nuclear diagnosis and therapy.Macromol. Biosci.2021213200036210.1002/mabi.20200036233458936
    [Google Scholar]
  24. SatheR.Y. BharatamP.V. Drug-dendrimer complexes and conjugates: Detailed furtherance through theory and experiments.Adv. Colloid Interface Sci.202230310263910.1016/j.cis.2022.10263935339862
    [Google Scholar]
  25. ChisA.A. DobreaC. MorgovanC. ArseniuA.M. RusL.L. ButucaA. JuncanA.M. TotanM. Vonica-TincuA.L. CormosG. MunteanA.C. MuresanM.L. GligorF.G. FrumA. Applications and limitations of dendrimers in biomedicine.Molecules20202517398210.3390/molecules2517398232882920
    [Google Scholar]
  26. ChoudharyS. GuptaL. RaniS. DaveK. GuptaU. Impact of dendrimers on solubility of hydrophobic drug molecules.Front. Pharmacol.2017826110.3389/fphar.2017.0026128559844
    [Google Scholar]
  27. CaminadeA.M. TurrinC.O. Dendrimers for drug delivery.J. Mater. Chem. B Mater. Biol. Med.20142264055406610.1039/C4TB00171K32261736
    [Google Scholar]
  28. LiL. DengY. ZengY. YanB. DengY. ZhengZ. LiS. YangY. HaoJ. XiaoX. WangX. The application advances of dendrimers in biomedical field.VIEW2023462023002310.1002/VIW.20230023
    [Google Scholar]
  29. WangY. BaiY. PriceC. BorosP. QinL. BielinskaA.U. Kukowska-LatalloJ.F. BakerJ.R.Jr BrombergJ.S. Combination of electroporation and DNA/dendrimer complexes enhances gene transfer into murine cardiac transplants.Am. J. Transplant.20011433433810.1034/j.1600‑6143.2001.10408.x12099377
    [Google Scholar]
  30. NikzamirM. HanifehpourY. AkbarzadehA. PanahiY. Applications of dendrimers in nanomedicine and drug delivery: A review.J. Inorg. Organomet. Polym. Mater.20213162246226110.1007/s10904‑021‑01925‑2
    [Google Scholar]
  31. AnH. DengX. WangF. XuP. WangN. Dendrimers as nanocarriers for the delivery of drugs obtained from natural products.Polymers (Basel)20231510229210.3390/polym1510229237242865
    [Google Scholar]
  32. Scafa UdrișteA. NiculescuA.G. GrumezescuA.M. BădilăE. Cardiovascular stents: A review of past, current, and emerging devices.Materials (Basel)20211410249810.3390/ma1410249834065986
    [Google Scholar]
  33. CondelloF. SpaccarotellaC. SorrentinoS. IndolfiC. StefaniniG.G. PolimeniA. Stent thrombosis and restenosis with contemporary drug-eluting stents: Predictors and current evidence.J. Clin. Med.2023123123810.3390/jcm1203123836769886
    [Google Scholar]
  34. Navarro-BecerraJ.A. BordenM.A. Targeted microbubbles for drug, gene, and cell delivery in therapy and immunotherapy.Pharmaceutics2023156162510.3390/pharmaceutics1506162537376072
    [Google Scholar]
  35. WangH. ZuQ. TangH. LuM. ChenR. YangZ. Long-term cardiovascular outcomes of biodegradable polymer drug eluting stents in patients with diabetes versus non-diabetes mellitus: A meta-analysis.Cardiovasc. Diabetol.202322122810.1186/s12933‑023‑01962‑w37644465
    [Google Scholar]
  36. NgJ.C.K. ToongD.W.Y. OwV. ChawS.Y. TohH. WongP.E.H. VenkatramanS. ChongT.T. TanL.P. HuangY.Y. AngH.Y. Progress in drug-delivery systems in cardiovascular applications: Stents, balloons and nanoencapsulation.Nanomedicine202217532534710.2217/nnm‑2021‑028835060758
    [Google Scholar]
  37. DitacG. BessièreF. LafonC. Therapeutic ultrasound applications in cardiovascular diseases: A review.IRBM202344210073010.1016/j.irbm.2022.07.001
    [Google Scholar]
  38. ChandrakalaV ArunaV AngajalaG Review on metal nanoparticles as nanocarriers: Current challenges and perspectives in drug delivery systems: Emergent materEmerg. Mater. Res202251593161510.1007/s42247‑021‑00335‑x
    [Google Scholar]
