Skip to content
2000
Volume 21, Issue 3
  • ISSN: 1573-4099
  • E-ISSN: 1875-6697

Abstract

Introduction

Non-small cell lung cancer (NSCLC) is the most common type of lung cancer. Traditional Chinese medicine, known for its multi-target and multi-pathway characteristics, offers a potential treatment approach for NSCLC.

Objective

This study aimed to explore the mechanism of the competitive endogenous network of ' D.Don--' in treating NSCLC through bioinformatics analysis and experiments.

Materials and Methods

Various databases and ceRNA networks were utilized to collect and screen components and target genes, molecular docking and molecular dynamics simulations to determine the binding ability of ligand-receptor complexes. experiments were conducted to validate the effects of active ingredients of ' D.Don--' on non-small cell lung cancer cell line A549.

Results

The key target proteins CCL2, EDN1, MMP9, PPARG, and SPP1 were docked well with their corresponding TCM ligands. Among the ligand-receptor complexes, MMP9-Luteolin and MMP9-Quercetin demonstrated the weaking binding force, while the SPP1-Quercetin complex, associated with NSCLC prognosis, exhibited stable structure formation through hydrogen bond interaction during MD simulation. experiments confirmed the inhibitory effect of Quercetin on SPP1 expression, as well as the proliferation and migration of A549 cells.

Conclusion

The findings suggest that ' D.Don--' may potentially treat lung cancer by suppressing the expression of SPP1. This study provides valuable insights and novel research directions for understanding the mechanism of traditional Chinese medicine in combating lung cancer.

Loading

Article metrics loading...

/content/journals/cad/10.2174/0115734099288771240419110716
2024-04-29
2025-09-06
Loading full text...

Full text loading...

