Skip to content
2000
Volume 21, Issue 6
  • ISSN: 1573-4099
  • E-ISSN: 1875-6697

Abstract

Background

Gushukang (GSK), a traditional Chinese medical prescription, has made a great and extensive contribution to the treatment of different forms of osteoporosis, but polypharmacology studies of its mechanism of action are lacking. This study investigates the pharmacological mechanism of osteoporosis using network pharmacology and molecular docking. Experimental verification was carried out to confirm the efficacy of GSK on RANKL-induced osteoclast differentiation in RAW264.7 cells to verify the network pharmacology studies.

Methods

The effective chemical components and corresponding targets of osteoporosis with oral bioavailability of more than 30% and drug-like properties greater than 0.18 were searched in the TCMSP and TCM-ID databases. DrugBank, GeneCards, OMIM, TTD, and other databases were examined for targets related to osteoporosis. Using Cytoscape software, a network of possible TCM-active ingredient-osteoporosis targets was created. STRING software was used to create the networks of protein-protein interactions. The DAVID program was carried out to conduct GO and KEGG pathway enrichment analyses of the targets. Molecular docking and pattern of action analysis were carried out using software like AutoDock Vina and Discovery Studio Visualizer. The growth media for RAW264.7 cells contained varying doses of GSK serum and 50 ng/mL RANKL. The activity of TRAP was altered. Additionally, genes related to osteoclasts were examined using an RT-PCR assay.

Results

Network pharmacological analysis revealed that the primary efficacy targets of osteoporosis were PTGS2, PTGS1, HSP90AA1, NCOA2, ADRB2, ESR1, NCOA1, and AR. The pharmacological targets of osteoporosis may be mediated by substances including quercetin, kaempferol, luteolin, naringenin, icariin, anthocyanin, tanshinone IIA, and cryptotanshinone. GSK markedly inhibited RANKL-induced TRAP activity. qRT-PCR results revealed decreased expression of the PTGS2 and ADRB2 genes upon GSK treatment.

Conclusion

The findings of network pharmacology, molecular docking, as well as experimental verification provide a new further study for elucidating the pharmacodynamic substance basis and polypharmacology mechanism of GSK in treatin osteoporosis.

Loading

Article metrics loading...

/content/journals/cad/10.2174/0115734099282620240521102006
2024-05-28
2025-12-05
Loading full text...

Full text loading...

