Skip to content
2000
Volume 21, Issue 6
  • ISSN: 1573-4099
  • E-ISSN: 1875-6697

Abstract

Background

Exogenous substances modulate metabolism by regulating the expression and function of UDP-glycosyltransferases (UGTs). However, the exact mechanism in the intestine was rarely understood. Herein, we explored the effects of representative flavonoids and organic acids on the regulation of UGT1A1.

Methods

MTT assays and western blot analysis were used to explore the effect of polyphenols. X-ray diffraction was used to reveal the catalytic mechanisms of UGTs.

Results

MTT assays showed that these compounds basically had almost no cytotoxicity, even in concentrations up to 200 μM. However, through western blot assays, UGT1A1 expression was increased after being treated with liquiritigenin and caffeic acid. Furthermore, liquiritigenin and caffeic acid enhanced the nuclear translocation of Nrf2. Moreover, a 2.5-Å crystal structure of the complex containing UGTs C-terminal domain and organic acid was solved, and the UDPGA binding pocket could be occupied by organic acid, suggesting the enzyme activity might be impaired by organic acid.

Conclusion

Above all, liquiritigenin and caffeic acid maintained the metabolism balance by upregulating the expression of UGT1A1 Nrf2 activation and inhibiting the enzyme activity in Caco-2 cells.

Loading

Article metrics loading...

/content/journals/cad/10.2174/0115734099300793240509103320
2024-05-17
2025-12-05
Loading full text...

Full text loading...

