Skip to content
2000
Volume 21, Issue 4
  • ISSN: 1573-4099
  • E-ISSN: 1875-6697

Abstract

Background

Dapagliflozin is commonly used to treat type 2 diabetes mellitus (T2DM). However, research into the specific anti-T2DM mechanisms of dapagliflozin remains scarce.

Objective

This study aimed to explore the underlying mechanisms of dapagliflozin against T2DM.

Methods

Dapagliflozin-associated targets were acquired from CTD, SwissTargetPrediction, and SuperPred. T2DM-associated targets were obtained from GeneCards and DigSee. VennDiagram was used to obtain the overlapping targets of dapagliflozin and T2DM. GO and KEGG analyses were performed using clusterProfiler. A PPI network was built by STRING database and Cytoscape, and the top 30 targets were screened using the degree, maximal clique centrality (MCC), and edge percolated component (EPC) algorithms of CytoHubba. The top 30 targets screened by the three algorithms were intersected with the core pathway-related targets to obtain the key targets. DeepPurpose was used to evaluate the binding affinity of dapagliflozin with the key targets.

Results

In total, 155 overlapping targets of dapagliflozin and T2DM were obtained. GO and KEGG analyses revealed that the targets were primarily enriched in response to peptide, membrane microdomain, protein serine/threonine/tyrosine kinase activity, PI3K-Akt signaling pathway, MAPK signaling pathway, and AGE-RAGE signaling pathway in diabetic complications. AKT1, PIK3CA, NOS3, EGFR, MAPK1, MAPK3, HSP90AA1, MTOR, RELA, NFKB1, IKBKB, ITGB1, and TP53 were the key targets, mainly related to oxidative stress, endothelial function, and autophagy. Through the DeepPurpose algorithm, AKT1, HSP90AA1, RELA, ITGB1, and TP53 were identified as the top 5 anti-targets of dapagliflozin.

Conclusion

Dapagliflozin might treat T2DM mainly by targeting AKT1, HSP90AA1, RELA, ITGB1, and TP53 through PI3K-Akt signaling.

© 2025 The Author(s). Published by Bentham Science Publishers. This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cad/10.2174/0115734099274407231207070451
2024-01-09
2025-10-19
Loading full text...

Full text loading...

/deliver/fulltext/cad/21/4/CCADD-21-4-03.html?itemId=/content/journals/cad/10.2174/0115734099274407231207070451&mimeType=html&fmt=ahah