  39. ShanthiK. VimalaK. GopiD. KannanS. Fabrication of a pH responsive DOX conjugated PEGylated palladium nanoparticle mediated drug delivery system: An in vitro and in vivo evaluation.RSC Advances2015556449984501410.1039/C5RA05803A
    [Google Scholar]
  40. SharmaL. DhimanM. SinghA. SharmaM.M. Biological synthesis of silver nanoparticles using Nyctanthes arbor-tristis L.: A green approach to evaluate antimicrobial activities.Mater. Today Proc.2021432915292010.1016/j.matpr.2021.01.208
    [Google Scholar]
  41. Mena-SilvaD. AlfaroA. LeónA. Guajardo-CorreaE. ElguetaE. DiazP. VilosC. CardenasH. DenardinJ.C. OrihuelaP.A. Zeolite nanoparticles loaded with 2-methoxystradiol as a novel drug delivery system for the prostate cancer therapy.Int. J. Mol. Sci.202324131096710.3390/ijms24131096737446151
    [Google Scholar]
  42. ShariatiL. EsmaeiliY. RahimmaneshI. BabolmoradS. ZiaeiG. HasanA. BoshtamM. MakvandiP. Advances in nanobased platforms for cardiovascular diseases: Early diagnosis, imaging, treatment, and tissue engineering.Environ. Res.2023238Pt 111693310.1016/j.envres.2023.11693337652218
    [Google Scholar]
  43. MatobaT. KogaJ. NakanoK. EgashiraK. TsutsuiH. Nanoparticle-mediated drug delivery system for atherosclerotic cardiovascular disease.J. Cardiol.201770320621110.1016/j.jjcc.2017.03.00528416142
    [Google Scholar]
  44. ShandH. DuttaS. PatraS. Nanoparticle-based intervention to cardiovascular diseases (CVDS).Appl. Nanosci.2023
    [Google Scholar]
  45. DelcassianD. PatelA.K. CortinasA.B. LangerR. Drug delivery across length scales.J. Drug Target.201927322924310.1080/1061186X.2018.143844029415575
    [Google Scholar]
  46. LiL. ZengY. LiuG. Metal-based nanoparticles for cardiovascular disease diagnosis and therapy.Particuology2023729411110.1016/j.partic.2022.03.002
    [Google Scholar]
  47. IqbalJ. IqbalA. MukhtarH. JahangirK. MashkoorY. ZeeshanM.H. NadeemA. AshrafA. MaqboolS. SadiqS.M. LeeK.Y. Cardioprotective effects of nanoparticles in cardiovascular diseases: A state-of-the-art review.Curr. Probl. Cardiol.202348810171310.1016/j.cpcardiol.2023.10171336967067
    [Google Scholar]
  48. SaeedS. Ud DinS.R. KhanS.U. GulR. KianiF.A. WahabA. ZhongM. Nanoparticle: A promising player in nanomedicine and its theranostic applications for the treatment of cardiovascular diseases.Curr. Probl. Cardiol.202348510159910.1016/j.cpcardiol.2023.10159936681209
    [Google Scholar]
  49. SoumyaR.S. RaghuK.G. Recent advances on nanoparticle-based therapies for cardiovascular diseases.J. Cardiol.2023811101810.1016/j.jjcc.2022.02.00935210166
    [Google Scholar]
  50. DoktorovovaS. SoutoE.B. SilvaA.M. Nanotoxicology applied to solid lipid nanoparticles and nanostructured lipid carriers – A systematic review of in vitro data.Eur. J. Pharm. Biopharm.201487111810.1016/j.ejpb.2014.02.00524530885
    [Google Scholar]
  51. ChanJ.M. ValenciaP.M. ZhangL. LangerR. FarokhzadO.C. Polymeric nanoparticles for drug delivery.Methods Mol. Biol.201062416317510.1007/978‑1‑60761‑609‑2_1120217595
    [Google Scholar]
  52. YinD LiM XiangP Mapping research performance and hotspots on nanoparticles in cardiovascular diseases.Medicine202310215e3352010.1097/MD.000000000003352037058013
    [Google Scholar]
  53. JunE.A. LimK.M. KimK. BaeO.N. NohJ.Y. ChungK.H. ChungJ.H. Silver nanoparticles enhance thrombus formation through increased platelet aggregation and procoagulant activity.Nanotoxicology20115215716710.3109/17435390.2010.50625020822370
    [Google Scholar]