References

  1. Ang-LeeM.K. MossJ. YuanC.S. Herbal medicines and perioperative care.JAMA2001286220821610.1001/jama.286.2.208 11448284
    [Google Scholar]
  2. StoneR. Biochemistry. Lifting the veil on traditional Chinese medicine.Science2008319586470971010.1126/science.319.5864.709 18258866
    [Google Scholar]
  3. GuoB.J. BianZ.X. QiuH.C. WangY.T. WangY. Biological and clinical implications of herbal medicine and natural products for the treatment of inflammatory bowel disease.Ann. N. Y. Acad. Sci.201714011374810.1111/nyas.13414 28891095
    [Google Scholar]
  4. YinS. SunC. JiY. AbdolmalekyH. ZhouJ.R. Herbal medicine WangShiBaoChiWan improves gastrointestinal health in mice via modulation of intestinal tight junctions and gut microbiota and inhibition of inflammation.Biomed. Pharmacother.2021138111426
    [Google Scholar]
  5. LiY. ChenY. Sun-WaterhouseD. The potential of dandelion in the fight against gastrointestinal diseases: A review.J. Ethnopharmacol.202229311527210.1016/j.jep.2022.115272 35405251
    [Google Scholar]
  6. LiM. LiM. LeiJ. WuY. LiZ. ChenL. ZhouC. SuJ. HuangG. HuangX. ZhengX. Huangqin decoction ameliorates DSS-induced ulcerative colitis: Role of gut microbiota and amino acid metabolism, mTOR pathway and intestinal epithelial barrier.Phytomedicine202210015405210.1016/j.phymed.2022.154052 35344714
    [Google Scholar]
  7. ZengX. DuZ. DingX. JiangW. Protective effects of dietary flavonoids against pesticide-induced toxicity: A review.Trends Food Sci. Technol.202110927127910.1016/j.tifs.2021.01.046
    [Google Scholar]
  8. LiuT.L. ZhangY. LiuJ. PengJ.W. JiaX. XiaoY.F. ZhengL.B. DongY. Three-carbon linked dihydroartemisinin-isatin hybrids: Design, synthesis and their antiproliferative anticancer activity.Front. Pharmacol.202213834317
    [Google Scholar]
  9. El-guourramiO. SalhiN. BenkhouiliF.Z. ZenginG. YilmazM.A. AmeggouzM. ZahidiA. RouasL. BouyahyaA. GohK.W. SamT.H. MingL.C. DoukkaliA. BenzeidH. Phytochemical composition and toxicity assessment of Ammi majus L.Asian Pac. J. Trop. Biomed.20231316517510.4103/2221‑1691.374233
    [Google Scholar]
  10. SongD.R. PengJ.X. ZhaoX.N. WuH.Y. ZhengG.C. ZhaoY.F. JiangY.H. ShengX.F. GuoM.M. TanZ.J. Standardization of açaí extracts for in-vitro assays based on anthocyanin quantitation.J. Food Compos. Anal.2023118
    [Google Scholar]
  11. SerafiniM. PelusoI. RaguzziniA. Flavonoids as anti-inflammatory agents.Proc. Nutr. Soc.201069327327810.1017/S002966511000162X 20569521
    [Google Scholar]
  12. ZhanH. ChenR. ZhongM. WangG. JiangG. TaoX. ChenM. JiangY. Exploring the pharmacological mechanisms and key active ingredients of total flavonoids from Lamiophlomis rotata (Benth.) Kudo against rheumatoid arthritis based on multi-technology integrated network pharmacology.J. Ethnopharmacol.202331711685010.1016/j.jep.2023.116850 37385573
    [Google Scholar]
  13. NakagawaK. KitanoM. KishidaH. HidakaT. NabaeK. KawabeM. HosoeK. 90-Day repeated-dose toxicity study of licorice flavonoid oil (LFO) in rats.Food Chem. Toxicol.20084672349235710.1016/j.fct.2008.03.015 18448224
    [Google Scholar]
  14. XiaoT. CuiY. JiH. YanL. PeiD. QuS. Baicalein attenuates acute liver injury by blocking NLRP3 inflammasome.Biochem. Biophys. Res. Commun.202153421221810.1016/j.bbrc.2020.11.109 33272570
    [Google Scholar]
