Skip to content
2000
Volume 21, Issue 6
  • ISSN: 1573-4099
  • E-ISSN: 1875-6697

Abstract

Background

Estrogen alpha has been recognized as a perilous factor in breast cancer cell proliferation and has been proficiently treated in breast cancer chemotherapy with the development of selective estrogen receptor modulators (SERMs).

Objectives

The major aim of this study was to identify the potential inhibitors against the most influential target ERα receptor by studies of 115 phytochemicals from 17 medicinal plants using molecular docking studies.

Methods

The molecular docking investigation was carried out by a genetic algorithm using the Auto Dock Vina program, and the validation of docking was also performed using molecular dynamic (MD) simulation by the Desmond tool of Schrödinger molecular modeling. The ADME(T) studies were performed by SWISS ADME and ProTox-II.

Results

The top ten highest binding energy phytochemicals identified were amyrin acetate (-10.7 kcal/mol), uscharine (-10.5 kcal/mol), voruscharin (-10.0 kcal/mol), cyclitols (-10.0 kcal/mol), taraxeryl acetate (-9.9 kcal/mol), amyrin (-9.9 kcal/mol), barringtogenol C (-9.9 kcal/mol), calactin (-9.9 kcal/mol), 3-beta taraxerol (-9.8 kcal/mol), and calotoxin (-9.8 kcal/mol). A molecular docking study revealed that these phytochemical constituents showed higher binding affinity compared to the reference standard tamoxifen (-6.6 kcal/mol) towards the target protein ERα. The results of MD studies showed that all four tested compounds possess comparatively stable ligand-protein complexes with ERα target as compared to the tamoxifen-ERα complex.

Conclusion

Among the ten compounds, phytochemical amyrin acetate (triterpenoids) formed a more stable complex as well as exhibited greater binding affinity than standard tamoxifen. ADMET studies for the top ten phytochemicals showed a good safety profile. Additionally, these compounds are being reported for the first time in this study as possible inhibitors of ERα for the treatment of breast cancer by adopting the concept of drug repurposing. Hence, these phytochemicals can be further studied and can be used as a parent core molecule to develop novel lead molecules for breast cancer therapy.

Loading

Article metrics loading...

/content/journals/cad/10.2174/0115734099301866240527100128
2024-06-05
2025-12-05
Loading full text...

Full text loading...