References

  1. MederosN. FriedlaenderA. PetersS. AddeoA. Gender-specific aspects of epidemiology, molecular genetics and outcome: lung cancer.ESMO Open20205Suppl. 4e00079610.1136/esmoopen‑2020‑000796 33148544
    [Google Scholar]
  2. SungH. FerlayJ. SiegelR.L. LaversanneM. SoerjomataramI. JemalA. BrayF. Global Cancer Statistics 2020: GLOBOCAN Estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J. Clin.202171320924910.3322/caac.21660 33538338
    [Google Scholar]
  3. FoisS.S. PaliogiannisP. ZinelluA. FoisA.G. CossuA. PalmieriG. Molecular epidemiology of the main druggable genetic alterations in non-small cell lung cancer.Int. J. Mol. Sci.202122261210.3390/ijms22020612 33435440
    [Google Scholar]
  4. CamidgeD.R. DoebeleR.C. KerrK.M. Comparing and contrasting predictive biomarkers for immunotherapy and targeted therapy of NSCLC.Nat. Rev. Clin. Oncol.201916634135510.1038/s41571‑019‑0173‑9 30718843
    [Google Scholar]
  5. Paz-AresL.G. LuftA. TafreshiA. GumusM. MazieresJ. HermesB. Cay SenlerF. FülöpA. Rodriguez-CidJ. SugawaraS. ChengY. NovelloS. HalmosB. ShentuY. KowalskiD. Phase 3 study of carboplatin-paclitaxel/nab-paclitaxel (Chemo) with or without pembrolizumab (Pembro) for patients (Pts) with metastatic squamous (Sq) non-small cell lung cancer (NSCLC).J. Clin. Oncol.20183615_suppl)(Suppl10510.1200/JCO.2018.36.15_suppl.105
    [Google Scholar]
  6. GettingerS. HellmannM.D. ChowL.Q.M. BorghaeiH. AntoniaS. BrahmerJ.R. GoldmanJ.W. GerberD.E. JuergensR.A. ShepherdF.A. LaurieS.A. YoungT.C. LiX. GeeseW.J. RizviN. Nivolumab plus erlotinib in patients with egfr-mutant advanced NSCLC.J. Thorac. Oncol.20181391363137210.1016/j.jtho.2018.05.015 29802888
    [Google Scholar]
  7. HellmannM.D. Paz-AresL. Bernabe CaroR. ZurawskiB. KimS.W. Carcereny CostaE. ParkK. AlexandruA. LupinacciL. de la Mora JimenezE. SakaiH. AlbertI. VergnenegreA. PetersS. SyrigosK. BarlesiF. ReckM. BorghaeiH. BrahmerJ.R. O’ByrneK.J. GeeseW.J. BhagavatheeswaranP. RabindranS.K. KasinathanR.S. NathanF.E. RamalingamS.S. Nivolumab plus ipilimumab in advanced non–small-cell lung cancer.N. Engl. J. Med.2019381212020203110.1056/NEJMoa1910231 31562796
    [Google Scholar]
  8. DengX. LiuJ. LiuL. SunX. HuangJ. DongJ. Drp1-mediated mitochondrial fission contributes to baicalein-induced apoptosis and autophagy in lung cancer via activation of AMPK signaling pathway.Int. J. Biol. Sci.20201681403141610.7150/ijbs.41768 32210728
    [Google Scholar]
  9. ChenP. NiW. XieT. SuiX. Meta-analysis of 5-fluorouracil-based chemotherapy combined with traditional chinese medicines for colorectal cancer treatment.Integr. Cancer Ther.20191810.1177/1534735419828824 30791729
    [Google Scholar]
  10. HuangT.H. WuT.H. GuoY.H. LiT.L. ChanY.L. WuC.J. The concurrent treatment of Scutellaria baicalensis Georgi enhances the therapeutic efficacy of cisplatin but also attenuates chemotherapy-induced cachexia and acute kidney injury.J. Ethnopharmacol.201924311207510.1016/j.jep.2019.112075 31291609
    [Google Scholar]
  11. YouJ. ChengJ. YuB. DuanC. PengJ. Baicalin, a chinese herbal medicine, inhibits the proliferation and migration of human non-small cell lung carcinoma (NSCLC) Cells, A549 and H1299, by activating the SIRT1/AMPK signaling pathway.Med. Sci. Monit.2018242126213310.12659/MSM.909627 29632297
    [Google Scholar]
  12. ZhangX. ZhouY. ChenS. LiW. ChenW. GuW. LncRNA MACC1-AS1 sponges multiple miRNAs and RNA-binding protein PTBP1.Oncogenesis20198127310.1038/s41389‑019‑0182‑7 31822653
    [Google Scholar]
  13. HuangH. YangC. ZhangQ. ZhuoT. LiX. LiN. ZhuL. LuoC. GanJ. WuY. Long non-coding RNA FAM83A antisense RNA 1 (lncRNA FAM83A-AS1) targets microRNA-141-3p to regulate lung adenocarcinoma cell proliferation, migration, invasion, and epithelial-mesenchymal transition progression.Bioengineered20221334964497710.1080/21655979.2022.2037871 35164653
