Skip to content
2000
Volume 21, Issue 6
  • ISSN: 1573-4099
  • E-ISSN: 1875-6697

Abstract

Background

Network pharmacology is a novel approach that uses bioinformatics to predict multitarget drugs and ingredient-target interactions in various diseases. A thorough search of previously published studies revealed that (HDW) and (AM) possess anticancer activity. Colon cancer (CC) is one of the most common malignant tumors of the digestive tract and occurs in the colon. Herein, we explored the effect of two drugs in the treatment of CC.

Objective

The present study aimed to predict and verify the effect of these two drugs in the treatment of CC.

Methods

To explore the molecular mechanisms of the “HDW-AM drug in the treatment of CC, we analyzed its principal efficiency in terms of ingredients, target spots, and pathways network pharmacology, molecular docking, and experimental verification. The ingredients and their gene target sites were searched and screened through the TCMSP platform according to specific filtering conditions. Subsequently, components corresponding to the gene targets were chosen to construct the drug component-target network. The GEO (Gene Expression Omnibus) dataset was used to collect and screen for gene chips under CC and normal conditions, obtain differential genes, and construct a volcano map. The intersection genes between drug and disease targets were screened, the “.tsv” file was downloaded from the STRING platform and imported into Cytoscape 3.8.0 for visualization, a protein-protein interaction (PPI) network was constructed, the core targets were identified, and the common components with core targets were docked through Autodock Tools-1.5.6. Gene Ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis were carried out through the Metascape platform to determine the major pathways. The CCK-8 (Cell Counting Kit-8) assay verified the effect of AKT1 on cell proliferation after treatment with quercetin.

Results

After the screening, 3658 DEGs (1841 downregulated and 1817 upregulated) were obtained from the GSE75970 gene chip; 21 active components and 220 targets were identified from the drugs. Subsequently, ten core genes (including , , and ) and six major components were screened. GO functional analysis and KEGG analysis revealed that “HDW-AM” regulates cell migration and motility through the combination of a transcription regulator complex, membrane rafts, vesicle lumen, and protein kinases the MAPK, PI3K-Akt, and IL-17 signaling pathways. The molecular docking results suggested that quercetin binds to AKT1, TP53, TNF, and CASP3. HDW-AM may exert a therapeutic effect on CC by modulating AKT1, TP53, TNF, and CASP3 and through signaling pathways. A CCK-8 cytotoxicity assay verified that quercetin affects cell viability through AKT1.

Conclusions

The current study provides a theoretical basis for an in-depth investigation into the molecular mechanism of the “HDW-AM” drug in CC treatment network pharmacology, molecular docking, and experimental verification.

Loading

Article metrics loading...

/content/journals/cad/10.2174/0115734099282388240405055003
2024-04-17
2025-12-05
Loading full text...

Full text loading...

