Skip to content
2000
Volume 3, Issue 1
  • ISSN: 2950-3752
  • E-ISSN: 2950-3760

Abstract

Introduction

Ensuring the integrity of Global Navigation Satellite System (GNSS) signals is critical for the timely and accurate delivery of pharmaceuticals within smart medical supply chain logistics (SMSCL).

Method

In this study, we propose a novel deep learning (DL) framework that integrates a Bidirectional Long Short-Term Memory (BiLSTM)-Attention model with Principal Component Analysis (PCA) and Bayesian Optimization (BO) for feature selection. This approach enhances GNSS signal reliability by accurately detecting anomalies, especially in environments prone to interference. The PCA-BO feature selection process optimizes relevant features like signal strength and Doppler shifts, improving model performance while reducing overfitting.

Results and Discussion

Our results demonstrate that the proposed model significantly outperforms conventional methods, enhancing the precision of pharmaceutical deliveries in critical healthcare settings.

Conclusion

This work represents a key advancement in using DL to ensure GNSS signal integrity for SMSCL, contributing to more efficient and secure logistics operations.

Loading

Article metrics loading...

/content/journals/cai/10.2174/0129503752352719250214061245
2025-01-01
2025-09-29
Loading full text...

Full text loading...

References

  1. GaoG.X. SgamminiM. LuM. KuboN. Protecting GNSS receivers from jamming and interference.Proc. IEEE201610461327133810.1109/JPROC.2016.2525938
    [Google Scholar]
  2. ZidanJ. AdegokeE.I. KampertE. BirrellS.A. FordC.R. HigginsM.D. GNSS vulnerabilities and existing solutions: A review of the literature.IEEE Access915396015397610.1109/ACCESS.2020.2973759
    [Google Scholar]
  3. ChabelS. ReyouchiA.E.M. Artificial intelligence of things: Quick sort strategy for medical supply chain.IEEE Trans. Ind. Inform.20242011127831279210.1109/TII.2024.3424508
    [Google Scholar]
  4. ElsanhouryM. MäkeläP. KoljonenJ. VälisuoP. ShamsuzzohaA. MantereT. ElmusratiM. KuusniemiH. Precision positioning for smart logistics using ultra-wideband technology-based indoor navigation: A review.IEEE Access10444134444510.1109/ACCESS.2022.3169267
    [Google Scholar]
  5. ChabelS. ReyouchiA.E.M. Perishable Products: Enhancing Delivery Time Efficiency with Big Data, AI, and IoT.Data Intelligence and Cognitive Informatics. ICDICI 2023. JacobI.J. PiramuthuS. GilskiF.P. SingaporeSpringer202410.1007/978‑981‑99‑7962‑2_21
    [Google Scholar]
  6. WhangS.E. LeeJ.G. Data collection and quality challenges for deep learning.Proc. VLDB Endow202013123429343210.14778/3415478.3415562
    [Google Scholar]
  7. WhangS.E. RohY. SongH. LeeJ.G. Data collection and quality challenges in deep learning: A data-centric AI perspective.VLDB J.202332479181310.1007/s00778‑022‑00775‑9
    [Google Scholar]
  8. AhmedS.F. AlamM.S.B. HassanM. RozbuM.R. IshtiakT. RafaN. MofijurM. AliS.A.B.M. GandomiA.H. Deep learning modelling techniques: Current progress, applications, advantages, and challenges.Artif. Intell. Rev.20235611135211361710.1007/s10462‑023‑10466‑8
    [Google Scholar]
  9. FinkO. WangQ. SvensénM. DersinP. LeeW.J. DucoffeM. Potential, challenges and future directions for deep learning in prognostics and health management applications.Eng. Appl. Artif. Intell.20209210367810.1016/j.engappai.2020.103678
