Skip to content
2000
Volume 21, Issue 3
  • ISSN: 1573-4099
  • E-ISSN: 1875-6697

Abstract

Background

Triple-negative breast cancer (TNBC) is a highly aggressive form of breast cancer lacking specific receptors, with dysregulated and overactivated Hedgehog (Hh) and mTOR/PI3K/AKT signaling pathways as potential therapeutic targets.

Objective

This study aimed to identify potential inhibitors among 53 alkaloids derived from 9 marine bryozoans using approaches. It sought to analyze their impact on key signaling targets and their potential for future experimental validation.

Methods

In this research, selected targets were evaluated for protein-protein interactions, co-expression survival, and expression profiles. The protein expression was validated through the Human Protein Atlas (HPA) database and druggability through DGIdb. Online web servers were employed to assess drug-likeness, physiochemical properties, pharmacokinetics, and toxicological characteristics of the compounds. Molecular docking and dynamic simulations were carried out for ligand-protein interactions. Common Pharmacophore features, bioavailability, bioactivity, and biological activity spectrum (BAS) were also analyzed.

Results

Out of the 13 compounds studied, 10 displayed strong binding affinity with binding energies ranging from >-6.5 to <-8 Kcal/mol across all targets. Molecular dynamics simulations provided insights into Amathamide E's stability and conformational changes. Pharmacophore modeling revealed common features in 14 compounds potentially responsible for their biological activity.

Conclusion

Our findings indicate the potential of marine-derived compounds as TNBC inhibitors. Further and validation is necessary to establish their effectiveness and explore their role as novel anti-TNBC agents.

Loading

Article metrics loading...

/content/journals/cad/10.2174/0115734099287118240102112337
2024-01-12
2025-11-06
Loading full text...

Full text loading...