  15. HuQ. ZhangW. WuZ. TianX. XiangJ. LiL. LiZ. PengX. WeiS. MaX. ZhaoY. Baicalin and the liver-gut system: Pharmacological bases explaining its therapeutic effects.Pharmacol. Res.202116510544410.1016/j.phrs.2021.105444 33493657
    [Google Scholar]
  16. ShiraiN. Organic acid analysis in green tea leaves using high-performance liquid chromatography.J. Oleo Sci.20227191413141910.5650/jos.ess22135 35965093
    [Google Scholar]
  17. MarquisR.E. ClockS.A. Mota-MeiraM. Fluoride and organic weak acids as modulators of microbial physiology.FEMS Microbiol. Rev.200326549351010.1111/j.1574‑6976.2003.tb00627.x 12586392
    [Google Scholar]
  18. PavlikovaN. Caffeic acid and diseases-mechanisms of action.Int. J. Mol. Sci.202224158810.3390/ijms24010588
    [Google Scholar]
  19. DaiL.M. ZhaoC.C. JinH. TangJ. ShenY.H. LiH.L. PengC.Y. ZhangW.D. A new ferulic acid ester and other constituents from Dracocephalum peregrinum.Arch. Pharm. Res.200831101325132910.1007/s12272‑001‑2113‑2 18958424
    [Google Scholar]
  20. MelakuM. ZhongR. HanH. WanF. YiB. ZhangH. Butyric and citric acids and their salts in poultry nutrition: Effects on gut health and intestinal microbiota.Int. J. Mol. Sci.2021221910392
    [Google Scholar]
  21. ZhangB. XiaT. DuanW. ZhangZ. LiY. FangB. XiaM. WangM. Recent developments in tandem white organic light-emitting diodes.Molecules2019241151
    [Google Scholar]
  22. Pérez-BalladaresD. Castañeda-TeránM. Granda-AlbujaM.G. TejeraE. IturraldeG. Granda-AlbujaS. Jaramillo-VivancoT. GiampieriF. BattinoM. Alvarez-SuarezJ.M. Chemical composition and antioxidant activity of the main fruits, tubers and legumes traditionally consumed in the andean regions of ecuador as a source of health-promoting compounds.Plant Foods Hum. Nutr.201974335035710.1007/s11130‑019‑00744‑8 31209702
    [Google Scholar]
  23. RiazG. ChopraR. A review on phytochemistry and therapeutic uses of Hibiscus sabdariffa L.Biomed. Pharmacother.2018102575586
    [Google Scholar]
  24. ChenK. ChenC-Y. ChenH-L. KomakiR. KawakamiN. IsonoT. SatohT. HungD-Y. LiuY-L. Self-assembly behavior of sugar-based block copolymers in the complex phase window modulated by molecular architecture and configuration.Macromolecules2023561283910.1021/acs.macromol.2c01929
    [Google Scholar]
  25. MirzaeiS. GholamiM.H. ZabolianA. SalekiH. FarahaniM.V. HamzehlouS. FarF.B. SharifzadehS.O. SamarghandianS. KhanH. ArefA.R. AshrafizadehM. ZarrabiA. SethiG. Caffeic acid and its derivatives as potential modulators of oncogenic molecular pathways: New hope in the fight against cancer.Pharmacol. Res.202117110575910.1016/j.phrs.2021.105759 34245864
    [Google Scholar]
  26. SongJ. HeY. LuoC. FengB. RanF. XuH. CiZ. XuR. New progress in the pharmacology of protocatechuic acid: A compound ingested in daily foods and herbs frequently and heavily.Pharmacol. Res.202016110510910.1016/j.phrs.2020.105109 32738494
    [Google Scholar]
  27. Grzelak-BłaszczykK. MilalaJ. KołodziejczykK. SójkaM. CzarneckiA. KosmalaM. KlewickiR. FotschkiB. JurgońskiA. JuśkiewiczJ. Protocatechuic acid and quercetin glucosides in onions attenuate changes induced by high fat diet in rats.Food Funct.20201143585359710.1039/C9FO02633A 32285077
    [Google Scholar]
  28. Stompor-GoracyM. MachaczkaM. Int. J. Mol. Sci.202122
    [Google Scholar]
  29. Perez-TorresI. Castrejon-TellezV. SotoM.E. Rubio-RuizM.E. Manzano-PechL. Guarner-LansV. Oxidative stress, plant natural antioxidants, and obesity.Int. J. Mol. Sci.20212241786
