Current Alternative Energy - Volume 4, Issue 1, 2021
Volume 4, Issue 1, 2021
-
-
Biomass Conversion to Fuels and Value-Added Chemicals: A Comprehensive Review of the Thermochemical Processes
Authors: Erasmus Muh, Fouzi Tabet and Sofiane AmaraFossil fuels have fueled the world economy for decades. However, given their limited nature, fluctuating prices and the escalating environmental concerns, there is an urgent need to develop and valorize cheaper, cleaner and sustainable alternative energy sources to curb these challenges. Biomass represents a valid alternative to fossil fuels, especially for fuel and chemical production as it represents the only natural organic renewable resource with vast abundance. A vast array of conversion technologies is used to process biomass from one form to another, to release energy, high-value products or chemical intermediates. This paper extensively reviews the thermochemical processing of biomass to fuels and high-value chemicals, with an emphasis on the process performance, conditions, and weaknesses. Technologies with great future prospects as well as those with possible linkage to CO2 capture and sequestration are highlighted. The important chemical compositions of biomass feedstock, their conversion technologies and most importantly, the role of catalysis in their conversion to fuels, fuel additives, based chemicals, and added-value chemicals are also discussed. Special attention is given to biofuel production for transportation as this sector is responsible for the highest global greenhouse gas emissions, and has an emerging market with promising future prospects for sustainable large-scale biomass processing. The processes involved in the purification and upgrading of biomass-derived products into higher-value products are equally discussed and reviewed.
-
-
-
A State‐of‐the‐art Review on a Thermochemical Conversion of Carbonaceous Materials: Production of Synthesis Gas by Co-Gasification Process-Part I
More LessPresently, one of the biggest predicaments in developing countries is the ever-growing local demand for electrical energy in the face of limited availability of locally derived natural resources. The Middle Eastern country of Jordan provides for an apt example of this. Domestically, Jordan generates a very limited amount of its own electrical energy output. Contributing 2.4% of its total energy consumption, Jordan has been driven by the need to diversify its reliance on alternative energy sources. One such alternative is that of renewable energy with its potential to cater to local supply and demand for electricity. Off-grid energy generating technologies can provide a more reliable supply and extending its reach into remote and rural areas. These technologies provide the added benefits of being more environmentally sustainable, cost-efficient, and can operate independently, not reliant on multiple public utilities. Against this backdrop, this study evaluates the benefits of gasification technology, providing for a renewable energy source that can meet the needs for a reliable supply whilst simultaneously distributing power to remote rural areas. It does this by scrutinizing existing investigative works and experimentations premised on the gasification of carbonaceous material for the purpose of producing syngas that can then be used as an energy source. In this gasification process, the most common material typically used is biomass. However, such technologies and their accompanying processes are not without their challenges. These include, but are not limited to, low energy density, low heating value, higher tar content, and an unstable supply. In an attempt to overcome these associated issues, biomass and coal are often synergized in a singular process referred to as ‘co-gasification’. While the combination of biomass and coal vastly improved the process of co-gasification, various other factors aid this process. These include flow geometry, where the gasifier can be categorized into several forms: an entrained flow gasifier, a moving bed gasifier, and a fluidized bed gasifier. Further factors included a gasification agent, operating conditions (i.e. temperature, pressure), heating rate, feedstock composition, fuel blending ratio, and particle size, influenced by the percentage of gases and ratio produced between CO, CO2, CH4, and H2. This study therefore provides a comparative analysis between a co-gasification process and normal gasification to determine not only the elements that impact these processes, but also what can be improved for ultimately optimizing gasification.
-
-
-
Disasters as Catalysts for Energy Transition
Authors: Kelly D’Alessandro and Paul DarguschThe concept of disaster as a positive force for change seems intuitive, but is covered only occasionally in the energy transition literature. We review disaster risk and recovery literature to assess how these types of transformations may be different, and provide a change pathway within the popular Multi-Level Perspective framework. While incumbent systems are, by definition, stable (making change difficult), disaster can override these challenges by providing simultaneous disruption at all structure levels. By exceeding the capacity of the regime and its established processes and practices, disaster provides an opportunity to reformat social structures through reconstruction and recovery processes. Importantly, significant disruption has the ability to plasticize the landscape for a short timeframe, with potential change within a finite deviation from existing trends. During this disruptive period, the regime and landscape become co-dependent, with any meso-level void filled by a combination of new and reconstructed fragments, working to restore the stability of the foundation. The new regime must then satisfy the resultant set of socially dictated conditions set by the revised landscape to maintain the new structure. The challenge then is not to be restrained by the swift recovery of the previous regime, and to form a new set of conditions to deliver improved outcomes that better balance the needs of natural and anthropogenic systems.
-
-
-
A Conversion Efficiency Determination of High Efficiency Solar Cells with the Parabolic Dish Concentrating System
More LessAims: Field test for the conversion efficiency determination of high concentrating solar cells with the parabolic dish concentrating system in a tropical location.
Background: Typical solar cell system using in a tropical location is a fixed panelviacommercial grade mono crystalline, poly crystalline or amorphous solar panels. They have low conversion efficiency, so they need a wide area to enhance electrical energy. The consequence is low yielding in terms of economics and unpopular use in an urban zone.
Objective: To test for the conversion efficiency determination of high concentrating solar cells with the parabolic dish concentrating system in a tropical location.
Methods: The research was conducted at the top of Nakhon Ratchasima Rajabhat University (NRRU) Science Center Building, Nakhon Ratchasima, Thailand. The four multi junction solar cells were connected together to receive the reflecting concentrated sunlight from the parabolic dish. The conversion efficiency of the 160 watts peak mono crystalline solar cell panel for a comparing purpose was also determined. Multi junction solar cells with parabolic dish concentrating and cooling systems, solar cell panel, pyrheliometer, pyranometer and light sensor were set up on the dual axes sun tracker. Data were gathered every 5 minutes all day from January 2018 to February 2019 for all 3 seasonsviathe automatic data logging system.
Results: The results had presented that the average conversion efficiency of high concentrating solar cell module with the parabolic dish concentrating system for 100x and of the 160 watts peak mono crystalline solar cell panel was 15.18% and 9.46% respectively, with the percentage difference of 56.45%. While the average output powers per unit area per year of multi junction solar cells with concentrating system and mono crystalline solar cell panel were 98,544.92watt/m2 and 664.37watt/m2 respectively, with the ratio of 148.33.
Conclusion: It is clearly seen that, in terms of conversion efficiency and output power per unit area per year, the multi junction solar cells with the parabolic dish concentrating system have more advantage than the typical mono crystalline solar cell panel.
Other: Especially from the economical aspect, the utilization of the parabolic dish concentrating system with MJ solar cells can reduce the land investment cost and also encourage solar cell utilization not only in rural but also in urban for the tropical climate countries.
-
Volumes & issues
Most Read This Month