References

  1. American Cancer Society.Cancer Facts and Figures 2023.Atlanta, GaAmerican Cancer Society2023
    [Google Scholar]
  2. American Cancer Society. 2,001,140 new cancer cases and 611,720 cancer deaths.2024Available from: Cancerstatisticscenter.cancer.org/#/
  3. ArnoldM. MorganE. RumgayH. MafraA. SinghD. LaversanneM. VignatJ. GralowJ.R. CardosoF. SieslingS. SoerjomataramI. Current and future burden of breast cancer: Global statistics for 2020 and 2040.Breast202266152310.1016/j.breast.2022.08.010 36084384
    [Google Scholar]
  4. YagerJ.D. DavidsonN.E. Estrogen carcinogenesis in breast cancer.N. Engl. J. Med.2006354327028210.1056/NEJMra050776 16421368
    [Google Scholar]
  5. HelgueroL.A. FauldsM.H. GustafssonJ.Å. HaldosénL.A. Estrogen receptors alfa (ERα) and beta (ERβ) differentially regulate proliferation and apoptosis of the normal murine mammary epithelial cell line HC11.Oncogene200524446605661610.1038/sj.onc.1208807 16007178
    [Google Scholar]
  6. MurphyL.C. PengB. LewisA. DavieJ.R. LeygueE. KempA. UngK. VendettiM. ShiuR. Inducible upregulation of oestrogen receptor-β1 affects oestrogen and tamoxifen responsiveness in MCF7 human breast cancer cells.J. Mol. Endocrinol.200534255356610.1677/jme.1.01688 15821116
    [Google Scholar]
  7. TreeckO. LattrichC. SpringwaldA. OrtmannO. Estrogen receptor beta exerts growth-inhibitory effects on human mammary epithelial cells.Breast Cancer Res. Treat.2010120355756510.1007/s10549‑009‑0413‑2 19434490
    [Google Scholar]
  8. HartmanJ. LindbergK. MoraniA. InzunzaJ. StrömA. GustafssonJ.Å. Estrogen receptor beta inhibits angiogenesis and growth of T47D breast cancer xenografts.Cancer Res.20066623112071121310.1158/0008‑5472.CAN‑06‑0017 17145865
    [Google Scholar]
  9. SwabyR.F. SharmaC.G.N. JordanV.C. SERMs for the treatment and prevention of breast cancer.Rev. Endocr. Metab. Disord.20078322923910.1007/s11154‑007‑9034‑4 17440819
    [Google Scholar]
  10. MusgroveE.A. SutherlandR.L. Biological determinants of endocrine resistance in breast cancer.Nat. Rev. Cancer20099963164310.1038/nrc2713 19701242
    [Google Scholar]
  11. SuetsugiM. SuL. KarlsbergK. YuanY.C. ChenS. Flavone and isoflavone phytoestrogens are agonists of estrogen-related receptors.Mol. Cancer Res.2003113981991 14638870
    [Google Scholar]
  12. ZandR.S.R. JenkinsD.J.A. DiamandisE.P. Steroid hormone activity of flavonoids and related compounds.Breast Cancer Res. Treat.2000621354910.1023/A:1006422302173 10989984
    [Google Scholar]
  13. GrandeF. RizzutiB. OcchiuzziM.A. IoeleG. CasacchiaT. GelminiF. GuzziR. GarofaloA. StattiG. Identification by molecular docking of homoisoflavones from leopoldia comosa as ligands of estrogen receptors.Molecules201823489410.3390/molecules23040894 29649162
    [Google Scholar]
  14. GururaniR. PatelS. YaduvanshiN. DwivediJ. PaliwalS. SharmaS. Tylophora indica (Burm. F.) merr: An insight into phytochemistry and pharmacology.J. Ethnopharmacol.202026211312210.1016/j.jep.2020.113122 32730871
    [Google Scholar]
  15. KaurH. SinghK. A brief phytopharmacological overview of Tylophora indica-an endangered medicinal plant.Int. J. Pharm. Sci. Res.20203114073
    [Google Scholar]
  16. SchwartzbergL OsswaldSS Elston, DM Botanical Briefs: Bloodroot (Sanguinaria canadensis).Cutis20211084212214
    [Google Scholar]
  17. FravorL. KhachemouneA. Dermatologic uses of bloodroot: A review and reappraisal.Int. J. Dermatol.202010.1111/ijd.15273 33128472
    [Google Scholar]
  18. MalikS. CusidóR.M. MirjaliliM.H. MoyanoE. PalazónJ. BonfillM. Production of the anticancer drug taxol in Taxus baccata suspension cultures: A review.Process Biochem.2011461233410.1016/j.procbio.2010.09.004
    [Google Scholar]
  19. BenhamS.E. Houston DurrantT. CaudulloG. de RigoD. Taxus baccata in Europe: Distribution, habitat, usage and threats.European Atlas of Forest Tree Species; San-Miguel-Ayanz, J.; de Rigo, D.; Caudullo, G.; Houston Durrant, T. MauriA. LuxembourgOff. EU2016
    [Google Scholar]
  20. BenhamS.E. Houston DurrantT. CaudulloG. de RigoD. Taxus baccata in Europe: Distribution, habitat, usage and threats. European Atlas of Forest Tree Species; San-Miguel-Ayanz, J.; de Rigo, D.; Caudullo, G.; Houston Durrant, T. MauriA. LuxembourgOff. EU2016