    [Google Scholar]
  30. Neto-NevesE.M. da Silva Maia Bezerra FilhoC. DejaniN.N. de SousaD.P. Ferulic acid and cardiovascular health: Therapeutic and preventive potential.Mini Rev. Med. Chem.202121131625163710.2174/18755607MTEztMDUC3 33402085
    [Google Scholar]
  31. HuD.G. HulinJ.A. NairP.C. HainesA.Z. McKinnonR.A. MackenzieP.I. MeechR. The UGTome: The expanding diversity of UDP glycosyltransferases and its impact on small molecule metabolism.Pharmacol. Ther.201920410741410.1016/j.pharmthera.2019.107414 31647974
    [Google Scholar]
  32. GongC. BertagnolliL.N. BoultonD.W. CoppolaP. A literature review of changes in phase II drug-metabolizing enzyme and drug transporter expression during pregnancy.Pharmaceutics202315112624
    [Google Scholar]
  33. MeechR. HuD.G. McKinnonR.A. MubarokahS.N. HainesA.Z. NairP.C. RowlandA. MackenzieP.I. The UDP-Glycosyltransferase (UGT) superfamily: New members, new functions, and novel paradigms.Physiol. Rev.20199921153122210.1152/physrev.00058.2017 30724669
    [Google Scholar]
  34. YangN. SunR. LiaoX. AaJ. WangG. UDP-glucuronosyltransferases (UGTs) and their related metabolic cross-talk with internal homeostasis: A systematic review of UGT isoforms for precision medicine.Pharmacol. Res.201712116918310.1016/j.phrs.2017.05.001 28479371
    [Google Scholar]
  35. LiuY. RamírezJ. RatainM.J. Inhibition of paracetamol glucuronidation by tyrosine kinase inhibitors.Br. J. Clin. Pharmacol.201171691792010.1111/j.1365‑2125.2011.03911.x 21235620
    [Google Scholar]
  36. IyerL. KingC.D. WhitingtonP.F. GreenM.D. RoyS.K. TephlyT.R. CoffmanB.L. RatainM.J. Genetic predisposition to the metabolism of irinotecan (CPT-11). Role of uridine diphosphate glucuronosyltransferase isoform 1A1 in the glucuronidation of its active metabolite (SN-38) in human liver microsomes.J. Clin. Invest.1998101484785410.1172/JCI915 9466980
    [Google Scholar]
  37. TakekumaY. TakenakaT. YamazakiK. UenoK. SugawaraM. Stereoselective metabolism of racemic carvedilol by UGT1A1 and UGT2B7, and effects of mutation of these enzymes on glucuronidation activity.Biol. Pharm. Bull.200730112146215310.1248/bpb.30.2146 17978490
    [Google Scholar]
  38. GhosalA. HapangamaN. YuanY. Achanfuo-YeboahJ. IannucciR. ChowdhuryS. AltonK. PatrickJ.E. ZbaidaS. Identification of human UDP-glucuronosyltransferase enzyme(s) responsible for the glucuronidation of ezetimibe (Zetia).Drug Metab. Dispos.200432331432010.1124/dmd.32.3.314 14977865
    [Google Scholar]
  39. WilliamsJ.A. RingB.J. CantrellV.E. CampanaleK. JonesD.R. HallS.D. WrightonS.A. Differential modulation of UDP-glucuronosyltransferase 1A1 (UGT1A1)-catalyzed estradiol-3-glucuronidation by the addition of UGT1A1 substrates and other compounds to human liver microsomes.Drug Metab. Dispos.200230111266127310.1124/dmd.30.11.1266 12386134
    [Google Scholar]
  40. ZhuY.D. GuanX.Q. ChenJ. PengS. FinelM. ZhaoY.Y. WangR.M. BiH.C. LeiM. WangD.D. GeG.B. Neobavaisoflavone induces bilirubin metabolizing enzyme UGT1A1 via PPARα and PPARγ.Front. Pharmacol.20211162831410.3389/fphar.2020.628314 33628187
    [Google Scholar]
  41. Sanchez-DominguezC. Gallardo-BlancoH. Salinas-SantanderM. Ortiz-LopezR. Uridine 5′ diphospho glucronosyltrasferase: Its role in pharmacogenomics and human disease (Review).Exp. Ther. Med.201816131110.3892/etm.2018.6184 29896223