    [Google Scholar]
  14. TianD. GaoQ. ChangZ. LinJ. MaD. HanZ. Network pharmacology and in vitro studies reveal the pharmacological effects and molecular mechanisms of Shenzhi Jiannao prescription against vascular dementia.BMC Complement. Med. Ther.20222213310.1186/s12906‑021‑03465‑1
    [Google Scholar]
  15. StanzioneF. GiangrecoI. ColeJ.C. Use of molecular docking computational tools in drug discovery.Prog. Med. Chem.20216027334310.1016/bs.pmch.2021.01.004 34147204
    [Google Scholar]
  16. JeevanandamJ. TanK.X. DanquahM.K. GuoH. TurgesonA. Advancing aptamers as molecular probes for cancer theranostic applications: The role of molecular dynamics simulation.Biotechnol. J.2020153190036810.1002/biot.201900368 31840436
    [Google Scholar]
  17. GilH.S. LeeJ.H. FaragA.K. HassanA.H.E. ChungK.S. ChoiJ.H. RohE.J. LeeK.T. AKF-D52, a synthetic phenoxypyrimidine-urea derivative, triggers extrinsic/intrinsic apoptosis and cytoprotective autophagy in human non-small cell lung cancer cells.Cancers20211322584910.3390/cancers13225849 34831003
    [Google Scholar]
  18. LiuX. ZhangX. DuS. Long non-coding RNA ACTA2-AS1 inhibits the cisplatin resistance of non-small cell lung cancer cells through inhibiting autophagy by suppressing TSC2.Cell Cycle202221436837810.1080/15384101.2021.2020433 34985374
    [Google Scholar]
  19. NagataT. MinamiK. YamamotoM. HirakiT. IdogawaM. FujimotoK. KageyamaS. TabataK. KawaharaK. UedaK. IkedaR. KatoY. KomatsuM. TanimotoA. FurukawaT. SatoM. BHLHE41/DEC2 expression induces autophagic cell death in lung cancer cells and is associated with favorable prognosis for patients with lung adenocarcinoma.Int. J. Mol. Sci.202122211150910.3390/ijms222111509 34768959
    [Google Scholar]
  20. KimO. HwangboC. TranP.T. LeeJ.H. Syntenin-1-mediated small extracellular vesicles promotes cell growth, migration, and angiogenesis by increasing onco-miRNAs secretion in lung cancer cells.Cell Death Dis.202213212210.1038/s41419‑022‑04594‑2 35136055
    [Google Scholar]
  21. MengC. LiuK. CaiX. ChenY. Mechanism of miR-455-3 in suppressing epithelial-mesenchymal transition and angiogenesis of non-small cell lung cancer cells.Cell stress chaperon2022272107117
    [Google Scholar]
  22. WessollyM. Stephan-FalkenauS. StreubelA. WieswegM. BorchertS. MairingerE. KollmeierJ. ReisH. BauerT. SchmidK.W. MairingerT. SchulerM. MairingerF.D. Digital gene expression analysis of NSCLC-patients reveals strong immune pressure, resulting in an immune escape under immunotherapy.BMC Cancer20222214610.1186/s12885‑021‑09111‑w 34996407
    [Google Scholar]
  23. LiuL. XiongX. Clinicopathologic features and molecular biomarkers as predictors of epidermal growth factor receptor gene mutation in non-small cell lung cancer patients.Curr. Oncol.2021291779310.3390/curroncol29010007 35049681
    [Google Scholar]
  24. HuangW. WangX. WuF. XuF. LncRNA LINC00520 aggravates cell proliferation and migration in lung adenocarcinoma via a positive feedback loop.BMC Pulm. Med.202121128710.1186/s12890‑021‑01657‑6 34496829
    [Google Scholar]
  25. SeoD. RohJ. ChaeY. KimW. Gene expression profiling after LINC00472 overexpression in an NSCLC cell line1.Cancer Biomark.202132217518810.3233/CBM‑210242 34397405
    [Google Scholar]
  26. LaudadioI. OrsoF. AzzalinG. CalabròC. BerardinelliF. ColuzziE. GioiosaS. TavernaD. SguraA. CarissimiC. AGO2 promotes telomerase activity and interaction between the telomerase components TERT and TERC.EMBO Rep.2019202e45969
    [Google Scholar]