References

  1. AlmansourN.M. Triple-negative breast cancer: A brief review about epidemiology, risk factors, signaling pathways, treatment and role of artificial intelligence.Front. Mol. Biosci.2022983641710.3389/fmolb.2022.836417 35145999
    [Google Scholar]
  2. GiuliM.V. GiulianiE. ScrepantiI. BellaviaD. ChecquoloS. Notch signaling activation as a hallmark for triple-negative breast cancer subtype.J. Oncol.2019201911510.1155/2019/8707053 31379945
    [Google Scholar]
  3. Riobo-Del GaldoN. Lara MonteroÁ. WertheimerE. Role of hedgehog signaling in breast cancer: Pathogenesis and therapeutics.Cells20198437510.3390/cells8040375 31027259
    [Google Scholar]
  4. ZhangM. ZhangY.Y. ChenY. WangJ. WangQ. LuH. TGF-β signaling and resistance to cancer therapy.Front. Cell Dev. Biol.2021978672810.3389/fcell.2021.786728 34917620
    [Google Scholar]
  5. YangJ. AndreP. YeL. YangY.Z. The Hedgehog signalling pathway in bone formation.Int. J. Oral Sci.201572737910.1038/ijos.2015.14 26023726
    [Google Scholar]
  6. di MaglianoM.P. HebrokM. Hedgehog signalling in cancer formation and maintenance.Nat. Rev. Cancer200331290391110.1038/nrc1229 14737121
    [Google Scholar]
  7. Espinosa-BustosC. MellaJ. Soto-DelgadoJ. SalasC.O. State of the art of Smo antagonists for cancer therapy: advances in the target receptor and new ligand structures.Future Med. Chem.201911661763810.4155/fmc‑2018‑0497 30912670
    [Google Scholar]
  8. PaquetteM. El-HoujeiriL. PauseA. mTOR pathways in cancer and autophagy.Cancers 20181011810.3390/cancers10010018 29329237
    [Google Scholar]
  9. ZouZ. TaoT. LiH. ZhuX. mTOR signaling pathway and mTOR inhibitors in cancer: progress and challenges.Cell Biosci.20201013110.1186/s13578‑020‑00396‑1 32175074
    [Google Scholar]
  10. HuangS. HoughtonP.J. Targeting mTOR signaling for cancer therapy.Curr. Opin. Pharmacol.20033437137710.1016/S1471‑4892(03)00071‑7 12901945
    [Google Scholar]
  11. De SantisM.C. GulluniF. CampaC.C. MartiniM. HirschE. Targeting PI3K signaling in cancer: Challenges and advances.Biochim. Biophys. Acta Rev. Cancer20191871236136610.1016/j.bbcan.2019.03.003 30946868
    [Google Scholar]
  12. Pons-TostivintE. ThibaultB. Guillermet-GuibertJ. Targeting PI3K signaling in combination cancer therapy.Trends Cancer20173645446910.1016/j.trecan.2017.04.002 28718419
    [Google Scholar]
  13. YangJ. NieJ. MaX. WeiY. PengY. WeiX. Targeting PI3K in cancer: Mechanisms and advances in clinical trials.Mol. Cancer20191812610.1186/s12943‑019‑0954‑x 30782187
    [Google Scholar]
  14. TokerA. Yoeli-LernerM. Akt signaling and cancer: Surviving but not moving on.Cancer Res.20066683963396610.1158/0008‑5472.CAN‑06‑0743 16618711
    [Google Scholar]
  15. Yoeli-LernerM. TokerA. Akt/PKB signaling in cancer: A function in cell motility and invasion.Cell Cycle20065660360510.4161/cc.5.6.2561 16582622
    [Google Scholar]
  16. CostaR.L.B. HanH.S. GradisharW.J. Targeting the PI3K/AKT/mTOR pathway in triple-negative breast cancer: A review.Breast Cancer Res. Treat.2018169339740610.1007/s10549‑018‑4697‑y 29417298
    [Google Scholar]
  17. KhanM.A. JainV.K. RizwanullahM. AhmadJ. JainK. PI3K/AKT/mTOR pathway inhibitors in triple-negative breast cancer: A review on drug discovery and future challenges.Drug Discov. Today201924112181219110.1016/j.drudis.2019.09.001 31520748
    [Google Scholar]
