Skip to content
2000
Volume 21, Issue 4
  • ISSN: 1573-4099
  • E-ISSN: 1875-6697

Abstract

Background

SARS-CoV-2's remarkable capacity for genetic mutation enables it to swiftly adapt to environmental changes, influencing critical attributes, such as antigenicity and transmissibility. Thus, multi-target inhibitors capable of effectively combating various viral mutants concurrently are of great interest.

Objectives

This study aimed to investigate natural compounds that could unitedly inhibit spike glycoproteins of various Omicron mutants. Implementation of various approaches allows us to scan a library of compounds against a variety of mutants in order to find the ones that would inhibit the viral entry disregard of occurred mutations.

Methods

An extensive analysis of relevant literature was conducted to compile a library of chemical compounds sourced from citrus essential oils. Ten homology models representing mutants of the Omicron variant were generated, including the latest 23F clade (EG.5.1), and the compound library was screened against them. Subsequently, employing comprehensive molecular docking and molecular dynamics simulations, we successfully identified promising compounds that exhibited sufficient binding efficacy towards the receptor binding domains (RBDs) of the mutant viral strains. The scoring of ligands was based on their average potency against all models generated herein, in addition to a reference Omicron RBD structure. Furthermore, the toxicity profile of the highest-scoring compounds was predicted.

Results

Out of ten built homology models, seven were successfully validated and showed to be reliable for studies. Three models of clades 22C, 22D, and 22E had major deviations in their secondary structure and needed further refinement. Notably, through a 100 nanosecond molecular dynamics simulation, terpinen-4-ol emerged as a potent inhibitor of the Omicron SARS-CoV-2 RBD from the 21K clade (BA.1); however, it did not show high stability in complexes with other mutants. This suggests the need for the utilization of a larger library of chemical compounds as potential inhibitors.

Conclusion

The outcomes of this investigation hold significant potential for the utilization of a homology modeling approach for the prediction of RBD’s secondary structure based on its sequence when the 3D structure of a mutated protein is not available. This opens the opportunities for further advancing the drug discovery process, offering novel avenues for the development of multifunctional, non-toxic natural medications.

Loading

Article metrics loading...

/content/journals/cad/10.2174/0115734099275132231213055138
2024-01-04
2025-09-09
Loading full text...

Full text loading...