  27. FlaccoA. LudoviniV. BianconiF. RagusaM. BellezzaG. TofanettiF.R. PistolaL. SiggillinoA. VannucciJ. CaginiL. SidoniA. PumaF. Varella-GarciaM. CrinòL. MYC and human telomerase gene (TERC) copy number gain in early-stage non-small cell lung cancer.Am. J. Clin. Oncol.201538215215810.1097/COC.0000000000000012 25806711
    [Google Scholar]
  28. YeG. TanN. MengC. LiJ. JingL. YanM. JinT. ChenF. Genetic variations in TERC and TERT genes are associated with lung cancer risk in a Chinese Han population.Oncotarget201786611014511015210.18632/oncotarget.22329 29299136
    [Google Scholar]
  29. KangB. QiuC. ZhangY. AbdulhayE. The Effect of lncRNA SNHG3 overexpression on lung adenocarcinoma by regulating the expression of miR-890.J. Healthc. Eng.202120211910.1155/2021/1643788 34306585
    [Google Scholar]
  30. LiY. GaoL. ZhangC. MengJ. LncRNA SNHG3 Promotes proliferation and metastasis of non-small-cell lung cancer cells through miR-515-5p/SUMO2 Axis.Technol. Cancer Res. Treat.20212010.1177/15330338211019376 34032148
    [Google Scholar]
  31. ZhaoL. SongX. GuoY. DingN. WangT. HuangL. Long non coding RNA SNHG3 promotes the development of non small cell lung cancer via the miR 1343 3p/NFIX pathway.Int. J. Mol. Med.202148214710.3892/ijmm.2021.4980 34132359
    [Google Scholar]
  32. WattK. NewstedD. VoorandE. GoodingR.J. MajewskiA. TruesdellP. YaoB. TuschlT. RenwickN. CraigA.W. MicroRNA-206 suppresses TGF-β signalling to limit tumor growth and metastasis in lung adenocarcinoma.Cell. Signal.201850253610.1016/j.cellsig.2018.06.008 29935234
    [Google Scholar]
  33. GaoS. GuoW. LiuT. LiangN. MaQ. GaoY. TanF. XueQ. HeJ. Plasma extracellular vesicle microRNA profiling and the identification of a diagnostic signature for stage I lung adenocarcinoma.Cancer Sci.2022113264865910.1111/cas.15222 34837453
    [Google Scholar]
  34. LinQ. MaoW. ShuY. LinF. LiuS. ShenH. GaoW. LiS. ShenD. A cluster of specified microRNAs in peripheral blood as biomarkers for metastatic non-small-cell lung cancer by stem-loop RT-PCR.J. Cancer Res. Clin. Oncol.20121381859310.1007/s00432‑011‑1068‑z 22009180
    [Google Scholar]
  35. MaJ. WangP. HuangL. QiaoJ. LiJ. Bioinformatic analysis reveals an exosomal miRNA-mRNA network in colorectal cancer.BMC Med. Genomics20211416010.1186/s12920‑021‑00905‑2 33639954
    [Google Scholar]
  36. RocheM. WierinckxA. CrozeS. ReyC. Legras-LachuerC. MorelA.P. FuscoA. RaverotG. TrouillasJ. LachuerJ. Deregulation of miR-183 and KIAA0101 in aggressive and malignant pituitary tumors.Front. Med.201525410.3389/fmed.2015.00054 26322309
    [Google Scholar]
  37. SodaN. RehmB.H.A. SonarP. NguyenN.T. ShiddikyM.J.A. Advanced liquid biopsy technologies for circulating biomarker detection.J. Mater. Chem. B Mater. Biol. Med.20197436670670410.1039/C9TB01490J 31646316
    [Google Scholar]
  38. UliviP. ZoliW. miRNAs as non-invasive biomarkers for lung cancer diagnosis.Molecules20141968220823710.3390/molecules19068220 24941344
    [Google Scholar]
  39. VlassovV.V. RykovaE.Y. PonomaryovaA.A. ZaporozhchenkoI.A. MorozkinE.S. CherdyntsevaN.V. LaktionovP.P. Circulating microRNAs in lung cancer: Prospects for diagnosis, prognosis, and prediction of antitumor treatment efficacy.Mol. Biol.2015491485710.1134/S0026893315010161
    [Google Scholar]
  40. WangJ. ZhangK.Y. LiuS.M. SenS. Tumor-associated circulating microRNAs as biomarkers of cancer.Molecules20141921912193810.3390/molecules19021912 24518808
    [Google Scholar]
  41. WiegandC. SavelsberghA. HeusserP. MicroRNAs in psychological stress reactions and their use as stress-associated biomarkers, especially in human saliva.Biomed. Hub20172311510.1159/000481126 31988918
    [Google Scholar]
  42. DuL. MaoL. JingR. Long noncoding RNA DNAH17-AS1 promotes tumorigenesis and metastasis of non-small cell lung cancer via regulating miR-877–5p/CCNA2 pathway.Biochem. Biophys. Res. Commun.2020533356557210.1016/j.bbrc.2020.09.047 32981678