  18. KhadelaA. ChavdaV.P. SoniS. MeghaK. PandyaA.J. VoraL. Anti-androgenic therapies targeting the luminal androgen receptor of a typical triple-negative breast cancer.Cancers202215123310.3390/cancers15010233 36612226
    [Google Scholar]
  19. TianX.R. TangH.F. TianX.L. HuJ.J. HuangL.L. GustafsonK.R. Review of bioactive secondary metabolites from marine bryozoans in the progress of new drugs discovery.Future Med. Chem.201810121497151410.4155/fmc‑2018‑0012 29788787
    [Google Scholar]
  20. KhalifaS.A.M. EliasN. FaragM.A. ChenL. SaeedA. HegazyM.E.F. MoustafaM.S. Abd El-WahedA. Al-MousawiS.M. MusharrafS.G. ChangF.R. IwasakiA. SuenagaK. AlajlaniM. GöranssonU. El-SeediH.R. Marine natural products: A source of novel anticancer drugs.Mar. Drugs201917949110.3390/md17090491 31443597
    [Google Scholar]
  21. DhyaniP. QuispeC. SharmaE. BahukhandiA. SatiP. AttriD.C. SzopaA. Sharifi-RadJ. DoceaA.O. MardareI. CalinaD. ChoW.C. Anticancer potential of alkaloids: A key emphasis to colchicine, vinblastine, vincristine, vindesine, vinorelbine and vincamine.Cancer Cell Int.202222120610.1186/s12935‑022‑02624‑9 35655306
    [Google Scholar]
  22. SabeV.T. NtombelaT. JhambaL.A. MaguireG.E.M. GovenderT. NaickerT. KrugerH.G. Current trends in computer aided drug design and a highlight of drugs discovered via computational techniques: A review.Eur. J. Med. Chem.202122411370510.1016/j.ejmech.2021.113705 34303871
    [Google Scholar]
  23. BhhataraiB. WaltersW.P. HopC.E.C.A. LanzaG. EkinsS. Opportunities and challenges using artificial intelligence in ADME/Tox.Nat. Mater.201918541842210.1038/s41563‑019‑0332‑5 31000801
    [Google Scholar]
  24. FiguerolaB. AvilaC. The phylum bryozoa as a promising source of anticancer Drugs.Mar. Drugs201917847710.3390/md17080477 31426556
    [Google Scholar]
  25. MorrisB.D. PrinsepM.R. Amathaspiramides A-F, novel brominated alkaloids from the marine bryozoan amathia wilsoni.J. Nat. Prod.199962568869310.1021/np980410p 10346946
    [Google Scholar]
  26. PatiñoC.L.P. MuniainC. KnottM.E. PuricelliL. PalermoJ.A. Bromopyrrole alkaloids isolated from the Patagonian bryozoan Aspidostoma giganteum.J. Nat. Prod.20147751170117810.1021/np500012y 24824796
    [Google Scholar]
  27. BeutlerJ.A. CardellinaJ.H. Ii; Prather, T.; Shoemaker, R.H.; Boyd, M.R.; Snader, K.M. A cytotoxic beta-carboline from the bryozoan Catenicella cribraria.J. Nat. Prod.199356101825182610.1021/np50100a026 8277321
    [Google Scholar]
  28. ZhangH. ShigemoriH. IshibashiM. KosakaT. PettitG.R. KamanoY. KobayashiJ. ConvolutamidesA. F, novel γ-lactam alkaloids from the marine bryozoan Amathia convoluta.Tetrahedron19945034102011020610.1016/S0040‑4020(01)81752‑X
    [Google Scholar]
  29. CiavattaM.L. LefrancF. VieiraL.M. KissR. CarboneM. van OtterloW.A.L. LopanikN.B. WaeschenbachA. The phylum bryozoa: From biology to biomedical potential.Mar. Drugs202018420010.3390/md18040200 32283669
    [Google Scholar]
  30. ChevolotL. ChevolotA.M. GajhedeM. LarsenC. AnthoniU. ChristophersenC. Marine alkaloids. 10. Chartelline A: A pentahalogenated alkaloid from the marine bryozoan Chartella papyracea.J. Am. Chem. Soc.1985107154542454310.1021/ja00301a027
    [Google Scholar]
  31. ChristophersenC. BazinH. HeikkiläJ. ChattopadhyayaJ. KupryszewskiG. WigiliusB. Secondary metabolites from marine bryozoans. A review.Acta Chem. Scand. A198539b751752910.3891/acta.chem.scand.39b‑0517 3907226
    [Google Scholar]