References

  1. JiangS. ShiZ. ShuY. SongJ. GaoG.F. TanW. GuoD. A distinct name is needed for the new coronavirus.Lancet20203951022894910.1016/S0140‑6736(20)30419‑032087125
    [Google Scholar]
  2. KumariM. LuR.M. LiM.C. HuangJ.L. HsuF.F. KoS.H. KeF.Y. SuS.C. LiangK.H. YuanJ.P.Y. ChiangH.L. SunC.P. LeeI.J. LiW.S. HsiehH.P. TaoM.H. WuH.C. A critical overview of current progress for COVID-19: Development of vaccines, antiviral drugs, and therapeutic antibodies.J. Biomed. Sci.20222916810.1186/s12929‑022‑00852‑936096815
    [Google Scholar]
  3. Thanh LeT. AndreadakisZ. KumarA. Gómez RománR. TollefsenS. SavilleM. MayhewS. The COVID-19 vaccine development landscape.Nat. Rev. Drug Discov.202019530530610.1038/d41573‑020‑00073‑532273591
    [Google Scholar]
  4. TanneJ.H. Covid-19: FDA panel votes to authorise Pfizer BioNTech vaccine.BMJ2020371m479910.1136/bmj.m479933310748
    [Google Scholar]
  5. MahaseE. Covid-19: Moderna applies for US and EU approval as vaccine trial reports 94.1% efficacy.BMJ2020371m470910.1136/bmj.m470933268462
    [Google Scholar]
  6. CostanzoM. De GiglioM.A.R. RovielloG.N. Anti-coronavirus vaccines: Past investigations on SARS-CoV-1 and MERS-CoV, the approved vaccines from biontech/pfizer, moderna, oxford/astrazeneca and others under development against SARSCoV- 2 infection.Curr. Med. Chem.202229141810.2174/1875533XMTE1eNzEw534355678
    [Google Scholar]
  7. SelfW.H. TenfordeM.W. RhoadsJ.P. GaglaniM. GindeA.A. DouinD.J. OlsonS.M. TalbotH.K. CaseyJ.D. MohrN.M. ZepeskiA. McNealT. GhamandeS. GibbsK.W. FilesD.C. HagerD.N. ShehuA. PrekkerM.E. EricksonH.L. GongM.N. MohamedA. HenningD.J. SteingrubJ.S. PeltanI.D. BrownS.M. MartinE.T. MontoA.S. KhanA. HoughC.L. BusseL.W. ten LohuisC.C. DuggalA. WilsonJ.G. GordonA.J. QadirN. ChangS.Y. MallowC. RivasC. BabcockH.M. KwonJ.H. ExlineM.C. HalasaN. ChappellJ.D. LauringA.S. GrijalvaC.G. RiceT.W. JonesI.D. StubblefieldW.B. BaughmanA. WomackK.N. LindsellC.J. HartK.W. ZhuY. MillsL. LesterS.N. StumpfM.M. NaiotiE.A. KobayashiM. VeraniJ.R. ThornburgN.J. PatelM.M. CalhounN. MurthyK. HerrickJ. McKillopA. HoffmanE. ZayedM. SmithM. SeattleN. EttlingerJ. PriestE. ThomasJ. ArroligaA. BeeramM. KindleR. KozikowskiL-A. De SouzaL. OuelletteS. Thornton-ThompsonS. MehkriO. AshokK. GoleS. KingA. PoynterB. StanleyN. HendricksonA. MaruggiE. ScharberT. JorgensenJ. BowersR. KingJ. AstonV. ArmbrusterB. RothmanR.E. NairR. ChenJ-T.T. KarowS. RobartE. MaldonadoP.N. KhanM. SoP. LevittJ. PerezC. VisweswaranA. RoqueJ. RiveraA. AngelesL. FrankelT. AngelesL. GoffJ. HuynhD. HowellM. FriedelJ. TozierM. DriverC. CarricatoM. FosterA. NassarP. StoutL. SibenallerZ. WalterA. MaresJ. OlsonL. ClinansmithB. RivasC. GershengornH. McSpaddenE.J. TrusconR. KaniclidesA. ThomasL. BielakR. ValvanoW.D. FongR. FitzsimmonsW.J. BlairC. ValesanoA.L. GilbertJ. CriderC.D. SteinbockK.A. PaulsonT.C. AndersonL.A. KampeC. JohnsonJ. McHenryR. BlairM. ConwayD. LaRoseM. LandrethL. HicksM. ParksL. BonguJ. McDonaldD. CassC. SeilerS. ParkD. HinkT. WallaceM. BurnhamC-A. ArterO.G. IVY Network Comparative effectiveness of moderna, pfizer-biontech, and janssen (johnson & johnson) vaccines in preventing covid-19 hospitalizations among adults without immunocompromising conditions — United States, March–August 2021.MMWR Morb. Mortal. Wkly. Rep.202170381337134310.15585/mmwr.mm7038e134555004