    [Google Scholar]
  21. VedD. K. SureshchandraS. T. BarveV. SrinivasV. SangeethaS. RavikumarK. KartikeyanR. KulkarniV. KumarA. S. VenugopalS. N. SomashekharB. S. SumanthM. V. BegumN. RaniS. SurekhaK. V. DesaleN. Azadirachta indica A. Juss.FRLHT’s ENVIS Centre on Medicinal Plants, Bengaluru2016Available from: http://envis.frlht.org/plant_details.php?disp_id=266
    [Google Scholar]
  22. ErasmusD.J. MaggsK.A.R. BiggsH.C. ZellerD.A. BellR.S. Brighton crop protection conference.Proceedings of an International Conference by The British Crop Protection Council22-25 November, 1993. Brighton, UK2023.
    [Google Scholar]
  23. FullerD.Q. MurphyC. The origins and early dispersal of horsegram (Macrotyloma uniflorum), a major crop of ancient India.Genet. Resour. Crop Evol.201865128530510.1007/s10722‑017‑0532‑2
    [Google Scholar]
  24. KaundalS.P. SharmaA. KumarR. KumarV. KumarR. Exploration of medicinal importance of an underutilized legume crop, Macrotyloma uniflorum (Lam.) Verdc. (Horse gram): A review.Int. J. Pharm. Sci. Res.201810731783186
    [Google Scholar]
  25. AnzanoA. AmmarM. PapaianniM. GrausoL. SabbahM. CapparelliR. LanzottiV. Moringa oleifera Lam.: A Phytochemical and Pharmacological Overview.Horticulturae202171040910.3390/horticulturae7100409
    [Google Scholar]
  26. Abdull RazisA.F. IbrahimM.D. KntayyaS.B. Health benefits of Moringa oleifera.Asian Pac. J. Cancer Prev.201415208571857610.7314/APJCP.2014.15.20.8571 25374169
    [Google Scholar]
  27. GuptaR. AhmadH. SehgalS. MishraA. Mimosa pudica L. (Laajvanti): An overview.Pharmacogn. Rev.201261211512410.4103/0973‑7847.99945 23055637
    [Google Scholar]
  28. VedA. GuptaS. Operculina turpethum (Linn.) Silva Manso as a medicinal plant species: A review on bioactive components and pharmacological properties.Pharmacogn. Rev.2017112215816610.4103/phrev.phrev_6_17 28989252
    [Google Scholar]
  29. IgnatiusV. NarayananM. SubramanianV. PeriyasamyB.M. Antiulcer activity of indigenous plant Operculina turpethum Linn.Evid. Based Complement. Alternat. Med.201320131710.1155/2013/272134 23476683
    [Google Scholar]
  30. PrasadS. AggarwalB.B. Turmeric, the golden spice: From traditional medicine to modern medicine.Herbal Medicine: Biomolecular and Clinical Aspects2nd ed.National Library of MedicineRockville Pike2011
    [Google Scholar]
  31. AlamM.A. AliN.A. SultanaN. MullanyL.C. TeelaK.C. KhanN.U.Z. BaquiA.H. El ArifeenS. MannanI. DarmstadtG.L. WinchP.J. Newborn umbilical cord and skin care in Sylhet District, Bangladesh: Implications for the promotion of umbilical cord cleansing with topical chlorhexidine.J. Perinatol.200828S2Suppl. 2S61S6810.1038/jp.2008.164 19057570
    [Google Scholar]
  32. UddinM.K. JuraimiA.S. HossainM.S. NaharM.A.U. AliM.E. RahmanM.M. Purslane weed (Portulaca oleracea): A prospective plant source of nutrition, omega-3 fatty acid, and antioxidant attributes.Sci. World J.201420141610.1155/2014/951019 24683365
    [Google Scholar]
  33. ZhouY.X. XinH.L. RahmanK. WangS.J. PengC. Zhang, H Portulaca oleracea L.: A review of phytochemistry and pharmacological effects.BioMed Res. Int.20152015925631
    [Google Scholar]
  34. SemaltyM. SemaltyA. BadolaA. JoshiG. RawatM.S.M. Semecarpus Anacardium Linn.: A review.Pharmacogn. Rev.201047889410.4103/0973‑7847.65328 22228947
    [Google Scholar]
  35. EliyanaA. YuwonoH. A multifaceted review journal in the field of pharmacy the Effect of Locus of Control on Employees’ Job Satisfaction.Syst. Rev. Pharm.2022135349355
    [Google Scholar]
  36. MurtiY. YogiB. PathakD. Pharmacognostic standardization of leaves of Calotropis procera (Ait.) R. Br. (Asclepiadaceae).Int. J. Ayurveda Res.201011141710.4103/0974‑7788.59938 20532092
    [Google Scholar]
  37. BairagiS.M. AherA.A. NemaN. PathanI.B. Evaluation of antidiarrhoeal activity of the leaves extract of Ficus Microcarpa L. (Moraceae).Marmara Pharm. J.201431813513510.12991/mpj.2014187240
    [Google Scholar]
  38. GuptaP.C. SharmaN. RaoC.V. Pharmacognostic studies of the leaves and stem of Careya arborea Roxb.Asian Pac. J. Trop. Biomed.20122540440810.1016/S2221‑1691(12)60065‑3 23569939
    [Google Scholar]