  32. LyuC. ChenT. QiangB. LiuN. WangH. ZhangL. LiuZ. CMNPD: A comprehensive marine natural products database towards facilitating drug discovery from the ocean.Nucleic Acids Res.202149D1D509D51510.1093/nar/gkaa763 32986829
    [Google Scholar]
  33. NogaraP.A. SaraivaR.A. CaeranB.D. LissnerL.J. LenzD.C.C. BragaM.M. RosembergD.B. RochaJ.B.T. Virtual screening of acetylcholinesterase inhibitors using the Lipinski’s rule of five and ZINC databank.BioMed Res. Int.201520151810.1155/2015/870389 25685814
    [Google Scholar]
  34. BenetL.Z. HoseyC.M. UrsuO. OpreaT.I. BDDCS, the Rule of 5 and drugability.Adv. Drug Deliv. Rev.2016101899810.1016/j.addr.2016.05.007 27182629
    [Google Scholar]
  35. AwaluddinR. MuhtadiW.K. ChabibL. IkawatiZ. MartienR. IsmailH. Molecular docking and ADME-toxicity studies of potential compounds of medicinal plants grown in Indonesia as an anti-rheumatoid arthritis.AIP Conf Proc.20171823102003310.1063/1.4978106
    [Google Scholar]
  36. RishikeshPandey Disha Mitra; Aswathy Vijay; Sajjad Ahmad; Shivam Kumar; Ahmad, S. In-silico analysis for the confirmation of insulin receptor as a target for reported GLUT4 anti-diabetic natural compounds.GSC Biological and Pharmaceutical Sciences202219220521410.30574/gscbps.2022.19.2.0190
    [Google Scholar]
  37. DongJ. WangN.N. YaoZ.J. ZhangL. ChengY. OuyangD. LuA.P. CaoD.S. ADMETlab: A platform for systematic ADMET evaluation based on a comprehensively collected ADMET database.J. Cheminform.20181012910.1186/s13321‑018‑0283‑x 29943074
    [Google Scholar]
  38. BanerjeeP. EckertA.O. SchreyA.K. PreissnerR. ProTox-II: A webserver for the prediction of toxicity of chemicals.Nucleic Acids Res.201846W1W257W26310.1093/nar/gky318 29718510
    [Google Scholar]
  39. Durán-IturbideN.A. Díaz-EufracioB.I. Medina-FrancoJ.L. In silico ADME/Tox profiling of natural products: A focus on BIOFACQUIM.ACS Omega2020526160761608410.1021/acsomega.0c01581 32656429
    [Google Scholar]
  40. MayanK. SamarakoonS. TennekoonK. SiriwardanaA. ValverdeJ. Evaluation of selected natural compounds for cancer stem cells targeted anti-cancer activity: A molecular docking study.European J. Med. Plants201615412110.9734/EJMP/2016/27847
    [Google Scholar]
  41. Herrera-CalderonO. Yepes-PérezA.F. Quintero-SaumethJ. Rojas-ArmasJ.P. Palomino-PachecoM. Ortiz-SánchezJ.M. Cieza-MacedoE.C. Arroyo-AcevedoJ.L. Figueroa-SalvadorL. Peña-RojasG. Andía-AymeV. Carvacrol: An in silico approach of a candidate drug on HER2, PI3Kα, mTOR, hER-α, PR, and EGFR receptors in the breast cancer.Evid. Based Complement. Alternat. Med.2020202011210.1155/2020/8830665 33163084
    [Google Scholar]
  42. KumarB.H. ManandharS. ChoudharyS.S. PriyaK. GujaranT.V. MehtaC.H. NayakU.Y. PaiK.S.R. Identification of phytochemical as a dual inhibitor of PI3K and mTOR: A structure-based computational approach.Mol. Divers.20232752015203610.1007/s11030‑022‑10541‑2 36244040
    [Google Scholar]
  43. RehanM. BegM.A. ParveenS. DamanhouriG.A. ZaherG.F. Computational insights into the inhibitory mechanism of human AKT1 by an orally active inhibitor, MK-2206.PLoS One2014910e10970510.1371/journal.pone.0109705 25329478
    [Google Scholar]
  44. MeringC. HuynenM. JaeggiD. SchmidtS. BorkP. SnelB. STRING: A database of predicted functional associations between proteins.Nucleic Acids Res.200331125826110.1093/nar/gkg034 12519996
    [Google Scholar]
