Skip to content
2000
Volume 21, Issue 5
  • ISSN: 1573-4099
  • E-ISSN: 1875-6697

Abstract

Background

Cinnamic acid (Cinn) is a phenolic acid of (L.) J. Presl. that can ameliorate diabetic nephropathy (DN). However, comprehensive therapeutic targets and underlying mechanisms for Cinn against DN are limited.

Objective

In this study, a network pharmacology approach and experiments were adopted to predict the pharmacological effects and mechanisms of Cinn in DN therapy.

Methods

The nephroprotective effect of Cinn on DN was investigated by a streptozotocin-induced diabetes mellitus (DM) mouse model. The protein-protein interaction network of Cinn against DN was established by a network pharmacology approach. The core targets were then identified and subjected to molecular docking with Cinn.

Results

Cinn treatment effectively restored body weight, ameliorated hyperglycemia, and reduced kidney dysfunction markers in DM mice, also demonstrating a reduction in tissue injury. Network pharmacology analysis identified 298 DN-Cinn co-target genes involved in various biological processes and pathways. Seventeen core targets were identified, eight of which showed significant differential expression in the DN and healthy control groups. Molecular docking analysis revealed a strong interaction between Cinn and PTEN. Cinn treatment downregulated the PTEN protein expression in DM mice.

Conclusion

This study revealed the multi-target and multi-pathway characteristics of Cinn against DN. Cinn improved renal pathological damage of DN, which was related to the downregulation of PTEN.

Loading

Article metrics loading...

/content/journals/cad/10.2174/0115734099286283240130115111
2024-02-09
2025-10-17
Loading full text...

Full text loading...