References

  1. SungH. FerlayJ Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J. Clin.2021713209249
    [Google Scholar]
  2. LuoX.W. Bencao Gangmu (Compendium of Materia Medica).BeijingForeign Languages Press2003
    [Google Scholar]
  3. ChenR. HeJ. TongX. TangL. LiuM. The Hedyotis diffusa Willd. (Rubiaceae): A review on phytochemistry, pharmacology, quality control and pharmacokinetics.Molecules201621671010.3390/molecules21060710 27248992
    [Google Scholar]
  4. LiY. DingT. ChenJ. JiJ. WangW. DingB. GeW. FanY. XuL. The protective capability of Hedyotis diffusa Willd on lupus nephritis by attenuating the IL-17 expression in MRL/lpr mice.Front. Immunol.20221394382710.3389/fimmu.2022.943827 35958622
    [Google Scholar]
  5. LiH. LaiZ. YangH. PengJ. ChenY. LinJ. Hedyotis diffusa Willd. inhibits VEGF C mediated lymphangiogenesis in colorectal cancer via multiple signaling pathways.Oncol. Rep.20194231225123610.3892/or.2014.3327 31322263
    [Google Scholar]
  6. HuangL. XuH. WuT. Suppresses hepatocellular carcinoma via downregulating AKT/mTOR pathways.Evid. Based Complement. Alternat. Med.202120215210152
    [Google Scholar]
  7. LaiZ. YanZ. ChenW. PengJ. FengJ. LiQ. JinY. LinJ. Hedyotis diffusa willd suppresses metastasis in 5-fluorouracil-resistant colorectal cancer cells by regulating the tgf-β signaling pathway.Mol. Med. Rep.20171657752775810.3892/mmr.2017.7500 28944846
    [Google Scholar]
  8. LiQ. LaiZ. YanZ. PengJ. JinY. WeiL. LinJ. Hedyotis diffusa willd inhibits proliferation and induces apoptosis of 5 FU resistant colorectal cancer cells by regulating the PI3K/AKT signaling pathway.Mol. Med. Rep.2018171358365 29115462
    [Google Scholar]
  9. WuZ. YinB. YouF. Molecular mechanism of anti-colorectal cancer effect of Hedyotis diffusa willd and its extracts.Front. Pharmacol.20221382047410.3389/fphar.2022.820474 35721163
    [Google Scholar]
  10. ZhuangY. SunY.G. WangC.G. ZhangQ. CheC. ShaoF. Molecular targets and mechanisms of Hedyotis diffusa Willd. for esophageal adenocarcinoma treatment based on network pharmacology and weighted gene co-expression network analysis.Curr. Drug Targets20242510.2174/0113894501265851240102101122 38213161
    [Google Scholar]
  11. BaiY. ChenR. SunJ. Evaluation of therapeutic mechanism of Hedyotis diffusa willd (HDW)‒ Scutellaria Barbata (SB) in clear cell renal cell carcinoma via singlecell RNA sequencing and network pharmacology.Comb. Chem. High Throughput Screen.2024276
    [Google Scholar]
  12. HuE. WangD. ChenJ. TaoX. Novel cyclotides from Hedyotis diffusa induce apoptosis and inhibit proliferation and migration of prostate cancer cells.Int. J. Clin. Exp. Med.20158340594065 26064310
    [Google Scholar]
  13. HanX. ZhangX. WangQ. WangL. YuS. Antitumor potential of Hedyotis diffusa Willd: A systematic review of bioactive constituents and underlying molecular mechanisms.Biomed. Pharmacother.202013011073510.1016/j.biopha.2020.110735 34321173
    [Google Scholar]
  14. FuJ. WangZ. HuangL. ZhengS. WangD. ChenS. ZhangH. YangS. Review of the botanical characteristics, phytochemistry, and pharmacology of Astragalus membranaceus (Huangqi).Phytother. Res.20142891275128310.1002/ptr.5188 25087616
    [Google Scholar]
  15. BedirE. PughN. CalisI. PascoD.S. KhanI.A. Immunostimulatory effects of cycloartane-type triterpene glycosides from astragalus species.Biol. Pharm. Bull.200023783483710.1248/bpb.23.834 10919362
    [Google Scholar]
  16. ZhuH. ZhangY. YeG. LiZ. ZhouP. HuangC. In vivo and in vitro antiviral activities of calycosin-7-O-beta-D-glucopyranoside against coxsackie virus B3.Biol. Pharm. Bull.2009321687310.1248/bpb.32.68 19122283
    [Google Scholar]