  45. SachdevaR. KaurN. KapoorP. SinglaP. ThakurN. SinghmarS. Computational analysis of protein-protein interaction network of differentially expressed genes in benign prostatic hyperplasia.Mol. Biol. Res. Commun.2022112859610.22099/mbrc.2022.43721.1746 36059933
    [Google Scholar]
  46. TangZ. LiC. KangB. GaoG. LiC. ZhangZ. GEPIA: A web server for cancer and normal gene expression profiling and interactive analyses.Nucleic Acids Res.201745W1W98W10210.1093/nar/gkx247 28407145
    [Google Scholar]
  47. JiaB. ZhaoX. WangY. WangJ. WangY. YangY. Prognostic roles of MAGE family members in breast cancer based on KM Plotter Data.Oncol. Lett.20191843501351610.3892/ol.2019.10722 31516568
    [Google Scholar]
  48. GhoshR. AhmedR. AhmedH. ChatterjeeB.P. Phosphorylated proteins from serum: A promising potential diagnostic biomarker of cancer.Int. J. Mol. Sci.202223201235910.3390/ijms232012359 36293212
    [Google Scholar]
  49. ThulP.J. LindskogC. The human protein atlas: A spatial map of the human proteome.Protein Sci.201827123324410.1002/pro.3307 28940711
    [Google Scholar]
  50. JacobsenD. BusharaO. MishraR.K. SunL. LiaoJ. YangG.Y. Druggable sites/pockets of the p53-DNAJA1 protein–protein interaction: In silico modeling and in vitro/in vivo validation.Methods in EnzymologyShukla, AK, Ed.; Academic Press202283307
    [Google Scholar]
  51. RoyA. AnandA. GargS. KhanM.S. BhasinS. AsgharM.N. EmranT.B. Structure-based in silico investigation of agonists for proteins involved in breast cancer.Evid. Based Complement. Alternat. Med.2022202211210.1155/2022/7278731 35035508
    [Google Scholar]
  52. MorrisG.M. HueyR. LindstromW. SannerM.F. BelewR.K. GoodsellD.S. OlsonA.J. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility.J. Comput. Chem.200930162785279110.1002/jcc.21256 19399780
    [Google Scholar]
  53. MorrisG.M. GoodsellD.S. HallidayR.S. HueyR. HartW.E. BelewR.K. OlsonA.J. Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function.J. Comput. Chem.199819141639166210.1002/(SICI)1096‑987X(19981115)19:14<1639:AID‑JCC10>3.0.CO;2‑B
    [Google Scholar]
  54. KuriataA. GierutA.M. OlenieckiT. CiemnyM.P. KolinskiA. KurcinskiM. KmiecikS. CABS-flex 2.0: A web server for fast simulations of flexibility of protein structures.Nucleic Acids Res.201846W1W338W34310.1093/nar/gky356 29762700
    [Google Scholar]
  55. YangS.Y. Pharmacophore modeling and applications in drug discovery: Challenges and recent advances.Drug Discov. Today20101511-1244445010.1016/j.drudis.2010.03.013 20362693
    [Google Scholar]
  56. LaguninA. StepanchikovaA. FilimonovD. PoroikovV. PASS: Prediction of activity spectra for biologically active substances.Bioinformatics200016874774810.1093/bioinformatics/16.8.747 11099264
    [Google Scholar]
  57. BraginaM.E. DainaA. PerezM.A.S. MichielinO. ZoeteV. The swissSimilarity 2021 web tool: Novel chemical libraries and additional methods for an enhanced ligand-based virtual screening experience.Int. J. Mol. Sci.202223281110.3390/ijms23020811 35054998
    [Google Scholar]
  58. PathakM. OjhaH. TiwariA.K. SharmaD. SainiM. KakkarR. Design, synthesis and biological evaluation of antimalarial activity of new derivatives of 2,4,6-s-triazine.Chem. Cent. J.201711113210.1186/s13065‑017‑0362‑5 29256159
    [Google Scholar]
  59. ClarkD.E. Rapid calculation of polar molecular surface area and its application to the prediction of transport phenomena. 1. Prediction of intestinal absorption.J. Pharm. Sci.199988880781410.1021/js9804011 10430547