  54. SharmaA.K. KumarA. SahuM. SharmaG. DatusaliaA.K. RajputS.K. Exercise preconditioning and low dose copper nanoparticles exhibits cardioprotection through targeting GSK-3β phosphorylation in ischemia/reperfusion induced myocardial infarction.Microvasc. Res.2018120596610.1016/j.mvr.2018.06.00329940198
    [Google Scholar]
  55. NethiS.K. MukherjeeS. VeeriahV. BaruiA.K. ChatterjeeS. PatraC.R. Bioconjugated gold nanoparticles accelerate the growth of new blood vessels through redox signaling.Chem. Commun20145092143671437010.1039/C4CC06996J25298204
    [Google Scholar]
  56. Asri-RezaeiS. Dalir-NaghadehB. NazarizadehA. Noori-SabzikarZ. Comparative study of cardio-protective effects of zinc oxide nanoparticles and zinc sulfate in streptozotocin-induced diabetic rats.J. Trace Elem. Med. Biol.20174212914110.1016/j.jtemb.2017.04.01328595785
    [Google Scholar]
  57. WangW. SunX. ZhangH. YangC. LiuY. YangW. GuoC. WangC. Controlled release hydrogen sulfide delivery system based on mesoporous silica nanoparticles protects graft endothelium from ischemia–reperfusion injury.Int. J. Nanomedicine2016113255326310.2147/IJN.S10460427486324
    [Google Scholar]
  58. WangL. FengM. LiY. DuY. WangH. ChenY. LiL. Fabrication of superparamagnetic nano-silica@ quercetin-encapsulated PLGA nanocomposite: Potential application for cardiovascular diseases.J. Photochem. Photobiol. B201919611150810.1016/j.jphotobiol.2019.05.00531152936
    [Google Scholar]
  59. HosseiniH. LiY. KanellakisP. TayC. CaoA. TippingP. BobikA. TohB.H. KyawT. Phosphatidylserine liposomes mimic apoptotic cells to attenuate atherosclerosis by expanding polyreactive IgM producing B1a lymphocytes.Cardiovasc. Res.2015106344345210.1093/cvr/cvv03725681396
    [Google Scholar]
  60. AllijnI.E. CzarnyB.M.S. WangX. ChongS.Y. WeilerM. da SilvaA.E. MetselaarJ.M. LamC.S.P. PastorinG. de KleijnD.P.V. StormG. WangJ.W. SchiffelersR.M. Liposome encapsulated berberine treatment attenuates cardiac dysfunction after myocardial infarction.J. Control. Release201724712713310.1016/j.jconrel.2016.12.04228065862
    [Google Scholar]
  61. BulbakeU. DoppalapudiS. KommineniN. KhanW. Liposomal formulations in clinical use: An updated review.Pharmaceutics2017921210.3390/pharmaceutics902001228346375
    [Google Scholar]
  62. ZhangN. LiC. ZhouD. DingC. JinY. TianQ. MengX. PuK. ZhuY. Cyclic RGD functionalized liposomes encapsulating urokinase for thrombolysis.Acta Biomater.20187022723610.1016/j.actbio.2018.01.03829412186
    [Google Scholar]
  63. KleinstreuerC. Potential use of multifunctional nanoparticles for the treatment of cardiovascular diseases.Journal of Cardiology and Cardiovascular Sciences201823303610.29245/2578‑3025/2018/3.1134
    [Google Scholar]
  64. TurjemanK. BarenholzY. Liposomal nano-drugs based on amphipathic weak acid steroid prodrugs for treatment of inflammatory diseases.J. Drug Target.201624980582010.1080/1061186X.2016.123626227750439
    [Google Scholar]
  65. KogaJ. MatobaT. EgashiraK. Anti-inflammatory nanoparticle for prevention of atherosclerotic vascular diseases.J. Atheroscler. Thromb.201623775776510.5551/jat.3511327108537
    [Google Scholar]
  66. AkagiD. ObaM. KoyamaH. NishiyamaN. FukushimaS. MiyataT. NagawaH. KataokaK. Biocompatible micellar nanovectors achieve efficient gene transfer to vascular lesions without cytotoxicity and thrombus formation.Gene Ther.200714131029103810.1038/sj.gt.330294517460721
    [Google Scholar]
  67. NapoliC. de NigrisF. Williams-IgnarroS. PignalosaO. SicaV. IgnarroL.J. Nitric oxide and atherosclerosis: An update.Nitric Oxide200615426527910.1016/j.niox.2006.03.01116684613