References

  1. Al-WailiN. Al-WailiH. WailiA.T. SalomK. Natural antioxidants in the treatment and prevention of diabetic nephropathy; A potential approach that warrants clinical trials.Redox Rep.20172239911810.1080/13510002.2017.1297885 28276289
    [Google Scholar]
  2. SagooMK GnudiL Diabetic nephropathy: An overview.Methods Mol. Biol.202020673710.1007/978‑1‑4939‑9841‑8_1
    [Google Scholar]
  3. WangF. GaoX. ZhangR. ZhaoP. SunY. LiC. LncRNA TUG1 ameliorates diabetic nephropathy by inhibiting miR-21 to promote TIMP3-expression.Int. J. Clin. Exp. Pathol.201912371772931933879
    [Google Scholar]
  4. WeiL. XiaoY. LiL. XiongX. HanY. ZhuX. SunL. The susceptibility genes in diabetic nephropathy.Kidney Dis.20184422623710.1159/000492633 30574499
    [Google Scholar]
  5. SugaharaM. PakW.L.W. TanakaT. TangS.C.W. NangakuM. Update on diagnosis, pathophysiology, and management of diabetic kidney disease.Nephrology202126649150010.1111/nep.13860 33550672
    [Google Scholar]
  6. LimA. Diabetic nephropathy – Complications and treatment.Int. J. Nephrol. Renovasc. Dis.2014736138110.2147/IJNRD.S40172 25342915
    [Google Scholar]
  7. ZhangY. XuL. LuY. ZhangJ. YangM. TianY. DongJ. LiaoL. Protective effect of Cordyceps sinensis against diabetic kidney disease through promoting proliferation and inhibiting apoptosis of renal proximal tubular cells.BMC Complement. Med. Ther.202323110910.1186/s12906‑023‑03901‑4 37024857
    [Google Scholar]
  8. AdisakwattanaS. Cinnamic acid and its derivatives: Mechanisms for prevention and management of diabetes and its complications.Nutrients20179216310.3390/nu9020163 28230764
    [Google Scholar]
  9. SavychA. MarchyshynS. KyrylivM. BekusI. Cinnamic acid and its derivatives in the herbal mixtures and their antidiabetic activity.Farmacia202169359560110.31925/farmacia.2021.3.23
    [Google Scholar]
  10. PahanK. Prospects of cinnamon in multiple sclerosis.J. Mult. Scler.201523100014910.4172/2376‑0389.1000149 26380380
    [Google Scholar]
  11. SovaM. Antioxidant and antimicrobial activities of cinnamic acid derivatives.Mini Rev. Med. Chem.201212874976710.2174/138955712801264792 22512578
    [Google Scholar]
  12. XieF. LeiJ. RanM. LiY. DengL. FengJ. ZhongY. LiJ. Attenuation of diabetic nephropathy in diabetic mice by fasudil through regulation of macrophage polarization.J. Diabetes Res.2020202011110.1155/2020/4126913 32685556
    [Google Scholar]
  13. SafranM DalahI AlexanderJ RosenN Iny SteinT Shmoish, M Nativ, N GeneCards version 3: The human gene integrator.Database20102010baq020
    [Google Scholar]
  14. PiñeroJ. AnguitaR.J.M. PitarchS.J. RonzanoF. CentenoE. SanzF. FurlongL.I. The DisGeNET knowledge platform for disease genomics: 2019 update.Nucleic Acids Res.202048D1D845D855 31680165
    [Google Scholar]
  15. YanD. ZhengG. WangC. ChenZ. MaoT. GaoJ. YanY. ChenX. JiX. YuJ. MoS. WenH. HanW. ZhouM. WangY. WangJ. TangK. CaoZ. HIT 2.0: An enhanced platform for herbal ingredients’.Nucleic Acids Res.202250D1D1238D124310.1093/nar/gkab1011 34986599
    [Google Scholar]
  16. KeiserM.J. RothB.L. ArmbrusterB.N. ErnsbergerP. IrwinJ.J. ShoichetB.K. Relating protein pharmacology by ligand chemistry.Nat. Biotechnol.200725219720610.1038/nbt1284 17287757
    [Google Scholar]
  17. NickelJ. GohlkeB.O. ErehmanJ. BanerjeeP. RongW.W. GoedeA. DunkelM. PreissnerR. SuperPred: Update on drug classification and target prediction.Nucleic Acids Res.201442W1W26W3110.1093/nar/gku477 24878925
    [Google Scholar]
  18. ChenH. BoutrosP.C. VennDiagram: A package for the genera tion of highly-customizable Venn and Euler diagrams in R. BMC Bioinformat.,20111213510.1186/1471‑2105‑12‑35 21269502
  19. YuG. WangL.G. HanY. HeQ.Y. clusterProfiler: An R package for comparing biological themes among gene clusters.OMICS201216528428710.1089/omi.2011.0118 22455463
    [Google Scholar]
  20. SzklarczykD. GableA.L. NastouK.C. LyonD. KirschR. PyysaloS. DonchevaN.T. LegeayM. FangT. BorkP. JensenL.J. von MeringC. The STRING database in 2021: Customizable protein–protein networks, and functional characterization of user-uploaded gene/measurement sets.Nucleic Acids Res.202149D1D605D61210.1093/nar/gkaa1074 33237311
    [Google Scholar]
  21. SeeligerD. de GrootB.L. Ligand docking and binding site analysis with PyMOL and Autodock/Vina.J. Comput. Aided Mol. Des.201024541742210.1007/s10822‑010‑9352‑6 20401516
    [Google Scholar]