    [Google Scholar]
  43. ZhangY. LiS. LiF. LvC. YangQ. High-fat diet impairs ferroptosis and promotes cancer invasiveness via downregulating tumor suppressor ACSL4 in lung adenocarcinoma.Biol. Direct202116111010.1186/s13062‑020‑00284‑1 33397406
    [Google Scholar]
  44. CaoY. ZhangR. LuoX. YangY. LncRNA PART1 promotes lung squamous cell carcinoma progression via miR-185-5p/Six1 axis.Hum. Exp. Toxicol.202140696097610.1177/0960327120979032 33300377
    [Google Scholar]
  45. HuangS. LinW. WangL. GaoY. YuanX. ZhangP. ChenY. ChuQ. SIX1 predicts poor prognosis and facilitates the progression of non-small lung cancer via activating the notch signaling pathway.J. Cancer202213252754010.7150/jca.61385 35069900
    [Google Scholar]
  46. LvD.Q. LiH.Y. WuX.M. LinL. YanS.Q. GuoQ.Y. MiR-188 inhibits proliferation and promotes apoptosis of lung adenocarcinoma cells by targeting SIX1 to negatively regulate ERK signaling pathway.Eur. Rev. Med. Pharmaco.2020242721727 32016974
    [Google Scholar]
  47. PanJ. CaiX. ZhengX. ZhuX. FengJ. WangX. Luteolin inhibits viability, migration, angiogenesis and invasion of non-small cell lung cancer vascular endothelial cells via miR-133a-3p/purine rich element binding protein B-mediated MAPK and PI3K/Akt signaling pathways.Tissue Cell20227510174010.1016/j.tice.2022.101740 35101688
    [Google Scholar]
  48. JiangZ.B. WangW.J. XuC. XieY.J. WangX.R. ZhangY.Z. HuangJ.M. HuangM. XieC. LiuP. FanX.X. MaY.P. YanP.Y. LiuL. YaoX.J. WuQ.B. Lai-Han LeungE. Luteolin and its derivative apigenin suppress the inducible PD-L1 expression to improve anti-tumor immunity in KRAS-mutant lung cancer.Cancer Lett.2021515364810.1016/j.canlet.2021.05.019 34052328
    [Google Scholar]
  49. MaJ. ChenX. ZhuX. PanZ. HaoW. LiD. ZhengQ. TangX. Luteolin potentiates low-dose oxaliplatin-induced inhibitory effects on cell proliferation in gastric cancer by inducing [G.sub.2]/M cell cycle arrest and apoptosis.Oncol. Lett.20222311 34820000
    [Google Scholar]
  50. ZhaoJ. LiL. WangZ. LiL. HeM. HanS. DongY. LiuX. ZhaoW. KeY. WangC. Luteolin attenuates cancer cell stemness in PTX-resistant oesophageal cancer cells through mediating SOX2 protein stability.Pharmacol. Res.202117410593910.1016/j.phrs.2021.105939 34655772
    [Google Scholar]
  51. Ghafouri-FardS. ShabestariF.A. VaeziS. AbakA. ShooreiH. KarimiA. TaheriM. BasiriA. Emerging impact of quercetin in the treatment of prostate cancer.Biomed. Pharmacother.202113811154810.1016/j.biopha.2021.111548 34311541
    [Google Scholar]
  52. MohammedH.A. SulaimanG.M. AnwarS.S. TawfeeqA.T. KhanR.A. MohammedS.A.A. Al-OmarM.S. AlsharidahM. RugaieO.A. Al-AmieryA.A. Quercetin against MCF7 and CAL51 breast cancer cell lines: apoptosis, gene expression and cytotoxicity of nano-quercetin.Nanomedicine (Lond.)202116221937196110.2217/nnm‑2021‑0070 34431317
    [Google Scholar]
  53. RatherR.A. BhagatM. Quercetin as an innovative therapeutic tool for cancer chemoprevention: Molecular mechanisms and implications in human health.Cancer Med.20209249181919210.1002/cam4.1411 31568659
    [Google Scholar]
  54. Reyes-FariasM. Carrasco-PozoC. The Anti-cancer effect of quercetin: Molecular implications in cancer metabolism.Int. J. Mol. Sci.20192013317710.3390/ijms20133177 31261749
    [Google Scholar]
  55. YinM. LiuY. ChenY. Iron metabolism: an emerging therapeutic target underlying the anti-cancer effect of quercetin.Free Radic. Res.202155329630310.1080/10715762.2021.1898604 33818251
    [Google Scholar]
  56. PandeyP. BajpaiP. SiddiquiM.H. SayyedU. TiwariR. ShekhR. MishraK. KapoorV.K. Elucidation of the chemopreventive role of stigmasterol against jab1 in gall bladder carcinoma.Endocr. Metab. Immune Disord. Drug Targets201919682683710.2174/1871530319666190206124120 30727937