    [Google Scholar]
  8. WilliamsT.C. BurgersW.A. SARS-CoV-2 evolution and vaccines: Cause for concern?Lancet Respir. Med.20219433333510.1016/S2213‑2600(21)00075‑833524316
    [Google Scholar]
  9. ToK.K.W. HungI.F.N. IpJ.D. ChuA.W.H. ChanW.M. TamA.R. FongC.H.Y. YuanS. TsoiH.W. NgA.C.K. LeeL.L.Y. WanP. TsoE.Y.K. ToW.K. TsangD.N.C. ChanK.H. HuangJ.D. KokK.H. ChengV.C.C. YuenK.Y. Coronavirus disease 2019 (COVID-19) re-infection by a phylogenetically distinct severe acute respiratory syndrome coronavirus 2 strain confirmed by whole genome sequencing.Clin. Infect. Dis.2021739e2946e295110.1093/cid/ciaa127532840608
    [Google Scholar]
  10. HossainM.K. HassanzadeganroudsariM. ApostolopoulosV. The emergence of new strains of SARS-CoV-2. What does it mean for COVID-19 vaccines?Expert Rev. Vaccines202120663563810.1080/14760584.2021.191514033896316
    [Google Scholar]
  11. WuL.P. WangN.C. ChangY.H. TianX.Y. NaD.Y. ZhangL.Y. ZhengL. LanT. WangL.F. LiangG.D. Duration of antibody responses after severe acute respiratory syndrome.Emerg. Infect. Dis.200713101562156410.3201/eid1310.07057618258008
    [Google Scholar]
  12. EdridgeA.W.D. KaczorowskaJ. HosteA.C.R. BakkerM. KleinM. LoensK. JebbinkM.F. MatserA. KinsellaC.M. RuedaP. IevenM. GoossensH. PrinsM. SastreP. DeijsM. van der HoekL. Seasonal coronavirus protective immunity is short-lasting.Nat. Med.202026111691169310.1038/s41591‑020‑1083‑132929268
    [Google Scholar]
  13. LippiG. MattiuzziC. HenryB.M. Neutralizing potency of COVID‐19 vaccines against the SARS‐CoV‐2 Omicron (B.1.1.529) variant.J. Med. Virol.20229451799180210.1002/jmv.2757534988998
    [Google Scholar]
  14. SorianoV. Fernández-MonteroJ.V. New SARS-CoV-2 variants challenge vaccines protection.AIDS Rev.2021231575810.24875/AIDSRev.M2100004033750742
    [Google Scholar]
  15. Update on OmicronAvailable from: https://www.Who.Int/News/Item/28-11-2021-Update-on-Omicron (Accessed June 19 2023.)
  16. CallawayE. Heavily mutated Omicron variant puts scientists on alert.Nature20216007887212110.1038/d41586‑021‑03552‑w34824381
    [Google Scholar]
  17. WangL. ChengG. Sequence analysis of the emerging sars‐cov‐2 variant omicron in south africa.J. Med. Virol.202134897752
    [Google Scholar]
  18. KarimS.S.A. KarimQ.A. Omicron SARS-CoV-2 variant: A new chapter in the COVID-19 pandemic.Lancet2021398103172126212810.1016/S0140‑6736(21)02758‑634871545
    [Google Scholar]
  19. DuX. TangH. GaoL. WuZ. MengF. YanR. QiaoS. AnJ. WangC. QinF.X.F. Omicron adopts a different strategy from Delta and other variants to adapt to host.Signal Transduct. Target. Ther.2022714510.1038/s41392‑022‑00903‑535145066
    [Google Scholar]
  20. SigalA. MiloR. JassatW. Estimating disease severity of Omicron and Delta SARS-CoV-2 infections.Nat. Rev. Immunol.202222526726910.1038/s41577‑022‑00720‑535414124
    [Google Scholar]