    [Google Scholar]
  10. RezaeianjouybariB. ShangY. Deep learning for prognostics and health management: State of the art, challenges, and opportunities.Measurement202016310792910.1016/j.measurement.2020.107929
    [Google Scholar]
  11. ChenX. ChenH. YangY. WuH. ZhangW. ZhaoJ. XiongY. Traffic flow prediction by an ensemble framework with data denoising and deep learning model.Physica A202156512557410.1016/j.physa.2020.125574
    [Google Scholar]
  12. EgziabherG.D. GleasonS. GNSS Applications and Methods.NorwoodArtech House200916
    [Google Scholar]
  13. KaraimM. ElsheikhM. NoureldinA. RustamovR. Multifunctional operation and application of GPS.GNSS error sources.2018698510.5772/intechopen.75493
    [Google Scholar]
  14. GrovesP. WangL. AdjradM. EllulC. GNSS shadow matching: The challenges ahead.Proceedings of the 28th International Technical Meeting of the Satellite Division of the Institute of NavigationTampa, Florida, 2015, pp. 2421-2443.
    [Google Scholar]
  15. KuusniemiH. LachapelleG. GNSS signal reliability testing in urban and indoor environments.Proceedings of the 2004 National Technical Meeting of the Institute of NavigationSan Diego, CA, 2004, pp. 210-224.
    [Google Scholar]
  16. LiD. LiL. LiX. KeZ. HuQ. Smoothed LSTM-AE: A spatio-temporal deep model for multiple time-series missing imputation.Neurocomputing202041135136310.1016/j.neucom.2020.05.033
    [Google Scholar]
  17. YadavH. ThakkarA. NOA-LSTM: An efficient LSTM cell architecture for time series forecasting.Expert Syst. Appl.202423812233310.1016/j.eswa.2023.122333
    [Google Scholar]
  18. AbotalebM. DuttaP.K. Optimizing bidirectional long short-term memory networks for univariate time series forecasting: A comprehensive guide.Hybrid Information Systems: Non-Linear Optimization Strategies with Artificial IntelligenceDe GruyterBerlin, Boston20242144310.1515/9783111331133‑021
    [Google Scholar]
  19. BiJ. ZhangL. YuanH. ZhangJ. Multi-indicator water quality prediction with attention-assisted bidirectional LSTM and encoder-decoder.Inf. Sci.2023625658010.1016/j.ins.2022.12.091
    [Google Scholar]
  20. BhattacharjeeB. KumarR. SenthilkumarA. Unidirectional and bidirectional LSTM models for edge weight predictions in dynamic cross-market equity networks.Int. Rev. Financ. Anal.20228410238410.1016/j.irfa.2022.102384
    [Google Scholar]
  21. HafizA.M. ParahS.A. BhatR.U.A. Attention mechanisms and deep learning for machine vision: A survey of the state of the art.arXiv:2106.0755020211610.21203/rs.3.rs‑510910/v1
    [Google Scholar]
  22. YeW. ZhouX. ZhouJ. ChenC. LiK. Accelerating attention mechanism on FPGAs based on efficient reconfigurable systolic array.ACM Trans. Embed. Comput. Syst.202322612210.1145/3549937
    [Google Scholar]
  23. HasanB.M.S. AbdulazeezA.M. A review of principal component analysis algorithm for dimensionality reduction.J. Soft Comput. Data Min.2021212030
    [Google Scholar]
  24. BeattieJ.R. WhiteE.F.W.L. Exploration of principal component analysis: Deriving principal component analysis visually using spectra.Appl. Spectrosc.202175436137510.1177/000370282098784733393349
    [Google Scholar]
  25. ElhaikE. Principal Component Analyses (PCA)-based findings in population genetic studies are highly biased and must be reevaluated.Sci. Rep.20221211468310.1038/s41598‑022‑14395‑436038559
    [Google Scholar]