    [Google Scholar]
  57. BaeH. SongG. LimW. Stigmasterol causes ovarian cancer cell apoptosis by inducing endoplasmic reticulum and mitochondrial dysfunction.Pharmaceutics202012648810.3390/pharmaceutics12060488 32481565
    [Google Scholar]
  58. NazemiM. KhalediM. GolshanM. GhorbaniM. AmiranM.R. DarvishiA. RahmanianO. Cytotoxicity activity and druggability studies of sigmasterol isolated from marine sponge dysidea avara against oral epithelial cancer cell (KB/C152) and T-lymphocytic leukemia cell line (Jurkat/E6-1).Asian Pac. J. Cancer Prev.2020214997100310.31557/APJCP.2020.21.4.997 32334461
    [Google Scholar]
  59. KangsamaksinT. ChaithongyotS. WootthichairangsanC. HanchainaR. TangshewinsirikulC. SvastiJ. AhmadA. Lupeol and stigmasterol suppress tumor angiogenesis and inhibit cholangiocarcinoma growth in mice via downregulation of tumor necrosis factor-α.PLoS One20171212e018962810.1371/journal.pone.0189628 29232409
    [Google Scholar]
  60. LiaoH. ZhuD. BaiM. ChenH. YanS. YuJ. ZhuH. ZhengW. FanG. Stigmasterol sensitizes endometrial cancer cells to chemotherapy by repressing Nrf2 signal pathway.Cancer Cell Int.202020148010.1186/s12935‑020‑01470‑x 33041661
    [Google Scholar]
  61. YangD. GuoQ. LiangY. ZhaoY. TianX. YeY. TianJ. WuT. LuN. Wogonin induces cellular senescence in breast cancer via suppressing TXNRD2 expression.Arch. Toxicol.202094103433344710.1007/s00204‑020‑02842‑y 32671444
    [Google Scholar]
  62. KohH. SunH.N. XingZ. LiuR. ChandimaliN. KwonT. LeeD.S. Wogonin influences osteosarcoma stem cell stemness through ros-dependent signaling.In Vivo20203431077108410.21873/invivo.11878 32354895
    [Google Scholar]
  63. PolierG. GiaisiM. KöhlerR. MüllerW.W. LutzC. BussE.C. KrammerP.H. Li-WeberM. Targeting CDK9 by wogonin and related natural flavones potentiates the anti-cancer efficacy of the Bcl-2 family inhibitor ABT-263.NT J Cancer.2014136317
    [Google Scholar]
  64. GangulyK. MartinT.M. ConcelV.J. UpadhyayS. BeinK. BrantK.A. GeorgeL. MitraA. ThimrajT.A. FabisiakJ.P. VugaL.J. FattmanC. KaminskiN. SchulzH. LeikaufG.D. Secreted phosphoprotein 1 is a determinant of lung function development in mice.Am. J. Respir. Cell Mol. Biol.201451563765110.1165/rcmb.2013‑0471OC 24816281
    [Google Scholar]
  65. MorseC. TabibT. SembratJ. BuschurK.L. BittarH.T. ValenziE. JiangY. KassD.J. GibsonK. ChenW. MoraA. BenosP.V. RojasM. LafyatisR. Proliferating SPP1/MERTK-expressing macrophages in idiopathic pulmonary fibrosis.Eur. Respir. J.2019542180244110.1183/13993003.02441‑2018 31221805
    [Google Scholar]
  66. HuangR. HaoC. WangD. ZhaoQ. LiC. WangC. YaoW. SPP1 derived from silica-exposed macrophage exosomes triggers fibroblast transdifferentiation.Toxicol. Appl. Pharmacol.202142211555910.1016/j.taap.2021.115559 33961903
    [Google Scholar]
  67. MiaoT. XiaoW. DuL. MaoB. HuangW. ChenX. LiC. WangY. FuJ. High expression of SPP1 in patients with chronic obstructive pulmonary disease (COPD) is correlated with increased risk of lung cancer.FEBS Open Bio20211141237124910.1002/2211‑5463.13127 33626243
    [Google Scholar]
  68. DongB. WuC. HuangL. QiY. Macrophage-related spp1 as a potential biomarker for early lymph node metastasis in lung adenocarcinoma.Front. Cell Dev. Biol.2021973935810.3389/fcell.2021.739358 34646827
    [Google Scholar]
  69. WeiJ. ChenZ. HuM. HeZ. JiangD. LongJ. DuH. Characterizing intercellular communication of pan-cancer reveals SPP1+ tumor-associated macrophage expanded in hypoxia and promoting cancer malignancy through single-cell rna-seq data.Front. Cell Dev. Biol.2021974921010.3389/fcell.2021.749210 34676217
    [Google Scholar]