    [Google Scholar]
  42. DuanY. ZhuJ. YangJ. LiuG. BaiX. QuN. WangX. LiX. Regulation of high-altitude hypoxia on the transcription of CYP450 and UGT1A1 mediated by PXR and CAR.Front. Pharmacol.20201157417610.3389/fphar.2020.574176 33041817
    [Google Scholar]
  43. YuanL. ZhangL. YaoN. WuL. LiuJ. LiuF. ZhangH. HuX. XiongY. XiaC. Upregulation of UGT1A1 expression by ursolic acid and oleanolic acid via the inhibition of the PKC/NF-κB signaling pathway.Phytomedicine20219215372610.1016/j.phymed.2021.153726 34536821
    [Google Scholar]
  44. LiQ. ZhangW. ChengN. ZhuY. LiH. ZhangS. GuoW. GeG. Pectolinarigenin ameliorates acetaminophen-induced acute liver injury via attenuating oxidative stress and inflammatory response in Nrf2 and PPARa dependent manners.Phytomedicine202311315472610.1016/j.phymed.2023.154726 36863308
    [Google Scholar]
  45. TaoL.P. LiX. ZhaoM.Z. ShiJ.R. JiS.Q. JiangW.Y. LiangQ.J. LeiY.H. ZhouY.Y. ChengR. ShiZ. DengW. ZhuJ. ZhangS.Y. Chrysene, a four-ring polycyclic aromatic hydrocarbon, induces hepatotoxicity in mice by activation of the aryl hydrocarbon receptor (AhR).Chemosphere202127613010810.1016/j.chemosphere.2021.130108 33711793
    [Google Scholar]
  46. KalthoffS. EhmerU. FreibergN. MannsM.P. StrassburgC.P. Coffee induces expression of glucuronosyltransferases by the aryl hydrocarbon receptor and Nrf2 in liver and stomach.Gastroenterology2010139516991710
    [Google Scholar]
  47. EdavanaV.K. PenneyR.B. Yao-BorengasserA. WilliamsS. RogersL. DhakalI.B. KadlubarS. Fulvestrant up regulates UGT1A4 and MRP s through ERα and c-Myb pathways: A possible primary drug disposition mechanism.Springerplus20132162010.1186/2193‑1801‑2‑620 24298433
    [Google Scholar]
  48. HuD.G. MackenzieP.I. LuL. MeechR. McKinnonR.A. Induction of human UDP-Glucuronosyltransferase 2B7 gene expression by cytotoxic anticancer drugs in liver cancer HepG2 cells.Drug Metab. Dispos.201543566066810.1124/dmd.114.062380 25713207
    [Google Scholar]
  49. LuH. FangZ.Z. CaoY.F. HuC.M. HongM. SunX.Y. LiH. LiuY. FuX. SunH. Isoliquiritigenin showed strong inhibitory effects towards multiple UDP-glucuronosyltransferase (UGT) isoform-catalyzed 4-methylumbelliferone (4-MU) glucuronidation.Fitoterapia20138420821210.1016/j.fitote.2012.12.002 23237733
    [Google Scholar]
  50. RanR. ZhangC. LiR. ChenB. ZhangW. ZhaoZ. FuZ. DuZ. DuX. YangX. FangZ. Molecules201621
    [Google Scholar]
  51. LeeY.M. ChengP.Y. ChenS.Y. ChungM.T. SheuJ.R. Wogonin suppresses arrhythmias, inflammatory responses, and apoptosis induced by myocardial ischemia/reperfusion in rats.J. Cardiovasc. Pharmacol.201158213314210.1097/FJC.0b013e31821a5078 21436723
    [Google Scholar]
  52. GalkinA. TammelaP. Natural product - drug interactions and their evaluation using a caco-2 cell culture model.Nat. Prod. Commun.20231811117
    [Google Scholar]
  53. Medina-O’DonnellM. Vega-GranadosK. MartinezA. SepulvedaM.R. Molina-BolivarJ.A. de CienfuegosL.A. ParraA. Reyes-ZuritaF.J. RivasF. Synthesis, optical properties, and antiproliferative evaluation of NBD-triterpene fluorescent probes.J. Nat. Prod.202210.1021/acs.jnatprod.2c00880 36542806
    [Google Scholar]
  54. LiuD.K. YuS. LiJ.P. SongW.W. LiJ.H. MiR-150 suppressed cell viability, invasion and EMT via HMGA2 in oral squamous cell carcinoma.Eur. Rev. Med. Pharmacol. Sci.2021251139813989 34156675
