Skip to content
2000
Volume 21, Issue 5
  • ISSN: 1573-4099
  • E-ISSN: 1875-6697

Abstract

Background

Methicillin-resistant (MRSA) is a causative agent for multiple drug-resistant diseases and is a prime health concern. Currently, antibiotics like vancomycin, daptomycin, fluoroquinolones, linezolid, fifth-generation cephalosporin and others are available in the market for the treatment of MRSA infection.

Methods

With the increasing prevalence of drug-resistant cases, researchers are actively investigating alternative strategies to combat MRSA, including the exploration of peptide therapeutics. This study employed computational methods to prospect for potential Antimicrobial Peptides (AMPs).

Results

A total of One hundred and fifty antimicrobial peptides were explored based on physicochemical properties. The results showed that Clavanin B was the most appropriate candidate. Molecular Docking and Molecular Dynamics Simulation results showed the protein-peptide interaction of the MRSA target proteins, Penicillin Binding Protein 2a and Panton-Valentine Leukocidin Toxin, with the Antimicrobial Peptide Clavanin B.

Conclusion

Currently, the antimicrobial peptide database highlights Clavanin B's role as an anti-HIV peptide. Moreover, this investigation proposes Clavanin B as a viable repurposed drug for treating MRSA, underscoring its potential deployment in the management of MRSA infections.

Loading

Article metrics loading...

/content/journals/cad/10.2174/0115734099285473240101111303
2024-01-12
2025-10-17
Loading full text...

Full text loading...