    [Google Scholar]
  60. AliJ. CamilleriP. BrownM.B. HuttA.J. KirtonS.B. In silico prediction of aqueous solubility using simple QSPR models: the importance of phenol and phenol-like moieties.J. Chem. Inf. Model.201252112950295710.1021/ci300447c 23121381
    [Google Scholar]
  61. DainaA. MichielinO. ZoeteV. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules.Sci. Rep.201774271710.1038/srep42717
    [Google Scholar]
  62. BhalS.K. KassamK. PeirsonI.G. PearlG.M. The Rule of Five revisited: Applying log D in place of log P in drug-likeness filters.Mol. Pharm.20074455656010.1021/mp0700209 17530776
    [Google Scholar]
  63. LinJ.H. YamazakiM. Role of P-glycoprotein in pharmacokinetics: Clinical implications.Clin. Pharmacokinet.2003421599810.2165/00003088‑200342010‑00003 12489979
    [Google Scholar]
  64. CervelliM.J. RussG.R. Principles of drug therapy, dosing, and prescribing in chronic kidney disease and renal replacement therapy.Comprehensive Clinical Nephrology201010.1016/B978‑0‑323‑05876‑6.00073‑3
    [Google Scholar]
  65. ChatterjeeB. SenguptaP. TekadeR.K. Pharmacokinetic characterization of drugs and new product development.Biopharmaceutics and Pharmacokinetics Considerations. TekadeR.K. Academic Press202119527710.1016/B978‑0‑12‑814425‑1.00010‑3
    [Google Scholar]
  66. KikiowoB. OgunleyeJA. MetibemuDS. OmotuyiIO. AdelakunNS. Virtual screening and pharmacokinetic studies of potential MAO-B inhibitors from traditional Chinese medicine.JBERR2020710815
    [Google Scholar]
  67. HordeG.W. GuptaV. Drug Clearance.StatPearls.Treasure Island, FLStatPearls Publishing2022
    [Google Scholar]
  68. MansoorA. MahabadiN. Volume of distribution.StatPearls.Treasure Island, FLStatPearls Publishing2022
    [Google Scholar]
  69. StergiopoulosC. TsopelasF. ValkoK. Prediction of hERG inhibition of drug discovery compounds using biomimetic HPLC measurements.ADMET DMPK20219319120710.5599/admet.995 35300361
    [Google Scholar]
  70. HelmaC. VorgrimmlerD. GebeleD. GütleinM. EngeliB. ZarnJ. SchilterB. Lo PiparoE. Modeling chronic toxicity: A comparison of experimental variability with (Q)SAR/read-across predictions.Front. Pharmacol.2018941310.3389/fphar.2018.00413 29922154
    [Google Scholar]
  71. ChengF. ShenJ. YuY. LiW. LiuG. LeeP.W. TangY. In silico prediction of Tetrahymena pyriformis toxicity for diverse industrial chemicals with substructure pattern recognition and machine learning methods.Chemosphere201182111636164310.1016/j.chemosphere.2010.11.043 21145574
    [Google Scholar]
  72. PanX. Mutagenicity evaluation of nanoparticles by the ames assay.Environmental Toxicology and Toxicogenomics: Principles, Methods, and Applications. PanX. ZhangB. New York, NYSpringer US202127528510.1007/978‑1‑0716‑1514‑0_20
    [Google Scholar]
  73. Gad, SC Maximum tolerated dose.Encyclopedia of Toxicology,3rd ed; 201410.1016/B978‑0‑12‑386454‑3.00874‑5
  74. LiuY. ZhaoQ. XuF. WangK. ZhaoY. ChenH. HeW. WangW. ZhangJ. ZhangJ. Dysregulation of phosphoproteins in hepatocellular carcinoma revealed via quantitative analysis of the phosphoproteome.Oncol. Lett.202021211710.3892/ol.2020.12378 33408763
    [Google Scholar]
  75. SrivastavaA.K. GuadagninG. CappelloP. NovelliF. Post-translational modifications in tumor-associated antigens as a platform for novel immuno-oncology therapies.Cancers202215113810.3390/cancers15010138 36612133