    [Google Scholar]
  55. HeJ. ZhaoH. LiuX. WangD. WangY. AiY. YangJ. Sevoflurane suppresses cell viability and invasion and promotes cell apoptosis in colon cancer by modulating exosome mediated circ HMGCS1 via the miR 34a 5p/SGPP1 axis.Oncol. Rep.20204462429244210.3892/or.2020.7783 33125091
    [Google Scholar]
  56. RobinsonM.J. NewburyS. SinghK. LeonenkoZ. BeazelyM.A. The interplay between cholesterol and amyloid-β on HT22 cell viability, morphology, and receptor tyrosine kinase signaling.J. Alzheimers Dis.20239641663168310.3233/JAD‑230753 38073391
    [Google Scholar]
  57. TengY. NianH. ZhaoH. ChenP. WangG. Biotransformation of baicalin to baicalein significantly strengthens the inhibition potential towards UDP-glucuronosyltransferases (UGTs) isoforms.Pharmazie2013689763767 24147345
    [Google Scholar]
  58. AdamsP.D. AfonineP.V. BunkócziG. ChenV.B. DavisI.W. EcholsN. HeaddJ.J. HungL.W. KapralG.J. Grosse-KunstleveR.W. McCoyA.J. MoriartyN.W. OeffnerR. PHENIX: A comprehensive Python-based system for macromolecular structure solution.Acta Crystallogr. D Biol. Crystallogr.20106621322110.1107/S0907444909052925 20124702
    [Google Scholar]
  59. ChenX.Y. WanS.F. YaoN.N. LinZ.J. MaoY.G. YuX.H. WangY.Z. Inhibition of the immunoproteasome LMP2 ameliorates ischemia/hypoxia-induced blood–brain barrier injury through the Wnt/β-catenin signalling pathway.Mil. Med. Res.2021816210.1186/s40779‑021‑00356‑x 34857032
    [Google Scholar]
  60. ZhangL. ZhuL. QuW. WuF. HuM. XieW. LiuZ. WangC. Insight into tartrate inhibition patterns in vitro and in vivo based on cocrystal structure with UDP-glucuronosyltransferase 2B15.Biochem. Pharmacol.202017211375310.1016/j.bcp.2019.113753 31837310
    [Google Scholar]
  61. WinnM.D. BallardC.C. CowtanK.D. DodsonE.J. EmsleyP. EvansP.R. KeeganR.M. KrissinelE.B. LeslieA.G.W. McCoyA. McNicholasS.J. MurshudovG.N. PannuN.S. PottertonE.A. PowellH.R. Overview of the CCP4 suite and current developments.Acta Crystallogr. D Biol. Crystallogr.201167Pt 423524210.1107/S0907444910045749 21460441
    [Google Scholar]
  62. FotakisG. TimbrellJ.A. In vitro cytotoxicity assays: Comparison of LDH, neutral red, MTT and protein assay in hepatoma cell lines following exposure to cadmium chloride.Toxicol. Lett.2006160217117710.1016/j.toxlet.2005.07.001 16111842
    [Google Scholar]
  63. GongH. ZhangB. YanM. FangP. LiH. HuC. YangY. CaoP. JiangP. FanX. A protective mechanism of licorice (Glycyrrhiza uralensis): Isoliquiritigenin stimulates detoxification system via Nrf2 activation.J. Ethnopharmacol.201516213413910.1016/j.jep.2014.12.043 25557030
    [Google Scholar]
  64. WangR. ZhangC.Y. BaiL.P. PanH.D. ShuL.M. KongA.N.T. LeungE.L.H. LiuL. LiT. Flavonoids derived from liquorice suppress murine macrophage activation by up-regulating heme oxygenase-1 independent of Nrf2 activation.Int. Immunopharmacol.201528291792410.1016/j.intimp.2015.03.040 25871879
    [Google Scholar]
  65. AhnC.B. JeJ.Y. KimY.S. ParkS.J. KimB.I. Induction of Nrf2-mediated phase II detoxifying/antioxidant enzymes in vitro by chitosan-caffeic acid against hydrogen peroxide-induced hepatotoxicity through JNK/ERK pathway.Mol. Cell. Biochem.20174241-2798610.1007/s11010‑016‑2845‑4 27743232
    [Google Scholar]
  66. SurhY.J. Cancer chemoprevention with dietary phytochemicals.Nat. Rev. Cancer200331076878010.1038/nrc1189 14570043