  21. NybergT. FergusonN.M. NashS.G. WebsterH.H. FlaxmanS. AndrewsN. HinsleyW. BernalJ.L. KallM. BhattS. BlomquistP. ZaidiA. VolzE. AzizN.A. HarmanK. FunkS. AbbottS. HopeR. CharlettA. ChandM. GhaniA.C. SeamanS.R. DabreraG. De AngelisD. PresanisA.M. ThelwallS. NybergT. FergusonN.M. NashS.G. WebsterH.H. FlaxmanS. AndrewsN. HinsleyW. Lopez BernalJ. KallM. BhattS. BlomquistP. ZaidiA. VolzE. Abdul AzizN. HarmanK. FunkS. AbbottS. HopeR. CharlettA. ChandM. GhaniA.C. SeamanS.R. DabreraG. De AngelisD. PresanisA.M. ThelwallS. COVID-19 Genomics UK (COG-UK) consortium Comparative analysis of the risks of hospitalisation and death associated with SARS-CoV-2 omicron (B.1.1.529) and delta (B.1.617.2) variants in England: a cohort study.Lancet2022399103321303131210.1016/S0140‑6736(22)00462‑735305296
    [Google Scholar]
  22. LewnardJ.A. HongV.X. PatelM.M. KahnR. LipsitchM. TartofS.Y. Clinical outcomes associated with SARS-CoV-2 Omicron (B.1.1.529) variant and BA.1/BA.1.1 or BA.2 subvariant infection in Southern California.Nat. Med.20222891933194310.1038/s41591‑022‑01887‑z35675841
    [Google Scholar]
  23. CaoY. WangJ. JianF. XiaoT. SongW. YisimayiA. HuangW. LiQ. WangP. AnR. Omicron escapes the majority of existing SARS-CoV-2 neutralizing antibodies.Nature20211935016194
    [Google Scholar]
  24. LiuL. IketaniS. GuoY. ChanJ.F.W. WangM. LiuL. LuoY. ChuH. HuangY. NairM.S. Striking antibody evasion manifested by the omicron variant of SARS-CoV-2.Nature20211835016198
    [Google Scholar]
  25. RenS.Y. WangW.B. GaoR.D. ZhouA.M. Omicron variant (B.1.1.529) of SARS-CoV-2: Mutation, infectivity, transmission, and vaccine resistance.World J. Clin. Cases202210111110.12998/wjcc.v10.i1.135071500
    [Google Scholar]
  26. YuJ. CollierA.Y. RoweM. MardasF. VenturaJ.D. WanH. MillerJ. PowersO. ChungB. SiamatuM. HachmannN.P. SurveN. NampanyaF. ChandrashekarA. BarouchD.H. Neutralization of the SARS-CoV-2 Omicron BA.1 and BA.2 Variants.N. Engl. J. Med.2022386161579158010.1056/NEJMc220184935294809
    [Google Scholar]
  27. SmithL. ShinJ.I. KoyanagiA. Vaccine strategy against COVID-19 with a focus on the omicron and stealth omicron variants: Life cycle committee recommendations.Life Cycle20222e510.54724/lc.2022.e5
    [Google Scholar]
  28. HadfieldJ. MegillC. BellS.M. HuddlestonJ. PotterB. CallenderC. SagulenkoP. BedfordT. NeherR.A. Nextstrain: Real-time tracking of pathogen evolution.Bioinformatics201834234121412310.1093/bioinformatics/bty40729790939
    [Google Scholar]
  29. HanP. LiL. LiuS. WangQ. ZhangD. XuZ. HanP. LiX. PengQ. SuC. HuangB. LiD. ZhangR. TianM. FuL. GaoY. ZhaoX. LiuK. QiJ. GaoG.F. WangP. Receptor binding and complex structures of human ACE2 to spike RBD from omicron and delta SARS-CoV-2.Cell20221854630640.e1010.1016/j.cell.2022.01.00135093192
    [Google Scholar]
  30. LiL. LiaoH. MengY. LiW. HanP. LiuK. WangQ. LiD. ZhangY. WangL. FanZ. ZhangY. WangQ. ZhaoX. SunY. HuangN. QiJ. GaoG.F. Structural basis of human ACE2 higher binding affinity to currently circulating Omicron SARS-CoV-2 sub-variants BA.2 and BA.1.1.Cell20221851629522960.e1010.1016/j.cell.2022.06.02335809570
    [Google Scholar]
  31. JawadB. AdhikariP. PodgornikR. ChingW.Y. Binding interactions between receptor-binding domain of spike protein and human angiotensin converting enzyme-2 in omicron variant.J. Phys. Chem. Lett.202213173915392110.1021/acs.jpclett.2c0042335481766
    [Google Scholar]
  32. HanaiT. Quantitative in silico analysis of SARS-CoV-2 S-RBD omicron mutant transmissibility.Talanta202224012320610.1016/j.talanta.2022.12320635026638
    [Google Scholar]