References

  1. WangR. LiQ. ZuoQ.-Y. WangH. ChenJ. LiW. DengW. Clinical efficacy of gushukang capsule combined with zoledronic acid in the treatment of senile osteoporosis and its influence on bone mineral density and bone metabolism markers.Progress in Modern Biomedicine20232301193196
    [Google Scholar]
  2. ShiF. LiX. ZhangR. Clinical effects of Gushukang Capsules combined with salmon calcitonin and estradiol valerate on patients with postmenopausal osteoporosis.Zhongchengyao2020421231883192
    [Google Scholar]
  3. ZhouX-H. LiuS-Y. LinY-J. Clinical study on Gushukang Capsules combined with risedronate sodium in treatment of postmenopausal osteoporosis.Drugs & Clinic2020350918211825
    [Google Scholar]
  4. RyszkiewiczP. MalinowskaB. SchlickerE. Polypharmacology: Promises and new drugs in 2022.Pharmacol. Rep.2023754755770 37278927
    [Google Scholar]
  5. LiC. LinX. LinQ. LinY. LinH. Jiangu granules ameliorate postmenopausal osteoporosis via rectifying bone homeostasis imbalance: A network pharmacology analysis based on multi-omics validation.Phytomedicine2024122155137 37856991
    [Google Scholar]
  6. WangJ. ZhouH. HanL. ChenX. ChenY. CaoZ. Traditional Chinese medicine information database.Clin. Pharmacol. Ther.2005781929310.1016/j.clpt.2005.03.010 16003299
    [Google Scholar]
  7. WishartD.S. FeunangY.D. GuoA.C. LoE.J. MarcuA. GrantJ.R. SajedT. JohnsonD. LiC. SayeedaZ. AssempourN. IynkkaranI. LiuY. MaciejewskiA. GaleN. WilsonA. ChinL. CummingsR. LeD. PonA. KnoxC. WilsonM. DrugBank 5.0: A major update to the DrugBank database for 2018.Nucleic Acids Res.201846D1D1074D1082 29126136
    [Google Scholar]
  8. AmbergerJ.S. BocchiniC.A. SchiettecatteF. ScottA.F. HamoshA. OMIM.org: Online Mendelian Inheritance in Man (OMIM®), an online catalog of human genes and genetic disorders.Nucleic Acids Res.201543D1D789D79810.1093/nar/gku1205 25428349
    [Google Scholar]
  9. StelzerG. RosenN. PlaschkesI. ZimmermanS. TwikM. FishilevichS. SteinT.I. NudelR. LiederI. MazorY. KaplanS. DaharyD. WarshawskyD. Guan-GolanY. KohnA. RappaportN. SafranM. LancetD. The genecards suite: From gene data mining to disease genome sequence analyses.Curr Protoc Bioinformatics2016541.30.11.30.3310.1002/cpbi.527322403
    [Google Scholar]
  10. ZhouY. ZhangY. LianX. LiF. WangC. ZhuF. QiuY. ChenY. Therapeutic target database update 2022: Facilitating drug discovery with enriched comparative data of targeted agents.Nucleic Acids Res.202250D1D1398D140710.1093/nar/gkab953 34718717
    [Google Scholar]
  11. BardouP. MarietteJ. EscudiéF. DjemielC. KloppC. jvenn: An interactive Venn diagram viewer.BMC Bioinformatics201415129310.1186/1471‑2105‑15‑293 25176396
    [Google Scholar]
  12. WangJ. WangY. LiL. CaiS. MaoD. LouH. ZhaoJ. Network pharmacology-based pharmacological mechanism prediction of Lycii Fructus against postmenopausal osteoporosis.Medicine (Baltimore)202310248e3629210.1097/MD.0000000000036292 38050297
    [Google Scholar]
  13. O’BoyleN.M. BanckM. JamesC.A. MorleyC. VandermeerschT. HutchisonG.R. Open Babel: An open chemical toolbox.J. Cheminform.2011313310.1186/1758‑2946‑3‑33 21982300
    [Google Scholar]
  14. TrottO. OlsonA.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading.J. Comput. Chem.201031245546110.1002/jcc.21334 19499576
    [Google Scholar]
  15. ZhaoY. WangQ. LiuS. WangY. ShuB. ZhaoD. Preparation Of Gushukang (GSK) granules for in vivo and in vitro> experiments.J Vis Exp201914710.3791/5917131132042
    [Google Scholar]
  16. TsukamotoS. TakeuchiT. KawabataT. KatoH. YamakumaM. MatsuoK. El-DesokyA.H. LosungF. MangindaanR.E.P. de VoogdN.J. ArataY. YokosawaH. Halenaquinone inhibits RANKL-induced osteoclastogenesis.Bioorg. Med. Chem. Lett.201424225315531710.1016/j.bmcl.2014.09.043 25278237
    [Google Scholar]
  17. DengW. HuangY. LiH. ChenC. LinY. WangM. HuangH. LiuT. QinQ. ShaoY. TangY. YuanK. DingJ. XuL. LiY. ZhangS. Dehydromiltirone inhibits osteoclast differentiation in RAW264.7 and bone marrow macrophages by modulating MAPK and NF-κB activity.Front. Pharmacol.202213101569310.3389/fphar.2022.1015693 36210855
    [Google Scholar]
  18. SuhK.S. ChonS. JungW.W. ChoiE.M. Effects of methylglyoxal on RANKL-induced osteoclast differentiation in RAW264.7 cells.Chem. Biol. Interact.2018296182510.1016/j.cbi.2018.09.005 30217477