  17. HuH.C. ZhangW. XiongP.Y. SongL. JiaB. LiuX.L. Anti-inflammatory and antioxidant activity of astragalus polysaccharide in ulcerative colitis: A systematic review and meta-analysis of animal studies.Front. Pharmacol.202213104323610.3389/fphar.2022.1043236 36532736
    [Google Scholar]
  18. ChoW.C.S. LeungK.N. In vitro and in vivo anti-tumor effects of Astragalus membranaceus.Cancer Lett.20072521435410.1016/j.canlet.2006.12.001 17223259
    [Google Scholar]
  19. XieT. LiY. LiS.L. LuoH.F. Astragaloside IV enhances cisplatin chemosensitivity in human colorectal cancer via regulating Notch3.Oncol. Res.201624644745310.3727/096504016X14685034103590 28281965
    [Google Scholar]
  20. ZhangJ.X. Notch1/3 and p53/p21 are a potential therapeutic target for aps-induced apoptosis in non-small cell lung carcinoma cellLines.Int. J. Clin. Exp. Med.2015881125412539[J]
    [Google Scholar]
  21. ZhangD. ZhengJ. NiM. WuJ. WangK. DuanX. ZhangX. ZhangB. Comparative efficacy and safety of Chinese herbal injections combined with the FOLFOX regimen for treating gastric cancer in China: A network meta-analysis.Oncotarget2017840688736888910.18632/oncotarget.20320 28978164
    [Google Scholar]
  22. LiS. SunY. HuangJ. WangB. GongY. FangY. LiuY. WangS. GuoY. WangH. XuZ. GuoY. Anti-tumor effects and mechanisms of Astragalus membranaceus (AM) and its specific immunopotentiation: Status and prospect.J. Ethnopharmacol.202025811279710.1016/j.jep.2020.112797 32243990
    [Google Scholar]
  23. KealeyJ. DüssmannH. Llorente-FolchI. NiewidokN. SalvucciM. PrehnJ.H.M. D’OrsiB. Effect of TP53 deficiency and KRAS signaling on the bioenergetics of colon cancer cells in response to different substrates: A single cell study.Front. Cell Dev. Biol.20221089367710.3389/fcell.2022.893677 36238683
    [Google Scholar]
  24. BrinzanC.S. AschieM. CozaruG.C. DeacuM. DumitruE. BurlacuI. MitroiA. KRAS, NRAS, BRAF, PIK3CA, and AKT1 signatures in colorectal cancer patients in south-eastern Romania.Medicine202210140e3097910.1097/MD.0000000000030979 36221415
    [Google Scholar]
  25. VenkateswaranN. Lafita-NavarroM.C. HaoY.H. KilgoreJ.A. CastroP.L. BravermanJ. AuerbachB.N. KimM. LesnerN.P. MishraP. BrabletzT. ShayJ.W. DeBerardinisR.J. WilliamsN.S. YilmazO.H. SorrellC.M. MYC promotes tryptophan uptake and metabolism by the kynurenine pathway in colon cancer.Genes Dev.20193317-181236125110.1101/gad.327056.119 31416966
    [Google Scholar]
  26. ZhangS. WangY. SunY. ZhaoG. WangJ. LiuL. LiuF. WangP. YangJ. XuX. Hinokiflavone, as a MDM2 inhibitor, activates p53 signaling pathway to induce apoptosis in human colon cancer HCT116 cells.Biochem. Biophys. Res. Commun.20225949310010.1016/j.bbrc.2022.01.032 35078113
    [Google Scholar]
  27. MartinsF. OliveiraR. CavadasB. PintoF. CardosoA.P. CastroF. SousaB. PintoM.L. SilvaA.J. AdãoD. LoureiroJ.P. PedroN. ReisR.M. PereiraL. OliveiraM.J. CostaA.M. Hypoxia and macrophages act in concert towards a beneficial outcome in colon cancer.Cancers202012481810.3390/cancers12040818 32231135
    [Google Scholar]
  28. LaiS.W. ChenM.Y. BamoduO.A. HsiehM.S. HuangT.Y. YehC.T. LeeW.H. CherngY.G. Exosomal lncRNA PVT1/VEGFA axis promotes colon cancer metastasis and stemness by downregulation of tumor suppressor miR-152-3p.Oxid. Med. Cell. Longev.2021202111910.1155/2021/9959807 34336125
    [Google Scholar]
  29. LiZ. ZhuZ. WangY. WangY. LiW. WangZ. ZhouX. BaoY. hsa miR 15a 5p inhibits colon cell carcinoma via targeting CCND1.Mol. Med. Rep.202124473510.3892/mmr.2021.12375 34414457
    [Google Scholar]
  30. de CarpeñoC.J. IniestaB.C. SáenzE.C. AgudoE.H. BatlleJ.F. BarónM.G. EGFR and colon cancer: A clinical view.Clin. Transl. Oncol.200810161310.1007/s12094‑008‑0147‑3 18208787
    [Google Scholar]