  33. AiJ. WangX. HeX. ZhaoX. ZhangY. JiangY. LiM. CuiY. ChenY. QiaoR. LiL. YangL. LiY. HuZ. ZhangW. WangP. Antibody evasion of SARS-CoV-2 Omicron BA.1, BA.1.1, BA.2, and BA.3 sub-lineages.Cell Host Microbe202230810771083.e410.1016/j.chom.2022.05.00135594867
    [Google Scholar]
  34. CameroniE. BowenJ.E. RosenL.E. SalibaC. ZepedaS.K. CulapK. PintoD. VanBlarganL.A. De MarcoA. di IulioJ. ZattaF. KaiserH. NoackJ. FarhatN. CzudnochowskiN. Havenar-DaughtonC. SprouseK.R. DillenJ.R. PowellA.E. ChenA. MaherC. YinL. SunD. SoriagaL. BassiJ. Silacci-FregniC. GustafssonC. FrankoN.M. LogueJ. IqbalN.T. MazzitelliI. GeffnerJ. GrifantiniR. ChuH. GoriA. RivaA. GianniniO. CeschiA. FerrariP. CippàP.E. Franzetti-PellandaA. GarzoniC. HalfmannP.J. KawaokaY. HebnerC. PurcellL.A. PiccoliL. PizzutoM.S. WallsA.C. DiamondM.S. TelentiA. VirginH.W. LanzavecchiaA. SnellG. VeeslerD. CortiD. Broadly neutralizing antibodies overcome SARS-CoV-2 Omicron antigenic shift.Nature2022602789866467010.1038/s41586‑021‑04386‑235016195
    [Google Scholar]
  35. XiongD. ZhaoX. LuoS. CongY. ZhangJ.Z.H. DuanL. Immune escape mechanisms of SARS-CoV-2 delta and omicron variants against two monoclonal antibodies that received emergency use authorization.J. Phys. Chem. Lett.202213266064607310.1021/acs.jpclett.2c0091235758899
    [Google Scholar]
  36. da CostaC.H.S. de FreitasC.A.B. AlvesC.N. LameiraJ. Assessment of mutations on RBD in the spike protein of SARS-CoV-2 alpha, delta and omicron variants.Sci. Rep.2022121854010.1038/s41598‑022‑12479‑935595778
    [Google Scholar]
  37. ShiD. BuC. HeP. SongY. DordickJ.S. LinhardtR.J. ChiL. ZhangF. Structural characteristics of heparin binding to SARS-CoV-2 Spike Protein RBD of omicron sub-lineages BA.2.12.1, BA.4 and BA.5.Viruses20221412269610.3390/v1412269636560700
    [Google Scholar]
  38. SinghS. BanavathH.N. GodaraP. NaikB. SrivastavaV. PrustyD. Identification of antiviral peptide inhibitors for receptor binding domain of SARS-CoV-2 omicron and its Sub-Variants: An in-silico approach.20221219810.1007/s13205‑022‑03258‑4
    [Google Scholar]
  39. MoriyamaS. AnrakuY. TaminishiS. AdachiY. KurodaD. KitaS. HiguchiY. KiritaY. KotakiR. TonouchiK. YumotoK. SuzukiT. SomeyaT. FukuharaH. KurodaY. YamamotoT. OnoderaT. FukushiS. MaedaK. Nakamura-UchiyamaF. HashiguchiT. HoshinoA. MaenakaK. TakahashiY. Structural delineation and computational design of SARS-CoV-2-neutralizing antibodies against Omicron subvariants.Nat. Commun.2023141419810.1038/s41467‑023‑39890‑837452031
    [Google Scholar]
  40. MuhammedM.T. Aki-YalcinE. Homology modeling in drug discovery: Overview, current applications, and future perspectives.Chem. Biol. Drug Des.2019931122010.1111/cbdd.1338830187647
    [Google Scholar]
  41. OvchynnykovaO. KapustaK. SizochenkoN. SukhyyK.M. KolodziejczykW. HillG.A. SaloniJ. Homology modeling and molecular dynamics-driven search for natural inhibitors that universally target receptor-binding domain of spike glycoprotein in SARS-CoV-2 variants.Molecules20222721733610.3390/molecules2721733636364158
    [Google Scholar]
  42. Schrödinger Release 2020-3: Schrödinger, LLC, New York, NY,2020
    [Google Scholar]
  43. Madhavi SastryG. AdzhigireyM. DayT. AnnabhimojuR. ShermanW. Protein and ligand preparation: Parameters, protocols, and influence on virtual screening enrichments.J. Comput. Aided Mol. Des.201327322123410.1007/s10822‑013‑9644‑823579614