    [Google Scholar]
  68. LuY. SunB. LiC. SchoenfischM.H. Structurally diverse nitric oxide-releasing poly(propylene imine) dendrimers.Chem. Mater.201123184227423310.1021/cm201628z22053127
    [Google Scholar]
  69. DavidsonS.M. BoulangerC.M. AikawaE. BadimonL. BarileL. BinderC.J. BrissonA. BuzasE. EmanueliC. JansenF. KatsurM. LacroixR. LimS.K. MackmanN. MayrM. MenaschéP. NieuwlandR. SahooS. TakovK. ThumT. VaderP. WaubenM.H.M. WitwerK. SluijterJ.P.G. Methods for the identification and characterization of extracellular vesicles in cardiovascular studies: From exosomes to microvesicles.Cardiovasc. Res.20231191456310.1093/cvr/cvac03135325061
    [Google Scholar]
  70. ManiS. GurusamyN. UlaganathanT. PaluckA.J. RamalingamS. RajasinghJ. Therapeutic potentials of stem cell–derived exosomes in cardiovascular diseases.Exp. Biol. Med2023248543444410.1177/1535370223115196036740769
    [Google Scholar]
  71. ElsharkasyO.M. NordinJ.Z. HageyD.W. de JongO.G. SchiffelersR.M. AndaloussiS.E.L. VaderP. Extracellular vesicles as drug delivery systems: Why and how?Adv. Drug Deliv. Rev.202015933234310.1016/j.addr.2020.04.00432305351
    [Google Scholar]
  72. HerrmannI.K. WoodM.J.A. FuhrmannG. Extracellular vesicles as a next-generation drug delivery platform.Nat. Nanotechnol.202116774875910.1038/s41565‑021‑00931‑234211166
    [Google Scholar]
  73. ZamaniP. FereydouniN. ButlerA.E. NavashenaqJ.G. SahebkarA. The therapeutic and diagnostic role of exosomes in cardiovascular diseases.Trends Cardiovasc. Med.201929631332310.1016/j.tcm.2018.10.01030385010
    [Google Scholar]
  74. AhmedL. Al-MassriK. New approaches for enhancement of the efficacy of mesenchymal stem cell-derived exosomes in cardiovascular diseases.Tissue Eng. Regen. Med.20221961129114610.1007/s13770‑022‑00469‑x35867309
    [Google Scholar]
  75. Laura FrancésJ. PagiatakisC. Di MauroV. ClimentM. Therapeutic potential of EVs: Targeting cardiovascular diseases.Biomedicines2023117190710.3390/biomedicines1107190737509546
    [Google Scholar]
  76. JayagopalA. RussP.K. HaseltonF.R. Surface engineering of quantum dots for in vivo vascular imaging.Bioconjug. Chem.20071851424143310.1021/bc070020r17760416
    [Google Scholar]
  77. TsutsuiJ.M. XieF. PorterR.T. The use of microbubbles to target drug delivery.Cardiovasc. Ultrasound2004212310.1186/1476‑7120‑2‑2315546496
    [Google Scholar]
  78. ChenS. ShohetR.V. BekeredjianR. FrenkelP. GrayburnP.A. Optimization of ultrasound parameters for cardiac gene delivery of adenoviral or plasmid deoxyribonucleic acid by ultrasound-targeted microbubble destruction.J. Am. Coll. Cardiol.200342230130810.1016/S0735‑1097(03)00627‑212875768
    [Google Scholar]
  79. FournierL. de La TailleT. ChauvierreC. Microbubbles for human diagnosis and therapy.Biomaterials202329412202510.1016/j.biomaterials.2023.12202536716588
    [Google Scholar]
  80. GermerK. LeonardM. ZhangX. RNA aptamers and their therapeutic and diagnostic applications.Int. J. Biochem. Mol. Biol.201341274023638319
    [Google Scholar]
  81. KulabhusanPK JeevanandamJ AcquahC Aptamer-mediated drug delivery system for cardiovascular diseases.Combination Drug Delivery Approach as an Effective Therapy for Various Diseases202210712710.1016/B978‑0‑323‑85873‑1.00009‑5
    [Google Scholar]
  82. NelissenF.H.T. PeetersW.J.M. RoelofsT.P. NagelkerkeA. SpanP.N. HeusH.A. Improving breast cancer treatment specificity using aptamers obtained by 3D cell-selex.Pharmaceuticals202114434910.3390/ph1404034933918832
    [Google Scholar]