  22. ChinC.H. ChenS.H. WuH.H. HoC.W. KoM.T. LinC.Y. cytoHubba: Identifying hub objects and sub-networks from complex interactome.BMC Syst. Biol.20148S4S1110.1186/1752‑0509‑8‑S4‑S11 25521941
    [Google Scholar]
  23. FengC. ZhaoM. JiangL. HuZ. FanX. Mechanism of modified danggui sini decoction for knee osteoarthritis based on network pharmacology and molecular docking.Evid. Based Complement. Alternat. Med.2021202111110.1155/2021/6680637 33628311
    [Google Scholar]
  24. AghadavodE. KhodadadiS. BaradaranA. NasriP. BahmaniM. KopaeiR.M. Role of oxidative stress and inflammatory factors in diabetic kidney disease.Iran. J. Kidney Dis.2016106337343 27903991
    [Google Scholar]
  25. ShenY. ChenW. HanL. BianQ. FanJ. CaoZ. JinX. DingT. XianZ. GuoZ. ZhangW. JuD. MeiX. VEGF-B antibody and interleukin-22 fusion protein ameliorates diabetic nephropathy through inhibiting lipid accumulation and inflammatory responses.Acta Pharm. Sin. B202111112714210.1016/j.apsb.2020.07.002 33532185
    [Google Scholar]
  26. JungS.W. MoonJ.Y. The role of inflammation in diabetic kidney disease.Korean J. Intern. Med.202136475376610.3904/kjim.2021.174 34237822
    [Google Scholar]
  27. ZhuoR. ChengX. LuoL. YangL. ZhaoY. ZhouY. PengL. JinX. CuiL. LiuF. YangL. Cinnamic acid improved lipopolysaccharide-induced depressive-like behaviors by inhibiting neuroinflammation and oxidative stress in mice.Pharmacology20221075-628128910.1159/000520990 35325888
    [Google Scholar]
  28. BabaeenezhadE. NouryazdanN. NasriM. AhmadvandH. SarabiM.M. Cinnamic acid ameliorate gentamicin-induced liver dysfunctions and nephrotoxicity in rats through induction of antioxidant activities.Heliyon202177e0746510.1016/j.heliyon.2021.e07465 34278037
    [Google Scholar]
  29. AbozaidO.A.R. MoawedF.S.M. AhmedE.S.A. IbrahimZ.A. Cinnamic acid nanoparticles modulate redox signal and inflammatory response in gamma irradiated rats suffering from acute pancreatitis.Biochim. Biophys. Acta Mol. Basis Dis.202018661116590410.1016/j.bbadis.2020.165904 32730978
    [Google Scholar]
  30. MengX.M. Inflammatory mediators and renal fibrosis.Adv. Exp. Med. Biol.2019116538140610.1007/978‑981‑13‑8871‑2_18 31399975
    [Google Scholar]
  31. LiL. ZhuX. ShouT. YangL. ChengX. WangJ. DengL. ZhengY. MicroRNA-28 promotes cell proliferation and invasion in gastric cancer via the PTEN/PI3K/AKT signalling pathway.Mol. Med. Rep.201817340034010 29257342
    [Google Scholar]
  32. LuC. ShanZ. HongJ. YangL. MicroRNA-92a promotes epithelial-mesenchymal transition through activation of PTEN/PI3K/AKT signaling pathway in non-small cell lung cancer metastasis.Int. J. Oncol.201751123524410.3892/ijo.2017.3999 28534966
    [Google Scholar]
  33. YangF. QuQ. ZhaoC. LiuX. YangP. LiZ. HanL. ShiX. Paecilomyces cicadae-fermented Radix astragali activates podocyte autophagy by attenuating PI3K/AKT/mTOR pathways to protect against diabetic nephropathy in mice.Biomed. Pharmacother.202012911047910.1016/j.biopha.2020.110479 32768963
    [Google Scholar]
  34. CarroM.B. VírgalaM.J. VillabrilleF.S. FernándezF.A. BasterrecheaP.M. GonzálezN.J.F. CorreaD.J. FernándezM.C. DussoA.S. LópezC.N. PanizoS. DíazN.M. MartínF.J.L. AndíaC.J.B. MontesA.C. Role of klotho and AGE/RAGE-Wnt/β-catenin signalling pathway on the development of cardiac and renal fibrosis in diabetes.Int. J. Mol. Sci.2023246524110.3390/ijms24065241 36982322
    [Google Scholar]
  35. WuY. WangL. DengD. ZhangQ. LiuW. Renalase protects against renal fibrosis by inhibiting the activation of the ERK signaling pathways.Int. J. Mol. Sci.201718585510.3390/ijms18050855 28448446
    [Google Scholar]
  36. MatsuzakiS. DarchaC. Co-operation between the AKT and ERK signaling pathways may support growth of deep endometriosis in a fibrotic microenvironment in vitro.Hum. Reprod.20153071606161610.1093/humrep/dev108 25976656
    [Google Scholar]
  37. WangR. SunS. WangZ. XuX. JiangT. LiuH. LiX. RenZ. MCPIP1 promotes cell proliferation, migration and angiogenesis of glioma via VEGFA-mediated ERK pathway.Exp. Cell Res.2022418111326710.1016/j.yexcr.2022.113267 35752346
    [Google Scholar]
  38. CoughlinB.A. TrombleyB.T. MohrS. Interleukin-6 (IL-6) mediates protection against glucose toxicity in human Müller cells via activation of VEGF-A signaling.Biochem. Biophys. Res. Commun.2019517222723210.1016/j.bbrc.2019.07.044 31331642
    [Google Scholar]
/content/journals/cad/10.2174/0115734099286283240130115111
Loading
/content/journals/cad/10.2174/0115734099286283240130115111
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test