  31. YanR. ZhuH. HuangP. YangM. ShenM. PanY. ZhangC. ZhouX. LiH. KeX. ZhangW. HaoP. QuY. Liquidambaric acid inhibits Wnt/β-catenin signaling and colon cancer via targeting TNF receptor-associated factor 2.Cell Rep.202238511031910.1016/j.celrep.2022.110319 35108540
    [Google Scholar]
  32. WangL. LiS. LuoH. LuQ. YuS. PCSK9 promotes the progression and metastasis of colon cancer cells through regulation of EMT and PI3K/AKT signaling in tumor cells and phenotypic polarization of macrophages.J. Exp. Clin. Cancer Res.202241130310.1186/s13046‑022‑02477‑0 36242053
    [Google Scholar]
  33. PanD. HuangB. GanY. GaoC. LiuY. TangZ. Phycocyanin ameliorates colitis-associated colorectal cancer by regulating the gut microbiota and the IL-17 signaling pathway.Mar. Drugs202220426010.3390/md20040260 35447933
    [Google Scholar]
  34. MirazimiS.M.A. DashtiF. TobeihaM. ShahiniA. JafariR. KhoddamiM. SheidaA.H. EsnaAshari, P.; Aflatoonian, A.H.; Elikaii, F.; Zakeri, M.S.; Hamblin, M.R.; Aghajani, M.; Bavarsadkarimi, M.; Mirzaei, H. Application of quercetin in the treatment of gastrointestinal cancers.Front. Pharmacol.20221386020910.3389/fphar.2022.860209 35462903
    [Google Scholar]
  35. KhanF. NiazK. MaqboolF. Ismail HassanF. AbdollahiM. VenkataN.K. NabaviS. BishayeeA. Molecular targets underlying the anticancer effects of quercetin: An update.Nutrients20168952910.3390/nu8090529 27589790
    [Google Scholar]
  36. SenggunpraiL. KukongviriyapanV. PrawanA. KukongviriyapanU. Quercetin and EGCG exhibit chemopreventive effects in cholangiocarcinoma cells via suppression of JAK/STAT signaling pathway.Phytother. Res.201428684184810.1002/ptr.5061 24038588
    [Google Scholar]
  37. CaiJ. RenY. Quercetin regulates IL-6/STAT3 signaling pathway in mouse models of inflammation-related colon cancer: A mechanistic study.Zhongguo Yaowu Yu Linchuang20202006896899
    [Google Scholar]
  38. RatherR.A. BhagatM. Quercetin as an innovative therapeutic tool for cancer chemoprevention: Molecular mechanisms and implications in human health.Cancer Med.20209249181919210.1002/cam4.1411 31568659
    [Google Scholar]
  39. SongY. HanM. ZhangX. Quercetin suppresses the migration and invasion in human colon cancer Caco-2 cells through regulating toll-like receptor 4/Nuclear Factor-kappa B pathway.Pharmacogn. Mag.2016124623710.4103/0973‑1296.182154 27279714
    [Google Scholar]
  40. RahmanM.A. ShorobiF.M. UddinM.N. SahaS. HossainM.A. Quercetin attenuates viral infections by interacting with target proteins and linked genes in chemicobiological models. In Silico Pharmacol.20221011710.1007/s40203‑022‑00132‑2 36119653
    [Google Scholar]
  41. AlzahraniS. DoghaitherA.H. GhafariA.A. General insight into cancer: An overview of colorectal cancer [Review].Mol. Clin. Oncol.202115627110.3892/mco.2021.2433 34790355
    [Google Scholar]
  42. PlundrichD ChikhladzeS Fichtner-FeiglS FeuersteinR BriquezPS Molecular mechanisms of tumor immunomodulation in the microenvironment of colorectal cancer.Int J Mol Sci 2022, Mar 3235278210.3390/ijms2305278235269922PMC8910988
    [Google Scholar]
  43. (a WangC. ZhouX. WangY. WeiD. DengC. XuX. XinP. SunS. The antitumor constituents from Hedyotis diffusa willd.Molecules20172212210110.3390/molecules22122101 29189741
    [Google Scholar]
  44. (b XuJ ZhangR PengQ JiaZ XiaoS SunN PengM. The profile and prognostic value of circulating lymphocyte subsets in metastatic colon cancer.Int Immunopharmacol.2023 Apr117109848Epub 2023 Feb 2010.1016/j.intimp.2023.10984836812670
    [Google Scholar]
  45. NiuY. MengQ.X. Chemical and preclinical studies on Hedyotis diffusa with anticancer potential.J. Asian Nat. Prod. Res.201315555056510.1080/10286020.2013.781589 23600735
    [Google Scholar]