  26. CastilloE. ReisM.S. Bayesian predictive optimization of multiple and profile response systems in the process industry: A review and extensions.Chemom. Intell. Lab. Syst.202020610412110.1016/j.chemolab.2020.104121
    [Google Scholar]
  27. SanoS. KadowakiT. TsudaK. KimuraS. Application of Bayesian optimization for pharmaceutical product development.J. Pharm. Innov.202015333334310.1007/s12247‑019‑09382‑8
    [Google Scholar]
  28. ZhangW. LuT. The research of genetic ant colony algorithm and its application.Procedia Eng.20123710110610.1016/j.proeng.2012.04.210
    [Google Scholar]
  29. LiuX. MüllerT.M. AaboenA. SuX. TarkomaS. A comparative analysis of genetic algorithm and ant colony optimization for mobile augmented reality offloading.Proceedings of the 1st ACM Workshop on Mobile Immersive Computing, Networking, and SystemsNew York, NY, USA, 2023, pp. 247–253.10.1145/3615452.3617943
    [Google Scholar]
  30. GaoY. Optimization techniques for feature selection in GNSS jamming detection.J. Adv. Signal Process.2018453203214
    [Google Scholar]
  31. ZhangL. WangH. Bayesian optimization for feature selection in high-dimensional data.Int. J. Mach. Learn. Comput.2020122158166
    [Google Scholar]
  32. KumarR.J.S.J. JayasinghJ.R. TelagathotiD.B. Intelligent transit healthcare schema using Internet of Medical Things (IoMT) technology for remote patient monitoring.Internet of Medical Things: Remote Healthcare Systems and ApplicationsSpringer, Cham, 2021, pp. 17-33.
    [Google Scholar]
  33. DongJunyu SongtaoGao HaijingLu Hybrid Positioning and Adaptive Switchover Strategy Based on Observable Data for Smart Logistics.9th International Conference on Computer and Communication Systems (ICCCS)Xi'an, China, 19-22 April 2024, pp. 582-586.10.1109/ICCCS61882.2024.10603074
    [Google Scholar]
  34. JhanjhiN.Z. GaurL. KhanN.A. Global navigation satellite systems for logistics: Cybersecurity issues and challenges.Cybersecurity in the Transportation IndustryWiley, 2024, pp. 49-67.10.1002/9781394204472.ch3
    [Google Scholar]
  35. JeongS. ParkI. KimH.S. SongC.H. KimH.K. Temperature prediction based on bidirectional long short-term memory and convolutional neural network combining observed and numerical forecast data.Sensors202121394110.3390/s2103094133572653
    [Google Scholar]
  36. YangY. TuS. AliR.H. Intrusion detection based on bidirectional long short-term memory with attention mechanism.Comput. Mater. Cont.202374180180510.32604/cmc.2023.031907
    [Google Scholar]
  37. RattalS. ReyouchiA.E.M. An effective practical method for narrowband wireless mesh networks performance.SN Appl. Sci.2019112153210.1007/s42452‑019‑1595‑9
    [Google Scholar]
  38. MisraP. EngeP. Global Positioning System: Signals, Measurements and Performance.Ganga-Jamuna Press2011
    [Google Scholar]
  39. KaplanE.D. HegartyC.J. Understanding GPS/GNSS: Principles and Applications.3rd Ed.Boston, MAArtech House201716
    [Google Scholar]
  40. ZhangL. GuoS. LiX. BiLSTM-based deep learning model for GNSS signal anomaly detection in challenging environments.IEEE Trans. Geosci. Remote Sens.202260113
    [Google Scholar]
  41. VaswaniA. ShazeerN. ParmarN. Attention is all you need.Adv. Neural Inf. Process. Syst.20173059986008
    [Google Scholar]
  42. ShiY. TangJ. ChenJ. Attention-based BiLSTM model for GNSS interference detection.J. Navig.2021742267284