    [Google Scholar]
  76. MendieL.E. HemalathaS. Molecular docking of phytochemicals targeting GFRs as therapeutic sites for cancer: An in silico study.Appl. Biochem. Biotechnol.2022194121523110.1007/s12010‑021‑03791‑7 34988844
    [Google Scholar]
  77. KhanT. DixitS. AhmadR. RazaS. AzadI. JoshiS. KhanA.R. Molecular docking, PASS analysis, bioactivity score prediction, synthesis, characterization and biological activity evaluation of a functionalized 2-butanone thiosemicarbazone ligand and its complexes.J. Chem. Biol.20171039110410.1007/s12154‑017‑0167‑y 28684996
    [Google Scholar]
  78. LiH. PreverL. HirschE. GulluniF. Targeting PI3K/AKT/mTOR Signaling Pathway in Breast Cancer.Cancers 20211314351710.3390/cancers13143517 34298731
    [Google Scholar]
  79. HabibJ.G. O’ShaughnessyJ.A. The hedgehog pathway in triple‐negative breast cancer.Cancer Med.20165102989300610.1002/cam4.833 27539549
    [Google Scholar]
  80. KarthikeyanA. JosephA. NairB.G. Promising bioactive compounds from the marine environment and their potential effects on various diseases.J. Genet. Eng. Biotechnol.20222011410.1186/s43141‑021‑00290‑4 35080679
    [Google Scholar]
  81. PengW. LiuY.J. ZhaoC.B. HuangX.S. WuN. HuM.B. XieD.S. WuC.J. <i>in silico</i> assessment of drug-like properties of alkaloids from <i>Areca catechu</i> L Nut.Trop. J. Pharm. Res.201514463563910.4314/tjpr.v14i4.11
    [Google Scholar]
  82. RanjithD. RavikumarC. SwissADME predictions of pharmacokinetics and drug-likeness properties of small molecules present in Ipomoea mauritiana Jacq.J. Pharmacogn. Phytochem.20198520632073
    [Google Scholar]
  83. RiyadiP.H. Romadhon; Sari, ID.; Kurniasih, RA.; Agustini, TW.; Swastawati, F SwissADME predictions of pharmacokinetics and drug-likeness properties of small molecules present in Spirulina platensis.IOP Conf. Ser. Earth Environ. Sci.20218901012021
    [Google Scholar]
  84. BitewM. DesalegnT. DemissieT.B. BelaynehA. EndaleM. EswaramoorthyR. Pharmacokinetics and drug-likeness of antidiabetic flavonoids: Molecular docking and DFT study.PLoS One20211612e026085310.1371/journal.pone.0260853 34890431
    [Google Scholar]
  85. PatilN. ChandelV. RanaA. JainM. KaushikP. Investigation of cannabis sativa phytochemicals as anti-alzheimer’s agents: An in silico study.Plants202312351010.3390/plants12030510 36771595
    [Google Scholar]
  86. NiM. LiuX. MengZ. LiuS. JiaS. LiuY. ZhouW. WuJ. ZhangJ. GuoS. LiJ. WangH. ZhangX. A bioinformatics investigation into the pharmacological mechanisms of javanica oil emulsion injection in non-small cell lung cancer based on network pharmacology methodologies.BMC Complement. Med. Ther.202020117410.1186/s12906‑020‑02939‑y 32503508
    [Google Scholar]
  87. LuS. MengZ. TanY. WuC. HuangZ. HuangJ. FuC. StalinA. GuoS. LiuX. YouL. LiX. ZhangJ. ZhouW. ZhangX. WangM. WuJ. An advanced network pharmacology study to explore the novel molecular mechanism of Compound Kushen Injection for treating hepatocellular carcinoma by bioinformatics and experimental verification.BMC Complement. Med. Ther.20222215410.1186/s12906‑022‑03530‑3 35236335
    [Google Scholar]
  88. LongS. JiS. XueP. XieH. MaY. ZhuS. Network pharmacology and molecular docking analysis reveal insights into the molecular mechanism of shiliao decoction in the treatment of cancer-associated malnutrition.Front. Nutr.2022998599110.3389/fnut.2022.985991 36091226
    [Google Scholar]