  46. YangL. LiuY. WangM. QianY. DongX. GuH. WangH. GuoS. HisamitsuT. Quercetin-induced apoptosis of HT-29 colon cancer cells via inhibition of the Akt-CSN6-Myc signaling axis.Mol. Med. Rep.20161454559456610.3892/mmr.2016.5818 27748879
    [Google Scholar]
  47. LinJ. PengJ. WeiL. Effect of Hedyotis diffusa extract on the expression of Bcl-2 and Bax in colon cancer HT-29 cells.Strait Sci.2010201010276278
    [Google Scholar]
  48. XiaoY. WuZ. JinC. Experimental study on anti-angiogenesis effect of Hedyotis diffusa extract on colorectal cancer in mice.J. Kunm. Med. Uni.201334105357
    [Google Scholar]
  49. ZhangL. ZhangJ. QiB. JiangG. LiuJ. ZhangP. MaY. LiW. The anti-tumor effect and bioactive phytochemicals of Hedyotis diffusa willd on ovarian cancer cells.J. Ethnopharmacol.201619213213910.1016/j.jep.2016.07.027 27426510
    [Google Scholar]
  50. LinJ. PengJ. WeiL. Study on the mechanism of Hedyotis diffusa extract inducing apoptosis of colon cancer HT-29 cells.Fujian Trad. Chin. Med.201041054951+64.
    [Google Scholar]
  51. PengJ. WeiL. LinJ. Hedyotis diffusa inhibits the proliferation of human colon cancer cells by blocking the cell cycle [J].Fujian traditional. Chin. Med.201243044850
    [Google Scholar]
  52. YeR. LinJ. WeiL. Effect of Hedyotis diffusa ethanol extract on proliferation and hedgehog signaling pathway expression of human colon cancer HT-29 cells.Strait Sci.2012201208100102+110
    [Google Scholar]
  53. YanL. HongT. LuoJ. Effect of astragalus polysaccharide on proliferation and apoptosis of colon cancer SW620 cells.Chinese J. Exp. Pharmacol.2017232297101
    [Google Scholar]
  54. SongX. ZhangJ. WeiL. Study on the inhibitory effect of Astragalus Polysaccharide on the growth of colon cancer HT-29 cells.Chong. Med. J.2019481728992902
    [Google Scholar]
  55. ChenP. TangJ. ZhangY. Effect of astragaloside a on proliferation and apoptosis of human colon cancer SW480 cell line. Cancer.Prev. Treat. Res.20194608702706
    [Google Scholar]
  56. LinZ. MaT. MengY. Inhibitory effect of quercetin on the proliferation of human colon cancer SW480 cells.J. Pract. Med.20122805699701
    [Google Scholar]
  57. AnC. XieG. TangW. Effects of quercetin on the proliferation and invasion of colon cancer LoVo cells and the expression of carcinoembryonic antigen (CEA).Chin. J. Clin. Pharmacol. Therapeut.201318012429
    [Google Scholar]
  58. MengY. LiH. Effect of quercetin on matrix metalloproteinase and cathepsin-D in human colon cancer cell SW480.Chin. J. Clin.201151234273431
    [Google Scholar]
  59. ÖzsoyS. BecerE. KabadayıH. VatanseverH.S. YücecanS. Quercetin-mediated apoptosis and cellular senescence in human colon cancer.Anticancer. Agents Med. Chem.202020111387139610.2174/1871520620666200408082026 32268873
    [Google Scholar]
  60. JiangS. ZhangX. Study on the mechanism of quercetin induced apoptosis of human colon cancer cell HT-29.Chin. Moder. Appl. Pharm.2017341115351538
    [Google Scholar]
  61. Navarro-NúñezL. LozanoM.L. MartínezC. VicenteV. RiveraJ. Effect of quercetin on platelet spreading on collagen and fibrinogen and on multiple platelet kinases.Fitoterapia2010812758010.1016/j.fitote.2009.08.006 19686810
    [Google Scholar]
  62. LiC.Y. LeeS.C. LaiW.L. ChangK.F. HuangX.F. HungP.Y. LeeC.P. HsiehM.C. TsaiN.M. Cell cycle arrest and apoptosis induction by Juniperus communis extract in esophageal squamous cell carcinoma through activation of p53‐induced apoptosis pathway.Food Sci. Nutr.2021921088109810.1002/fsn3.2084 33598192
    [Google Scholar]
  63. PolatoF. RusconiP. ZangrossiS. MorelliF. BoeriM. MusiA. MarchiniS. CastiglioniV. ScanzianiE. TorriV. BrogginiM. DRAGO (KIAA0247), a new DNA damage-responsive, p53-inducible gene that cooperates with p53 as oncosuppressor [Corrected].J. Natl. Cancer Inst.20141064dju05310.1093/jnci/dju053 24652652