  39. KumarR.S. SivakumarS. Shanmuga SundaramR. SivakumarP. NethajiR. GuptaM. MazumdarU.K. Antimicrobial and antioxidant activities of Careya arborea Roxb. Stem bark.Iranian J. Pharmacol. Therapeut.200653541
    [Google Scholar]
  40. Tropical Plants Database Ceiba pentandra.2023Available from: tropical.theferns.info/viewtropical.php?id=Ceiba+pentandra
  41. DingY. GaoW. QinY. LiX. ZhangZ. LaiW. YangY. GuoK. LiP. ZhouS. HuH. Single-cell RNA landscape of the special fiber initiation process in Bombax ceiba.Plant Commun.20234510055410.1016/j.xplc.2023.100554 36772797
    [Google Scholar]
  42. LiQ.Y. MunawarM. SaeedM. ShenJ.Q. KhanM.S. NoreenS. AlagawanyM. NaveedM. MadniA. LiC.X. Citrullus colocynthis (L.) Schrad (Bitter Apple Fruit): Promising Traditional Uses, Pharmacological Effects, Aspects, and Potential Applications.Front. Pharmacol.20221279104910.3389/fphar.2021.791049 35145403
    [Google Scholar]
  43. KapoorM. KaurN. SharmaC. KaurG. KaurR. BatraK. RaniJ. Citrullus colocynthis an important plant in indian traditional system of medicine.Pharmacogn. Rev.20211427222710.5530/phrev.2020.14.4
    [Google Scholar]
  44. JagrutiJ.P. SanjeevR.A. NiyatiS.A. Clerodendrum serratum (L.) Moon. - a review on traditional uses, phytochemistry and pharmacological activities.J. Ethnopharmacol.2014154226828510.1016/j.jep.2014.03.071
    [Google Scholar]
  45. AlagarsamyV. SolomonV.R. SundarP.S. KulkarniV.S. SulthanaM.T. AishwaryaA.D. NarendharB. MurugesanS. Computational search for potential COVID-19 drugs from ayurvedic medicinal plants to identify potential inhibitors against SARS-CoV-2 targets.Curr. Computeraided Drug Des.2023191516710.2174/1573409919666221117145404 36424783
    [Google Scholar]
  46. KarakayaS. GögerG. BonaG.E. YucaH. AydınB. TekmanE. ŞahinA.A. PınarN.M. GüvenalpZ. Screening of antimicrobial, antioxidant, antidiabetic activities, anatomical and morphological properties of Colchicum speciosum Steven (Colchicaceae).Protoplasma202225961493150610.1007/s00709‑022‑01752‑3 35262800
    [Google Scholar]
  47. KiiçiikerO. Contributions lo the knowledge of some endangered Co/chicum species of Turkey.Fl. Medit.19955211219
    [Google Scholar]
  48. TrottO. OlsonA.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading.J. Comput. Chem.201031245546110.1002/jcc.21334 19499576
    [Google Scholar]
  49. KriegerE. VriendG. YASARA View—molecular graphics for all devices—from smartphones to workstations.Bioinformatics201430202981298210.1093/bioinformatics/btu426 24996895
    [Google Scholar]
  50. ScottA. Molecular dynamics simulation for all.Neuron201899611291143
    [Google Scholar]
  51. MarkP. Structure and dynamics of liquid water with different long-range interaction truncation and temperature control methods in molecular dynamics simulations.J. Comput. Chem.2002231312111219
    [Google Scholar]
  52. JorgensenW.L. MaxwellD.S. Tirado-RivesJ. Development and testing of the OPLS All-atom force field on conformational energetics and properties of organic liquids.J. Am. Chem. Soc.199611845112251123610.1021/ja9621760
    [Google Scholar]
  53. Anand, V Impact of COVID-19 on liver transplant recipients-A systematic review and meta-analysis.EClinicalMedicine202138101025
    [Google Scholar]
  54. ChristopherA. Lipinski,Lead- and drug-like compounds: The rule-of-five revolution.Drug Discov. Today. Technol.20042004337341
    [Google Scholar]
  55. DainaA. MichielinO. ZoeteV. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules.Sci. Rep.2017714271710.1038/srep42717 28256516
    [Google Scholar]
  56. FerreiraL.L.G. AndricopuloA.D. ADMET modeling approaches in drug discovery.Drug Discov. Today20192451157116510.1016/j.drudis.2019.03.015 30890362
    [Google Scholar]
  57. JohnM. Informing the selection of screening hit series with in silico absorption, distribution, metabolism, excretion, and toxicity profiles.J. Med. Chem.2021601667716780
    [Google Scholar]
/content/journals/cad/10.2174/0115734099301866240527100128
Loading
/content/journals/cad/10.2174/0115734099301866240527100128
Loading

Data & Media loading...

Supplements

Supplementary material, along with the published article, is available on the publisher’s website.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test