    [Google Scholar]
  67. KimJ. ChaY.N. SurhY.J. A protective role of nuclear factor-erythroid 2-related factor-2 (Nrf2) in inflammatory disorders.Mutat. Res.20106901-2122310.1016/j.mrfmmm.2009.09.007 19799917
    [Google Scholar]
  68. WuY.L. ChangJ.C. LinW.Y. LiC.C. HsiehM. ChenH.W. WangT.S. WuW.T. LiuC.S. LiuK.L. Caffeic acid and resveratrol ameliorate cellular damage in cell and Drosophila models of spinocerebellar ataxia type 3 through upregulation of Nrf2 pathway.Free Radic. Biol. Med.201811530931710.1016/j.freeradbiomed.2017.12.011 29247688
    [Google Scholar]
  69. KimJ.K. JangH.D. Nrf2-mediated HO-1 induction coupled with the ERK signaling pathway contributes to indirect antioxidant capacity of caffeic acid phenethyl ester in HepG2 cells.Int. J. Mol. Sci.2014157121491216510.3390/ijms150712149 25007817
    [Google Scholar]
  70. KrishnanV. MondalD. ThomasB. SinghA. PraveenS. Starch-lipid interaction alters the molecular structure and ultimate starch bioavailability: A comprehensive review.Int. J. Biol. Macromol.202118262663810.1016/j.ijbiomac.2021.04.030 33838192
    [Google Scholar]
  71. FongangB. WadopY.N. ZhuY. WagnerE.J. KudlickiA. RowickaM. Coevolution combined with molecular dynamics simulations provides structural and mechanistic insights into the interactions between the integrator complex subunits.Comput. Struct. Biotechnol. J.2023215686569710.1016/j.csbj.2023.11.022 38074468
    [Google Scholar]
  72. GurusaranM. BiemansJ.J. WoodC.W. DaviesO.R. Molecular insights into LINC complex architecture through the crystal structure of a luminal trimeric coiled-coil domain of SUN1.Front. Cell Dev. Biol.202311114427710.3389/fcell.2023.1144277 37416798
    [Google Scholar]
  73. XueG. GongL. YuanC. XuM. WangX. JiangL. HuangM. A structural mechanism of flavonoids in inhibiting serine proteases.Food Funct.2017872437244310.1039/C6FO01825D 28644504
    [Google Scholar]
  74. YangG. FuY. MalakhovaM. KurinovI. ZhuF. YaoK. LiH. ChenH. LiW. LimD.Y. ShengY. BodeA.M. DongZ. DongZ. Caffeic acid directly targets ERK1/2 to attenuate solar UV-induced skin carcinogenesis.Cancer Prev. Res.20147101056106610.1158/1940‑6207.CAPR‑14‑0141 25104643
    [Google Scholar]
  75. LiuD. ZhangL. DuanL. WuJ. HuM. LiuZ. WangC. Potential of herb-drug/herb interactions between substrates and inhibitors of UGTs derived from herbal medicines.Pharmacol. Res.201915010451010.1016/j.phrs.2019.104510 31678209
    [Google Scholar]
  76. XuT. LvY. CuiY. LiuD. XuT. LuB. YangX. Properties of dietary flavone glycosides, aglycones, and metabolites on the catalysis of human endoplasmic reticulum uridine diphosphate glucuronosyltransferase 2B7 (UGT2B7).Nutrients202315234941
    [Google Scholar]
  77. YangH. LiH. XiaQ. DaiW. LiX. LiuY. NieJ. YangF. SunY. FengL. YangL. UGT1A1 variants in Chinese Uighur and Han newborns and its correlation with neonatal hyperbilirubinemia.PLoS One20221712e027905910.1371/journal.pone.0279059 36520959
    [Google Scholar]
/content/journals/cad/10.2174/0115734099300793240509103320
Loading
/content/journals/cad/10.2174/0115734099300793240509103320
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.


  • Article Type:
    Research Article
Keyword(s): Crystal structure; flavonoids; mechanism; Nrf2; polyphenols; UGTs
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test