References

  1. TanwarJ. DasS. FatimaZ. HameedS. Multidrug resistance: An emerging crisis.Interdiscip. Perspect. Infect. Dis.201420141710.1155/2014/54134025140175
    [Google Scholar]
  2. NikaidoH. Multidrug resistance in bacteria.Annu. Rev. Biochem.200978111914610.1146/annurev.biochem.78.082907.14592319231985
    [Google Scholar]
  3. LakhundiS. ZhangK. Methicillin-resistant staphylococcus aureus: molecular characterization, evolution, and epidemiology.Clin. Microbiol. Rev.2018314e00020-1810.1128/CMR.00020‑1830209034
    [Google Scholar]
  4. TurnerN.A. Sharma-KuinkelB.K. MaskarinecS.A. EichenbergerE.M. ShahP.P. CarugatiM. HollandT.L. FowlerV.G.Jr Methicillin-resistant Staphylococcus aureus: An overview of basic and clinical research.Nat. Rev. Microbiol.201917420321810.1038/s41579‑018‑0147‑430737488
    [Google Scholar]
  5. HassounA. LindenP.K. FriedmanB. Incidence, prevalence, and management of MRSA bacteremia across patient populations—a review of recent developments in MRSA management and treatment.Crit. Care201721121110.1186/s13054‑017‑1801‑328807042
    [Google Scholar]
  6. ÁlvarezA. FernándezL. GutiérrezD. IglesiasB. RodríguezA. GarcíaP. Methicillin-resistant staphylococcus aureus in hospitals: Latest trends and treatments based on bacteriophages.J. Clin. Microbiol.20195712e01006-1910.1128/JCM.01006‑1931578263
    [Google Scholar]
  7. McGuinnessW.A. MalachowaN. DeLeoF.R. Vancomycin resistance in staphylococcus aureus
.Yale J. Biol. Med.201790226928128656013
    [Google Scholar]
  8. NandhiniP. KumarP. MickymarayS. AlothaimA.S. SomasundaramJ. RajanM. Recent developments in methicillin-resistant staphylococcus aureus (MRSA) treatment: A review.Antibiotics202211560610.3390/antibiotics1105060635625250
    [Google Scholar]
  9. WangL. WangN. ZhangW. ChengX. YanZ. ShaoG. WangX. WangR. FuC. Therapeutic peptides: current applications and future directions.Signal Transduct. Target. Ther.2022714810.1038/s41392‑022‑00904‑435165272
    [Google Scholar]
  10. FosgerauK. HoffmannT. Peptide therapeutics: Current status and future directions.Drug Discov. Today201520112212810.1016/j.drudis.2014.10.00325450771
    [Google Scholar]
  11. LuongH.X. ThanhT.T. TranT.H. Antimicrobial peptides – Advances in development of therapeutic applications.Life Sci.202026011840710.1016/j.lfs.2020.11840732931796
    [Google Scholar]
  12. ZouhirA. JridiT. NefziA. Ben HamidaJ. SebeiK. Inhibition of methicillin-resistant Staphylococcus aureus (MRSA) by antimicrobial peptides (AMPs) and plant essential oils.Pharm. Biol.201654123136315010.1080/13880209.2016.119076327246787
    [Google Scholar]
  13. CiandriniE. MorroniG. CirioniO. KamyszW. KamyszE. BresciniL. BaffoneW. CampanaR. Synergic combinations of antimicrobial peptides (AMPs) against biofilms of methicillin-resistant staphylococcus aureus (MRSA) on polystyrene and medical devices.J. Glob. Antimicrob. Resist.201910.1016/j.jgar.2019.10.02231678322
    [Google Scholar]
  14. AshburnT.T. ThorK.B. Drug repositioning: Identifying and developing new uses for existing drugs.Nat. Rev. Drug Discov.20043867368310.1038/nrd146815286734
    [Google Scholar]
  15. PushpakomS. IorioF. EyersP.A. EscottK.J. HopperS. WellsA. DoigA. GuilliamsT. LatimerJ. McNameeC. NorrisA. SanseauP. CavallaD. PirmohamedM. Drug repurposing: Progress, challenges and recommendations.Nat. Rev. Drug Discov.2019181415810.1038/nrd.2018.16830310233
    [Google Scholar]
  16. YuW. MacKerellA.D.Jr Computer-aided drug design methods.Methods Mol. Biol.201715208510610.1007/978‑1‑4939‑6634‑9_527873247
    [Google Scholar]
  17. SinghN. VayerPhilippe . TanwarShivalika . PoyetJean-Luc . TsaiounKatya . VilloutreixB. O. Drug discovery and development: Introduction to the general public and patient groups.Front. Drug Discov.2023310.3389/fddsv.2023.1201419
    [Google Scholar]
  18. MacalinoS.J.Y. GosuV. HongS. ChoiS. Role of computer-aided drug design in modern drug discovery.Arch. Pharm. Res.20153891686170110.1007/s12272‑015‑0640‑526208641
    [Google Scholar]
  19. PinziL. RastelliG. Molecular docking: Shifting paradigms in drug discovery.Int. J. Mol. Sci.20192018433110.3390/ijms2018433131487867
    [Google Scholar]
  20. StanzioneF. GiangrecoI. ColeJ.C. Use of molecular docking computational tools in drug discovery.Prog. Med. Chem.20216027334310.1016/bs.pmch.2021.01.00434147204
    [Google Scholar]
  21. DurrantJ.D. McCammonJ.A. Molecular dynamics simulations and drug discovery.BMC Biol.2011917110.1186/1741‑7007‑9‑7122035460
    [Google Scholar]
  22. BohnuudT. JonesG. Schueler-FurmanO. KozakovD. Detection of peptide-binding sites on protein surfaces using the peptimap server.Methods Mol. Biol.20171561112010.1007/978‑1‑4939‑6798‑8_228236230
    [Google Scholar]
  23. SeeligerD. de GrootB.L. Ligand docking and binding site analysis with PyMOL and Autodock/Vina.J. Comput. Aided Mol. Des.201024541742210.1007/s10822‑010‑9352‑620401516
    [Google Scholar]
  24. LaviA. NganC.H. Movshovitz-AttiasD. BohnuudT. YuehC. BeglovD. Schueler-FurmanO. KozakovD. Detection of peptide‐binding sites on protein surfaces: The first step toward the modeling and targeting of peptide‐mediated interactions.Proteins201381122096210510.1002/prot.2442224123488
    [Google Scholar]
  25. WangG. LiX. WangZ. APD3: The antimicrobial peptide database as a tool for research and education.Nucleic Acids Res.201644D1D1087D109310.1093/nar/gkv127826602694
    [Google Scholar]
  26. UsmaniS.S. KumarR. KumarV. SinghS. RaghavaG.P.S. AntiTbPdb: A knowledgebase of anti-tubercular peptides.Database20182018bay02510.1093/database/bay02529688365
    [Google Scholar]
  27. WangG. ZietzC.M. MudgapalliA. WangS. WangZ. The evolution of the antimicrobial peptide database over 18 years: Milestones and new features.Protein Sci.20223119210610.1002/pro.418534529321