  70. YangQ. ZhangH. WeiT. LinA. SunY. LuoP. ZhangJ. Single-Cell RNA sequencing reveals the heterogeneity of tumor-associated macrophage in non-small cell lung cancer and differences between sexes.Front. Immunol.20211275672210.3389/fimmu.2021.756722 34804043
    [Google Scholar]
  71. LiuH. WeiS. ZhangL. YuanC. DuanY. WangQ. Secreted phosphoprotein 1 promotes the development of small cell lung cancer cells by inhibiting autophagy and apoptosis.Pathol. Oncol. Res.20192541487149510.1007/s12253‑018‑0504‑7 30387012
    [Google Scholar]
  72. ZhangY. DuW. ChenZ. XiangC. Upregulation of PD-L1 by SPP1 mediates macrophage polarization and facilitates immune escape in lung adenocarcinoma.Exp. Cell Res.2017359244945710.1016/j.yexcr.2017.08.028 28830685
    [Google Scholar]
  73. ZhengY. HaoS. XiangC. HanY. ShangY. ZhenQ. ZhaoY. ZhangM. ZhangY. The correlation between SPP1 and immune escape of EGFR mutant lung adenocarcinoma was explored by bioinformatics analysis.Front. Oncol.20211159285410.3389/fonc.2021.592854 34178613
    [Google Scholar]
  74. GiopanouI. KanellakisN.I. GiannouA.D. LilisI. MaraziotiA. SpellaM. PapaleonidopoulosV. SimoesD.C.M. ZazaraD.E. AgaliotiT. MoschosC. MagkoutaS. KalomenidisI. PanoutsakopoulouV. LamortA.S. StathopoulosG.T. PsallidasI. Osteopontin drives KRAS-mutant lung adenocarcinoma.Carcinogenesis20204181134114410.1093/carcin/bgz190 31740923
    [Google Scholar]
  75. WangF. LuJ. PengX. WangJ. LiuX. ChenX. JiangY. LiX. ZhangB. Integrated analysis of microRNA regulatory network in nasopharyngeal carcinoma with deep sequencing.J. Exp. Clin. Cancer Res.20163511710.1186/s13046‑016‑0292‑4 26795575
    [Google Scholar]
  76. WuZ. WangH. FangS. XuC. MiR-449c inhibits gastric carcinoma growth.Life Sci.2015137137141910.1016/j.lfs.2015.06.020 26141986
    [Google Scholar]
  77. ZhaoX. ZhongQ. ChengX. WangS. WuR. LengX. ShaoL. miR‐449c‐5p availability is antagonized by circ‐NOTCH1 for MYC‐induced NOTCH1 upregulation as well as tumor metastasis and stemness in gastric cancer.J. Cell. Biochem.2020121104052406310.1002/jcb.29575 31943342
    [Google Scholar]
  78. MaJ. LiY. YaoL. LiX. Analysis of MicroRNA expression profiling involved in mc-lr-induced cytotoxicity by high-throughput sequencing.Toxins (Basel)2017912310.3390/toxins9010023 28067858
    [Google Scholar]
  79. XiongD. PanJ. ZhangQ. SzaboE. MillerM.S. LubetR.A. YouM. WangY. Bronchial airway gene expression signatures in mouse lung squamous cell carcinoma and their modulation by cancer chemopreventive agents.Oncotarget2017812188851890010.18632/oncotarget.13806 27935865
    [Google Scholar]
  80. ZhangX. WangS. CaiY. HeW. YangQ. LiC. Regulatory mechanism of MicroRNA-9 / Long Non-Coding RNA XIST expression on mouse macrophage RAW264.7 apoptosis induced by oxidized low density lipoprotein.bioengineered20221323537355010.1080/21655979.2021.2018978 35109760
    [Google Scholar]
  81. LiJ. CheL. XuC. LuD. XuY. LiuM. ChaiW. XIST/miR-34a-5p/PDL1 axis regulated the development of lung cancer cells and the immune function of CD8 + T cells.J. Recept. Sig. Transd.2022110
    [Google Scholar]
  82. Jafari OliayiA. dabiri, S.; Asadi, M.H. LncRNA SNHG6 Silencing could arrest progression of high grade colorectal cancers.Iran. J. Pathol.2022171293610.30699/ijp.2021.527781.2610 35096086
    [Google Scholar]
  83. BuL. ZhangL. TianM. ZhengZ. TangH. YangQ. LncRNA MIR210HG facilitates non-small cell lung cancer progression through directly regulation of miR-874/STAT3 axis.Dose Response202018310.1177/1559325820918052 32699535
    [Google Scholar]
/content/journals/cad/10.2174/0115734099288771240419110716
Loading
/content/journals/cad/10.2174/0115734099288771240419110716
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test