    [Google Scholar]
  43. LiuZ. ZhouT. ChenQ. Dimensionality reduction in GNSS signal processing using PCA and its impact on model accuracy.Sensors2021215159333668770
    [Google Scholar]
  44. SnoekJ. LarochelleH. AdamsR.P. Practical Bayesian optimization of machine learning algorithms.NeurIPS20202529512959
    [Google Scholar]
  45. FrazierP.I. A tutorial on Bayesian optimization.arXiv:1807.02811201816
    [Google Scholar]
  46. WangY. LiuJ. ZhangX. Genetic algorithm-based feature selection for robust GNSS signal tracking.IEEE Access103432134333
    [Google Scholar]
  47. AbualigahL. DiabatA. AlaboolH. Feature selection and optimization based on PSO for GNSS signal processing.Appl. Soft Comput.2021109107598
    [Google Scholar]
  48. ZhangD. WangX. SongX. New medical image fusion approach with coding based on SCD in wireless sensor network.J. Electr. Eng. Technol.20151062384239210.5370/JEET.2015.10.6.2384
    [Google Scholar]
  49. LiuX. ZhangD. ZhangT. CuiY. ChenL. LiuS. Novel best path selection approach based on hybrid improved A* algorithm and reinforcement learning.Appl. Intell.202151129015902910.1007/s10489‑021‑02303‑8
    [Google Scholar]
  50. ZhangD. CaoL. ZhuH. ZhangT. DuJ. JiangK. Task offloading method of edge computing in internet of vehicles based on deep reinforcement learning.Cluster Comput.20222521175118710.1007/s10586‑021‑03532‑9
    [Google Scholar]
  51. ReyouchiA.E.M. MaslouhiI. GhoumidK. A new fast polling algorithm in wireless mesh network for narrowband Internet of Things.Telecomm. Syst.202074340541010.1007/s11235‑020‑00671‑z
    [Google Scholar]
  52. GhoumidK. GhadbanA. BoukrichaS. reyouchiA.E.M. YahiaouiR. MekaouiS. RaschettiM. LepersC. Spectral coded phase bipolar OCDMA technological implementation thanks to low index modulation filters.Telecomm. Syst.202073343344110.1007/s11235‑019‑00610‑7
    [Google Scholar]
  53. ChateiY. HammoutiM. MiloudE. GhoumidK. Downlink and uplink message size impact on round trip time metric in multi-hop wireless mesh networks.Int. J. Adv. Comput. Sci. Appl.20178322322910.14569/IJACSA.2017.080332
    [Google Scholar]
  54. ReyouchiA.E.M. GhoumidK. YahiaouiR. ElmazriaO. Optimized reception sensitivity of WBAN sensors exploiting network coding and modulation techniques in an advanced NB-IoT.IEEE Access10357843579410.1109/ACCESS.2022.3163314
    [Google Scholar]
  55. ChateiY. GhoumidK. ReyouchiA.E.M. Narrow-band channel spacing frequencies metric in one-hop wireless mesh networks.Proceedings of the 2nd International Conference on Communication and Electronics Systems (ICCES)Coimbatore, India, 2017, pp. 296-301.10.1109/CESYS.2017.8321284
    [Google Scholar]
  56. ReyouchiA.E.M. HammoutiM. MaslouhiI. GhoumidK. The Internet of Things: Network delay improvement using network coding.Proceedings of ICC 2017 - International Conference on Internet of Things, Data, and Cloud Computing, Cambridge, UK.201781710.1145/3018896.3018902
    [Google Scholar]
  57. HammoutiM. ReyouchiA.E.M. GhoumidK. Power quality command and control systems in wireless renewable energy networks.Renewable and Sustainable Energy Conference (IRSEC)Baku, Azerbaijan, 07-08 Dec 2016, pp. 763-769.10.1109/IRSEC.2016.7983989
    [Google Scholar]
  58. ReyouchiA.E.M. Analysis of the new method for assessing the total network capacity of wireless mesh networks for IoT devices.J. Internet Technol.202021410251035