    [Google Scholar]
  44. ShelleyJ.C. CholletiA. FryeL.L. GreenwoodJ.R. TimlinM.R. UchimayaM. Epik: a software program for pK a prediction and protonation state generation for drug-like molecules.J. Comput. Aided Mol. Des.2007211268169110.1007/s10822‑007‑9133‑z17899391
    [Google Scholar]
  45. RoosK. WuC. DammW. ReboulM. StevensonJ.M. LuC. DahlgrenM.K. MondalS. ChenW. WangL. AbelR. FriesnerR.A. HarderE.D. OPLS3e: Extending force field coverage for drug-like small molecules.J. Chem. Theory Comput.20191531863187410.1021/acs.jctc.8b0102630768902
    [Google Scholar]
  46. ThompsonJ.D. GibsonT.J. HigginsD.G. Multiple sequence alignment using clustalw and clustalx.Curr. Protoc. Bioinformatics200300110.1002/0471250953.bi0203s0018792934
    [Google Scholar]
  47. BowersK.J. ChowD.E. XuH. DrorR.O. EastwoodM.P. GregersenB.A. KlepeisJ.L. KolossvaryI. MoraesM.A. SacerdotiF.D. Scalable algorithms for molecular dynamics simulations on commodity clusters.SC’06: Proceedings of the 2006 ACM/IEEE Conference on SupercomputingIEEE20064310.1109/SC.2006.54
    [Google Scholar]
  48. ShawP.E. Review of quantitative analyses of citrus essential oils.J. Agric. Food Chem.197927224625710.1021/jf60222a032
    [Google Scholar]
  49. HosniK. ZahedN. ChrifR. AbidI. MedfeiW. KallelM. BrahimN.B. SebeiH. Composition of peel essential oils from four selected Tunisian Citrus species: Evidence for the genotypic influence.Food Chem.201012341098110410.1016/j.foodchem.2010.05.068
    [Google Scholar]
  50. FerhatM.A. MeklatiB.Y. ChematF. Comparison of different isolation methods of essential oil from Citrus fruits: Cold pressing, hydrodistillation and microwave ‘dry’ distillation.Flavour Fragrance J.200722649450410.1002/ffj.1829
    [Google Scholar]
  51. EspinaL. SomolinosM. LoránS. ConchelloP. GarcíaD. PagánR. Chemical composition of commercial citrus fruit essential oils and evaluation of their antimicrobial activity acting alone or in combined processes.Food Control201122689690210.1016/j.foodcont.2010.11.021
    [Google Scholar]
  52. DosokyN. SetzerW. Biological activities and safety of citrus spp. essential oils.Int. J. Mol. Sci.2018197196610.3390/ijms1907196629976894
    [Google Scholar]
  53. ChoiH.S. SongH.S. UkedaH. SawamuraM. Radical-scavenging activities of citrus essential oils and their components: Detection using 1,1-diphenyl-2-picrylhydrazyl.J. Agric. Food Chem.20004894156416110.1021/jf000227d10995330
    [Google Scholar]
  54. BoraH. KamleM. MahatoD.K. TiwariP. KumarP. Citrus essential oils (CEOs) and their applications in food: An overview.Plants20209335710.3390/plants903035732168877
    [Google Scholar]
  55. AmbrosioC.M.S. IkedaN.Y. MianoA.C. SaldañaE. MorenoA.M. StashenkoE. Contreras-CastilloC.J. Da GloriaE.M. Unraveling the selective antibacterial activity and chemical composition of citrus essential oils.Sci. Rep.2019911771910.1038/s41598‑019‑54084‑331776388
    [Google Scholar]
  56. BanerjeeP. EckertA.O. SchreyA.K. PreissnerR. ProTox-II: A webserver for the prediction of toxicity of chemicals.Nucleic Acids Res.201846W1W257W26310.1093/nar/gky31829718510
    [Google Scholar]