    [Google Scholar]
  28. WangG. Unifying the classification of antimicrobial peptides in the antimicrobial peptide database.Methods Enzymol.202266311810.1016/bs.mie.2021.09.00635168785
    [Google Scholar]
  29. GuptaS. KapoorP. ChaudharyK. GautamA. KumarR. RaghavaG.P.S. Open Source Drug Discovery Consortium In silico approach for predicting toxicity of peptides and proteins.PLoS One201389e7395710.1371/journal.pone.007395724058508
    [Google Scholar]
  30. ChaudharyK. KumarR. SinghS. TuknaitA. GautamA. MathurD. AnandP. VarshneyG.C. RaghavaG.P.S. A web server and mobile app for computing hemolytic potency of peptides.Sci. Rep.2016612284310.1038/srep2284326953092
    [Google Scholar]
  31. MooneyC. HaslamN.J. PollastriG. ShieldsD.C. Towards the improved discovery and design of functional peptides: common features of diverse classes permit generalized prediction of bioactivity.PLoS One2012710e4501210.1371/journal.pone.004501223056189
    [Google Scholar]
  32. RiceP. LongdenI. BleasbyA. EMBOSS: The european molecular biology open software suite.Trends Genet.200016627627710.1016/S0168‑9525(00)02024‑210827456
    [Google Scholar]
  33. YangJ. ZhangY. I-TASSER server: New development for protein structure and function predictions.Nucleic Acids Res.201543W1W174W18110.1093/nar/gkv34225883148
    [Google Scholar]
  34. SkolnickJ. GaoM. ZhouH. SinghS. AlphaFold 2: Why it works and its implications for understanding the relationships of protein sequence, structure, and function.J. Chem. Inf. Model.202161104827483110.1021/acs.jcim.1c0111434586808
    [Google Scholar]
  35. PettersenE.F. GoddardT.D. HuangC.C. CouchG.S. GreenblattD.M. MengE.C. FerrinT.E. UCSF Chimera—A visualization system for exploratory research and analysis.J. Comput. Chem.200425131605161210.1002/jcc.2008415264254
    [Google Scholar]
  36. YanY. ZhangD. ZhouP. LiB. HuangS.Y. HDOCK: A web server for protein–protein and protein–DNA/RNA docking based on a hybrid strategy.Nucleic Acids Res.201745W1W365W37310.1093/nar/gkx40728521030
    [Google Scholar]
  37. YanY. TaoH. HeJ. HuangS.Y. The HDOCK server for integrated protein–protein docking.Nat. Protoc.20201551829185210.1038/s41596‑020‑0312‑x32269383
    [Google Scholar]
  38. LimD. StrynadkaN.C.J. Structural basis for the β lactam resistance of PBP2a from methicillin-resistant Staphylococcus aureus.Nat. Struct. Biol.200291187087610.1038/nsb85812389036
    [Google Scholar]
  39. ShallcrossL.J. FragaszyE. JohnsonA.M. HaywardA.C. The role of the Panton-Valentine leucocidin toxin in staphylococcal disease: A systematic review and meta-analysis.Lancet Infect. Dis.2013131435410.1016/S1473‑3099(12)70238‑423103172
    [Google Scholar]
  40. LeeA.S. de LencastreH. GarauJ. KluytmansJ. Malhotra-KumarS. PeschelA. HarbarthS. Methicillin-resistant Staphylococcus aureus.Nat. Rev. Dis. Primers2018411803310.1038/nrdp.2018.3329849094
    [Google Scholar]
  41. KumariR. DalalV. Identification of potential inhibitors for llm of staphylococcus aureus: Structure-based pharmacophore modeling, molecular dynamics, and binding free energy studies.J. Biomol. Struct. Dyn.202111510.1080/07391102.2021.193617934096457
    [Google Scholar]
  42. KumariR. RathiR. PathakS.R. DalalV. Structural-based virtual screening and identification of novel potent antimicrobial compounds against YsxC of Staphylococcus aureus.J. Mol. Struct.2022125513247610.1016/j.molstruc.2022.132476
    [Google Scholar]
  43. SinghV. DhankharP. DalalV. TomarS. Golemi-KotraD. KumarP. Drug-repurposing approach to combat staphylococcus aureus : Biomolecular and binding interaction study.ACS Omega2022743384483845810.1021/acsomega.2c0367136340146
    [Google Scholar]
  44. DalalV. DhankharP. SinghV. SinghV. RakhaminovG. Golemi-KotraD. KumarP. Structure-based identification of potential drugs against fmta of staphylococcus aureus: Virtual screening, molecular dynamics, MM-GBSA, and QM/MM.Protein J.202140214816510.1007/s10930‑020‑09953‑633421024
    [Google Scholar]
  45. DalalV. KumariR. Screening and identification of natural product‐like compounds as potential antibacterial agents targeting FemC of Staphylococcus aureus : An in‐silico approach.ChemistrySelect2022742e20220172810.1002/slct.202201728
    [Google Scholar]
  46. KumarP. DalalV. KotraD.G. KumarP. i In-silico i approach to identify novel potent inhibitors against GraR of i S aureus i.Front. Biosci.20202571337136010.2741/485932114436
    [Google Scholar]
  47. RoseW. FantlM. GeriakM. NizetV. SakoulasG. Current paradigms of combination therapy in methicillin-resistant staphylococcus aureus (MRSA) bacteremia: Does it work, which combination, and for which patients?Clin. Infect. Dis.202173122353236010.1093/cid/ciab45233993226
    [Google Scholar]
  48. LiX. ZuoS. WangB. ZhangK. WangY. Antimicrobial mechanisms and clinical application prospects of antimicrobial peptides.Molecules2022279267510.3390/molecules2709267535566025
    [Google Scholar]
  49. LeeI.H. ZhaoC. ChoY. HarwigS.S.L. CooperE.L. LehrerR.I. Clavanins, α‐helical antimicrobial peptides from tunicate hemocytes.FEBS Lett.1997400215816210.1016/S0014‑5793(96)01374‑99001389
    [Google Scholar]
  50. MillerA. Matera-WitkiewiczA. MikołajczykA. WieczorekR. Rowińska-ŻyrekM. Chemical “butterfly effect” explaining the coordination chemistry and antimicrobial properties of clavanin complexes.Inorg. Chem.20216017127301273410.1021/acs.inorgchem.1c0210134382773
    [Google Scholar]
/content/journals/cad/10.2174/0115734099285473240101111303
Loading
/content/journals/cad/10.2174/0115734099285473240101111303
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test