    [Google Scholar]
  59. ZrelliI. RejebA. AbusulaimanR. AlSahafiR. RejebK. IranmaneshM. Drone applications in logistics and supply chain management: A systematic review using latent Dirichlet allocation.Arab. J. Sci. Eng.2024499124111243010.1007/s13369‑023‑08681‑0
    [Google Scholar]
  60. KimK. KimS. KimJ. JungH. Drone-assisted multimodal logistics: Trends and research issues.Drones20248946810.3390/drones8090468
    [Google Scholar]
  61. WongW.P. SawP.S. JomthanachaiS. WangL.S. OngH.F. LimC.P. Digitalization enhancement in the pharmaceutical supply network using a supply chain risk management approach.Sci. Rep.20231312228710.1038/s41598‑023‑49606‑z38097696
    [Google Scholar]
  62. ChabelS. ReyouchiA.E.M. Technological integration in pharmaceutical logistics.Applied Mathematics, Modeling and Computer SimulationAmsterdam, NetherlandsIOS Press20234296096910.3233/ATDE231036
    [Google Scholar]
  63. MaJ.Y. ShiL. KangT.W. The effect of digital transformation on the pharmaceutical sustainable supply chain performance: The mediating role of information sharing and traceability using structural equation modeling.Sustainability202215164910.3390/su15010649
    [Google Scholar]
  64. ChabelS. ReyouchiA.E.M. AamoumH. Chapter 1 - Optimizing the supply chain of perishable products through digitalization of transport.Logistics & supply chain in the era of digitalization and artificial intelligence.6th Ed.Montréal, QuebecFrancophone Agency2023125
    [Google Scholar]
  65. LiD. ZhangF. FengJ. WangZ. FanJ. LiY. LiJ. YangT. LD-SLAM: A robust and accurate GNSS-aided multi-map method for long-distance visual SLAM.Remote Sens.20231518444210.3390/rs15184442
    [Google Scholar]
  66. LindemannB. MüllerT. VietzH. JazdiN. WeyrichM. A survey on long short-term memory networks for time series prediction.Procedia CIRP20219965065510.1016/j.procir.2021.03.088
    [Google Scholar]
  67. ZeilerM.D. ADADELTA: An adaptive learning rate method.arXiv:1212.5701201216
    [Google Scholar]
  68. DuchiJ. HazanE. SingerY. Adaptive subgradient methods for online learning and stochastic optimization.J. Mach. Learn. Res.20111221212159
    [Google Scholar]
  69. KingmaD.P. BaJ. Adam: A method for stochastic optimization.3rd International Conference for Learning RepresentationsInternational Conference on Learning Representations (ICLR)San Diego20151610.48550/arXiv.1412.6980
    [Google Scholar]
  70. BottouL. Large-scale machine learning with stochastic gradient descent.Proceedings of COMPSTAT 2010201017718610.1007/978‑3‑7908‑2604‑3_16
    [Google Scholar]
  71. KingmaD.P. BaJ. Adam: A method for stochastic optimization.arXiv:1412.6980201416
    [Google Scholar]
  72. KeskarN.S. MudigereD. NocedalJ. SmelyanskiyM. TangP.T.P. On large-batch training for deep learning: Generalization gap and sharp minima.arXiv:1609.04836201716
    [Google Scholar]
  73. LeCunY. BottouL. OrrG.B. MüllerK-R. Efficient backprop.Neural Networks: Tricks of the Trade2nd Ed. MontavonG. OrrG.B. MüllerK.-R ChamSpringer201210.1007/978‑3‑642‑35289‑8_3
    [Google Scholar]
  74. BergstraJ. BengioY. Random search for hyper-parameter optimization.J. Mach. Learn. Res.2012131281306
    [Google Scholar]
/content/journals/cai/10.2174/0129503752352719250214061245
Loading
/content/journals/cai/10.2174/0129503752352719250214061245
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test