  57. FriesnerR.A. MurphyR.B. RepaskyM.P. FryeL.L. GreenwoodJ.R. HalgrenT.A. SanschagrinP.C. MainzD.T. Extra precision glide: Docking and scoring incorporating a model of hydrophobic enclosure for protein-ligand complexes.J. Med. Chem.200649216177619610.1021/jm051256o17034125
    [Google Scholar]
  58. DainaA. MichielinO. ZoeteV. SwissTargetPrediction: updated data and new features for efficient prediction of protein targets of small molecules.Nucleic Acids Res.201947W1W357W36410.1093/nar/gkz38231106366
    [Google Scholar]
  59. XiongG. WuZ. YiJ. FuL. YangZ. HsiehC. YinM. ZengX. WuC. LuA. ChenX. HouT. CaoD. ADMETlab 2.0: An integrated online platform for accurate and comprehensive predictions of ADMET properties.Nucleic Acids Res.202149W1W5W1410.1093/nar/gkab25533893803
    [Google Scholar]
  60. ParkH.S. UmY. SimS.J. LeeS.Y. WooH.M. Transcriptomic analysis of Corynebacterium glutamicum in the response to the toxicity of furfural present in lignocellulosic hydrolysates.Process Biochem.201550334735610.1016/j.procbio.2014.11.014
    [Google Scholar]
  61. GuptaG.D. MisraA. AgarwalD.K. Inhalation toxicity of furfural vapours: An assessment of biochemical response in rat lungs.J. Appl. Toxicol.199111534334710.1002/jat.25501105081783739
    [Google Scholar]
  62. CastellinoN. ElminoO. RozeraG. Experimental research on toxicity of furfural.Arch. Environ. Health19637557458210.1080/00039896.1963.1066358614058824
    [Google Scholar]
  63. ShapiraS. PlebanS. KazanovD. TiroshP. ArberN. Terpinen-4-ol: A novel and promising therapeutic agent for human gastrointestinal cancers.PLoS One2016116e015654010.1371/journal.pone.015654027275783
    [Google Scholar]
  64. MorciaC. In Vitro antifungal activity of terpinen-4-Ol, eugenol, carvone, 1,8-Cineole (Eucalyptol) and thymol against mycotoxigenic plant pathogens.Food Additives & Contaminants20111810.1080/19440049.2011.643458
    [Google Scholar]
  65. ZhangY. FengR. LiL. ZhouX. LiZ. JiaR. SongX. ZouY. YinL. HeC. LiangX. ZhouW. WeiQ. DuY. YanK. WuZ. YinZ. The antibacterial mechanism of terpinen-4-ol against streptococcus agalactiae.Curr. Microbiol.20187591214122010.1007/s00284‑018‑1512‑229804206
    [Google Scholar]
  66. MuhammadI.A. MuangchooK. MuhammadA. AjingiY.S. MuhammadI.Y. UmarI.D. MuhammadA.B. A computational study to identify potential inhibitors of SARS-CoV-2 main protease (Mpro) from eucalyptus active compounds.Computation2020837910.3390/computation8030079
    [Google Scholar]
  67. RoutJ. SwainB.C. TripathyU. In silico investigation of spice molecules as potent inhibitor of SARS-CoV-2.J. Biomol. Struct. Dyn.202240286087410.1080/07391102.2020.181987932938313
    [Google Scholar]
  68. RomeoA. IacovelliF. ScagnolariC. ScordioM. FrascaF. CondòR. AmmendolaS. GazianoR. AnselmiM. DiviziaM. FalconiM. Potential use of tea tree oil as a disinfectant agent against coronaviruses: A combined experimental and simulation study.Molecules20222712378610.3390/molecules2712378635744913
    [Google Scholar]
  69. AliA. VijayanR. Dynamics of the ACE2–SARS-CoV-2/SARS-CoV spike protein interface reveal unique mechanisms.Sci. Rep.20201011421410.1038/s41598‑020‑71188‑332848162
    [Google Scholar]
/content/journals/cad/10.2174/0115734099275132231213055138
Loading
/content/journals/cad/10.2174/0115734099275132231213055138
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test