    [Google Scholar]
  64. YouL. YangC. DuY. LiuY. ChenG. SaiN. DongX. YinX. NiJ. Matrine exerts hepatotoxic effects via the ROS-dependent mitochondrial apoptosis pathway and inhibition of Nrf2-mediated antioxidant response.Oxid. Med. Cell. Longev.2019201911510.1155/2019/1045345 31737162
    [Google Scholar]
  65. WangC. ChenY. WangY. LiuX. LiuY. LiY. ChenH. FanC. WuD. YangJ. Inhibition of COX-2, mPGES-1 and CYP4A by isoliquiritigenin blocks the angiogenic Akt signaling in glioma through ceRNA effect of miR-194-5p and lncRNA NEAT1.J. Exp. Clin. Cancer Res.201938137110.1186/s13046‑019‑1361‑2 31438982
    [Google Scholar]
  66. GuoJ. HuZ. YanF. LeiS. LiT. LiX. XuC. SunB. PanC. ChenL. Angelica dahurica promoted angiogenesis and accelerated wound healing in db/db mice via the HIF-1α/PDGF-β signaling pathway.Free Radic. Biol. Med.202016044745710.1016/j.freeradbiomed.2020.08.015 32853721
    [Google Scholar]
  67. ShiY. XuX. ZhangQ. FuG. MoZ. WangG.S. KishiS. YangX.L. tRNA synthetase counteracts c-Myc to develop functional vasculature.eLife20143e0234910.7554/eLife.02349 24940000
    [Google Scholar]
  68. KimJ.Y. ChoY.E. ParkJ.H. The nucleolar protein GLTSCR2 is an upstream negative regulator of the oncogenic nucleophosmin-MYC axis.Am. J. Pathol.201518572061206810.1016/j.ajpath.2015.03.016 25956029
    [Google Scholar]
  69. LucasTFG. LazariMFM. PortoCS. Differential role of the estrogen receptors ESR1 and ESR2 on the regulation of proteins involved with proliferation and differentiation of Sertoli cells from 15-day-old rats.Mol. Cell. Endocrinol.201438218496
    [Google Scholar]
  70. WuC.C. ChengC.H. LeeY.H. ChangI.L. ChenH.Y. HsiehC.P. ChuehP.J. Ursolic acid triggers apoptosis in human osteosarcoma cells via caspase activation and the ERK1/2 MAPK pathway.J. Agric. Food Chem.201664214220422610.1021/acs.jafc.6b00542 27171502
    [Google Scholar]
  71. TangW. GuoJ. GuR. LeiB. DingX. MaJ. XuG. MicroRNA-29b-3p inhibits cell proliferation and angiogenesis by targeting VEGFA and PDGFB in retinal microvascular endothelial cells.Mol. Vis.2020266475 32165827
    [Google Scholar]
  72. JantscherF. PirkerC. MayerC.E. BergerW. SutterluetyH. Overexpression of Aurora-A in primary cells interferes with S-phase entry by diminishing Cyclin D1 dependent activities.Mol. Cancer20111012810.1186/1476‑4598‑10‑28 21410931
    [Google Scholar]
  73. SituY. XuQ. DengL. ZhuY. GaoR. LeiL. ShaoZ. System analysis of VEGFA in renal cell carcinoma: The expression, prognosis, gene regulation network and regulation targets.Int. J. Biol. Markers20223719010110.1177/17246008211063501 34870494
    [Google Scholar]
  74. WeiX. ZhaoL. RenR. JiF. XueS. ZhangJ. LiuZ. MaZ. WangX.W. WongL. LiuN. ShiJ. GuoX. RoesslerS. ZhengX. JiJ. MiR‐125b loss activated HIF1α/pAKT loop, leading to transarterial chemoembolization resistance in hepatocellular carcinoma.Hepatology20217341381139810.1002/hep.31448 32609900
    [Google Scholar]
  75. NieH. ZhengY. LiR. GuoT.B. HeD. FangL. LiuX. XiaoL. ChenX. WanB. ChinY.E. ZhangJ.Z. Phosphorylation of FOXP3 controls regulatory T cell function and is inhibited by TNF-α in rheumatoid arthritis.Nat. Med.201319332232810.1038/nm.3085 23396208
    [Google Scholar]
  76. NakaharaH. SongJ. SugimotoM. HagiharaK. KishimotoT. YoshizakiK. NishimotoN. Anti–interleukin‐6 receptor antibody therapy reduces vascular endothelial growth factor production in rheumatoid arthritis.Arthritis Rheum.20034861521152910.1002/art.11143 12794819
    [Google Scholar]
/content/journals/cad/10.2174/0115734099282388240405055003
Loading
/content/journals/cad/10.2174/0115734099282388240405055003
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test