  83. ShariatiL. EsmaeiliY. RahimmaneshI. BabolmoradS. ZiaeiG. HasanA. BoshtamM. MakvandiP. Nanobased platform advances in cardiovascular diseases: Early diagnosis, imaging, treatment, and tissue engineering.Environ. Res.2023238Pt 111693310.1016/j.envres.2023.11693337652218
    [Google Scholar]
  84. ArdianaM. FadilaA.N. ZuhraZ. KusumaN.M. Surya Erlangga RurusM.E. OceandyD. Non-coding RNA therapeutics in cardiovascular diseases and risk factors: Systematic review.Noncoding RNA Res.20238448750610.1016/j.ncrna.2023.06.00237483458
    [Google Scholar]
  85. DashS Kinetic modelling on drug release from controlled drug delivery systems. Acta poloniae pharmaceutica-.Drug Res.201067321722320524422
    [Google Scholar]
  86. ZhiB. MaoY. Vapor-deposited nanocoatings for sustained zero-order release of antiproliferative drugs.ACS Appl. Bio Mater.2020321088109610.1021/acsabm.9b0104435019311
    [Google Scholar]
  87. ChawlaM. KaushikR.D. MalikM.K. PundirV. SinghJ. RehmaanH. Development and optimization of RofA-PAMAM dendrimer complex materials for sustained drug delivery.Mater. Today Commun.20223310488110.1016/j.mtcomm.2022.104881
    [Google Scholar]
  88. MohantaM. RamdhunY. ThirugnanamA. Biodegradable AZ91 magnesium alloy/sirolimus/poly D, L-lactic-co- glycolic acid-based substrate for cardiovascular device application.J. Biomed. Mater. Res.202312137966681
    [Google Scholar]
  89. GleasonK.K. Controlled release utilizing initiated chemical vapor deposited (iCVD) of polymeric nanolayers.Front. Bioeng. Biotechnol.2021963275310.3389/fbioe.2021.63275333634089
    [Google Scholar]
  90. KhushbuJ.R. JindalR. RSM-CCD optimized microwave assisted synthesis of chitosan and sodium alginate based nanocomposite containing inclusion complexes of β-cyclodextrin and amlodipine besylate for sustained drug delivery systems.J. Drug Deliv. Sci. Technol.20216110232510.1016/j.jddst.2021.102325
    [Google Scholar]
  91. MohantaM. ThirugnanamA. Drug release studies of titanium-based polyethylene glycol coating as a multifunctional substrate.Mater. Today Proc.20214725726010.1016/j.matpr.2021.04.242
    [Google Scholar]
  92. RajeevJ. KamalasananK. SapaH. MS. CA. Controlled release nanomedicine (CRNM) of aspirin using “biomimetic niosomal nanoparticles (BNNs)”for Covid-19 and cardiovascular treatment: DOE based optimization.OpenNano2023910011910.1016/j.onano.2022.100119
    [Google Scholar]
  93. RussiM. ValeriR. MarsonD. DanielliC. FellugaF. TintaruA. SkokoN. AulicS. LauriniE. PriclS. Some things old, new and borrowed: Delivery of dabrafenib and vemurafenib to melanoma cells via self-assembled nanomicelles based on an amphiphilic dendrimer.Eur. J. Pharm. Sci.202318010631110.1016/j.ejps.2022.10631136273785
    [Google Scholar]
  94. BulbulYE OkurM Demirtas-KorkmazF DilsizN Development of PCL/PEO electrospun fibrous membranes blended with silane-modified halloysite nanotube as a curcumin release systemAppl. Clay. Sci.202018610543010.1016/j.clay.2019.105430
    [Google Scholar]
  95. OmidianH. BabanejadN. CubedduL.X. Nanosystems in cardiovascular medicine: Advancements, applications, and future perspectives.Pharmaceutics2023157193510.3390/pharmaceutics1507193537514121
    [Google Scholar]
/content/journals/cam/10.2174/0126667312310564240719053625
Loading
/content/journals/cam/10.2174/0126667312310564240719053625
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): Aptamers; exosomes; ghost stents; microbubble; polymeric nanoparticles; sono-thrombolysis
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test