  89. MukherjeeS. SudandiradossC. Transcriptomic analysis of castration, chemo-resistant and metastatic prostate cancer elucidates complex genetic crosstalk leading to disease progression.Funct. Integr. Genomics2021213-445147210.1007/s10142‑021‑00789‑6 34184132
    [Google Scholar]
  90. Abou-TalebH.A. SayedA.M. RefaatH. AlsenaniF. AlaaeldinE. MokhtarF.A. AbdelmohsenU.R. ShadyN.H. Network pharmacological analysis of the red sea sponge hyrtios erectus extract to reveal anticancer efficacy of corresponding loaded niosomes.Mar. Drugs2022201062810.3390/md20100628 36286452
    [Google Scholar]
  91. SainA. KandasamyT. NaskarD. In silico approach to target PI3K/Akt/mTOR axis by selected Olea europaea phenols in PIK3CA mutant colorectal cancer.J. Biomol. Struct. Dyn.20224021109621097710.1080/07391102.2021.1953603 34296655
    [Google Scholar]
  92. AkareU.R. BandaruS. ShaheenU. SinghP.K. TiwariG. SingareP. NayarisseriA. BanerjeeT. Molecular docking approaches in identification of high affinity inhibitors of human SMO receptor.Bioinformation2014101273774210.6026/97320630010737 25670876
    [Google Scholar]
  93. Sumera; Anwer, F.; Waseem, M.; Fatima, A.; Malik, N.; Ali, A. Molecular docking and molecular dynamics studies reveal secretory proteins as novel targets of temozolomide in glioblastoma multiforme.Molecules20222721719810.3390/molecules27217198
    [Google Scholar]
  94. OnyangoH. OdhiamboP. AngwenyiD. OkothP. In silico identification of new anti-SARS-CoV-2 main protease (Mpro) molecules with pharmacokinetic properties from natural sources using molecular dynamics (MD) simulations and hierarchical virtual screening.J. Trop. Med.2022202212210.1155/2022/3697498 36263438
    [Google Scholar]
  95. ParamashivamS.K. ElayaperumalK. NatarajanB. RamamoorthyM. BalasubramanianS. DhiraviamK. In silico pharmacokinetic and molecular docking studies of small molecules derived from Indigofera aspalathoides Vahl targeting receptor tyrosine kinases.Bioinformation2015112738410.6026/97320630011073 25848167
    [Google Scholar]
  96. MithileshS. RaghunandanD. SureshP.K. In-silico identification of natural compounds from traditional medicine as potential drug leads against SARS-CoV-2 through virtual screening.Proc. Natl. Acad. Sci., India, Sect. B Biol. Sci.2022921818710.1007/s40011‑021‑01292‑5 35035034
    [Google Scholar]
/content/journals/cad/10.2174/0115734099287118240102112337
Loading
/content/journals/cad/10.2174/0115734099287118240102112337
Loading

Data & Media loading...

Supplements

Drug-likeness and physiochemical properties of all 53 compounds. Pharmacokinetics of 53 compounds. Metabolism of alkaloids. Toxicity profiles of the alkaloids. PreADMET of alkaloids. List of alkaloids names, PubChem ID, and 2D structure. Predicted partners of targets from Fpclass. Druggability of the targets. Common pharmacophore feature between 14 compounds. Bioactivity Score of selected ligands from Molinspiration. Compounds & drugs similar to amathaspiramide D. Compounds & drugs similar to aspidostomide A. Compounds & drugs similar to convolutamydine B. Correlation coefficient of target genes from GEPIA. Survival analysis of targets in KM Plotter. The phosphoprotein expression level of targets in normal and tumor. () Bar plot from ShinyGO for Kegg pathway () Breast cancer-related pathway. Bioavailability radar of ligands.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test