    [Google Scholar]
  19. BorchersA. PielerT. Programming pluripotent precursor cells derived from Xenopus embryos to generate specific tissues and organs.Genes (Basel)20101341342610.3390/genes1030413 24710095
    [Google Scholar]
  20. JinH.L. LiuX.J. FengX.Y. ZhuW.T. FengS.L. CaoL.P. YuanZ.W. Quercetin 7-rhamnoside protects against alpha-naphthylisothiocyanate (ANIT)-induced in cholestatic hepatitis rats by improving biliary excretion and inhibiting inflammatory responses.Front. Pharmacol.202313111625710.3389/fphar.2022.1116257 36699093
    [Google Scholar]
  21. Q.Y. X.W. WH.Z. CL.S. LL.L. W.L. Multicomponent content determination of Gushukang capsule.Drug Standards of China20232405476480
    [Google Scholar]
  22. NQ.Z. JX.L. GY.M. JY.H. Simultaneous determination of six ingredients in gushukang capsule by HPLC-DAD.Zhongguo Shiyan Fangjixue Zazhi201824194246
    [Google Scholar]
  23. SZS. YLH. YWW. YTC. Simultaneous determination of six components in Gushukang granula and Gushukang capsules by HPLC-MS/MS.Yaowu Fenxi Zazhi2019390610861092
    [Google Scholar]
  24. ChaiS. WanL. WangJ.L. HuangJ.C. HuangH.X. Gushukang inhibits osteocyte apoptosis and enhances BMP-2/Smads signaling pathway in ovariectomized rats.Phytomedicine20196415306310.1016/j.phymed.2019.153063 31419728
    [Google Scholar]
  25. LiX.L. XuF. LinF.H. AiL.Z. ZhaoY.J. BiX.L. SuiL. ZhangY. A naringin- and icariin-contained herbal formula, gushukang, ameliorated aged osteoporosis of aged mice with high calcium intake.Am. J. Chin. Med.20204871671169110.1142/S0192415X20500834 33249854
    [Google Scholar]
  26. LinR. XieB. XieL. GeJ. LiS. Integrated proteomics and metabolomics analysis of lumbar in a rat model of osteoporosis treated with Gushukang capsules.BMC Complementary. Medicine and Therapies.202222133310.1186/s12906‑022‑03807‑7 36522793
    [Google Scholar]
  27. XiaoJ. ZhangG. ChenB. HeQ. MaiJ. ChenW. PanZ. YangJ. LiJ. MaY. WangT. WangH. Quercetin protects against iron overload-induced osteoporosis through activating the Nrf2/HO-1 pathway.Life Sci.202332212132610.1016/j.lfs.2022.121326 36639053
    [Google Scholar]
  28. HuangY.Y. WangZ.H. DengL.H. WangH. ZhengQ. Oral administration of quercetin or its derivatives inhibit bone loss in animal model of osteoporosis.Oxid. Med. Cell. Longev.2020202012110.1155/2020/6080597 33194005
    [Google Scholar]
  29. LiuH. YiX. TuS. ChengC. LuoJ. Kaempferol promotes BMSC osteogenic differentiation and improves osteoporosis by downregulating miR-10a-3p and upregulating CXCL12.Mol. Cell. Endocrinol.202152011107410.1016/j.mce.2020.111074 33157164
    [Google Scholar]
  30. JingZ. WangC. YangQ. WeiX. JinY. MengQ. LiuQ. LiuZ. MaX. LiuK. SunH. LiuM. Luteolin attenuates glucocorticoid‐induced osteoporosis by regulating ERK/Lrp‐5/GSK‐3β signaling pathway in vivo and in vitro.J. Cell. Physiol.201923444472449010.1002/jcp.27252 30192012
    [Google Scholar]
  31. SongS.H. WangD. MoY.Y. DingC. ShangP. Antiosteoporotic effects of naringenin on ovariectomy-induced osteoporosis in rat.Yao Xue Xue Bao2015502154161 25975021
    [Google Scholar]
  32. ZhuS. WeiW. LiuZ. YangY. JiaH. Tanshinone IIA attenuates the deleterious effects of oxidative stress in osteoporosis through the NF κB signaling pathway.Mol. Med. Rep.20181756969697610.3892/mmr.2018.8741 29568934
    [Google Scholar]
  33. ZhengZ.G. ZhangX. ZhouY.P. LuC. ThuP.M. QianC. ZhangM. LiP. LiH.J. XuX. Anhydroicaritin, a SREBPs inhibitor, inhibits RANKL-induced osteoclastic differentiation and improves diabetic osteoporosis in STZ-induced mice.Eur. J. Pharmacol.201780915616210.1016/j.ejphar.2017.05.017 28501578
    [Google Scholar]
  34. Kaczmarczyk-SedlakI. WojnarW. ZychM. Ozimina-KamińskaE. TaranowiczJ. SiwekA. Effect of formononetin on mechanical properties and chemical composition of bones in rats with ovariectomy-induced osteoporosis.Evid. Based Complement. Alternat. Med.2013201311010.1155/2013/457052 23762138
    [Google Scholar]
/content/journals/cad/10.2174/0115734099282620240521102006
Loading
/content/journals/cad/10.2174/0115734099282620240521102006
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test