References

  1. ColeJ.B. FlorezJ.C. Genetics of diabetes mellitus and diabetes complications.Nat. Rev. Nephrol.202016737739010.1038/s41581‑020‑0278‑532398868
    [Google Scholar]
  2. SaeediP. SalpeaP. KarurangaS. PetersohnI. MalandaB. GreggE.W. UnwinN. WildS.H. WilliamsR. Mortality attributable to diabetes in 20–79 years old adults, 2019 estimates: Results from the International Diabetes Federation Diabetes Atlas, 9th edition.Diabetes Res. Clin. Pract.202016210808610.1016/j.diabres.2020.10808632068099
    [Google Scholar]
  3. ZhouW. LiuQ. WangW. YuanX.J. XiaoC.C. YeS.D. Comprehensive network analysis reveals the targets and potential multitarget drugs of type 2 diabetes mellitus.Oxid. Med. Cell. Longev.2022202211210.1155/2022/825555035936218
    [Google Scholar]
  4. TsotraF. KappelM. PeristerisP. BaderG. LeviE. ListerN. MalhotraA. OstwaldD.A. The societal impact of early intensified treatment in patients with type 2 diabetes mellitus.J. Comp. Eff. Res.202211161185119910.2217/cer‑2022‑011036170017
    [Google Scholar]
  5. WuJ. YangK. FanH. WeiM. XiongQ. Targeting the gut microbiota and its metabolites for type 2 diabetes mellitus.Front. Endocrinol.202314111442410.3389/fendo.2023.111442437229456
    [Google Scholar]
  6. MansourA. MousaM. AbdelmannanD. TayG. HassounA. AlsafarH. Microvascular and macrovascular complications of type 2 diabetes mellitus: Exome wide association analyses.Front. Endocrinol.202314114306710.3389/fendo.2023.114306737033211
    [Google Scholar]
  7. TanD. TsengH.H.L. ZhongZ. WangS. VongC.T. WangY. Glycyrrhizic acid and its derivatives: Promising candidates for the management of type 2 diabetes mellitus and its complications.Int. J. Mol. Sci.202223191098810.3390/ijms23191098836232291
    [Google Scholar]
  8. PowellM. ClarkC. AlyakinA. VogelsteinJ.T. HartB. Exploration of residual confounding in analyses of associations of metformin use and outcomes in adults with type 2 diabetes.JAMA Netw. Open2022511e224150510.1001/jamanetworkopen.2022.4150536367726
    [Google Scholar]
  9. Vasquez-RiosG. NadkarniG.N. SGLT2 inhibitors: Emerging roles in the protection against cardiovascular and kidney disease among diabetic patients.Int. J. Nephrol. Renovasc. Dis.20201328129610.2147/IJNRD.S26881133149657
    [Google Scholar]
  10. DhillonS. Dapagliflozin: A review in type 2 diabetes.Drugs201979101135114610.1007/s40265‑019‑01148‑331236801
    [Google Scholar]
  11. ChengL. FuQ. ZhouL. FanY. LiuF. FanY. ZhangX. LinW. WuX. Dapagliflozin, metformin, monotherapy or both in patients with metabolic syndrome.Sci. Rep.20211112426310.1038/s41598‑021‑03773‑z34930986
    [Google Scholar]
  12. SaishoY. SGLT2 Inhibitors: The star in the treatment of type 2 diabetes?Diseases2020821410.3390/diseases802001432403420
    [Google Scholar]
  13. González-ClementeJ.M. García-CastilloM. Gorgojo-MartínezJ.J. JiménezA. LlorenteI. MatuteE. TejeraC. IzarraA. LecubeA. Beyond the glycaemic control of dapagliflozin: Impact on arterial stiffness and macroangiopathy.Diabetes Ther.20221371281129810.1007/s13300‑022‑01280‑635687260
    [Google Scholar]
  14. WiviottS.D. RazI. BonacaM.P. MosenzonO. KatoE.T. CahnA. SilvermanM.G. ZelnikerT.A. KuderJ.F. MurphyS.A. BhattD.L. LeiterL.A. McGuireD.K. WildingJ.P.H. RuffC.T. Gause-NilssonI.A.M. FredrikssonM. JohanssonP.A. LangkildeA.M. SabatineM.S. Dapagliflozin and cardiovascular outcomes in type 2 diabetes.N. Engl. J. Med.2019380434735710.1056/NEJMoa181238930415602
    [Google Scholar]
  15. ZelnikerT.A. RazI. MosenzonO. DwyerJ.P. HeerspinkH.H.J.L. CahnA. GoodrichE.L. ImK. BhattD.L. LeiterL.A. McGuireD.K. WildingJ.P.H. Gause-NilssonI. LangkildeA.M. SabatineM.S. WiviottS.D. Effect of dapagliflozin on cardiovascular outcomes according to baseline kidney function and albuminuria status in patients with type 2 diabetes.JAMA Cardiol.20216780181010.1001/jamacardio.2021.066033851953
    [Google Scholar]
  16. OyamaK. RazI. CahnA. GoodrichE.L. BhattD.L. LeiterL.A. McGuireD.K. WildingJ.P.H. Gause-NilssonI.A.M. MosenzonO. SabatineM.S. WiviottS.D. Efficacy and safety of dapagliflozin according to background use of cardiovascular medications in patients with type 2 diabetes.JAMA Cardiol.20227991492310.1001/jamacardio.2022.200635857296
    [Google Scholar]
  17. LiX. LinB. LinZ. MaY. WangQ. ZhengY. CuiL. LuoH. LuoL. Exploration in the mechanism of fucosterol for the treatment of non-small cell lung cancer based on network pharmacology and molecular docking.Sci. Rep.2021111490110.1038/s41598‑021‑84380‑w33649481
    [Google Scholar]
  18. YanY.C. XuZ.H. WangJ. YuW.B. Uncovering the pharmacology of Ginkgo biloba folium in the cell-type-specific targets of Parkinson’s disease.Front. Pharmacol.202213100755610.3389/fphar.2022.100755636249800
    [Google Scholar]
  19. FuY. FangY. GongS. XueT. WangP. SheL. HuangJ. Deep learning-based network pharmacology for exploring the mechanism of licorice for the treatment of COVID-19.Sci. Rep.2023131584410.1038/s41598‑023‑31380‑737037848
    [Google Scholar]
  20. WangM. TangC. ChenJ. Drug-target interaction prediction via dual laplacian graph regularized matrix completion.BioMed Res. Int.2018201811210.1155/2018/142560830627536
    [Google Scholar]
  21. NagS. BaidyaA.T.K. MandalA. MathewA.T. DasB. DeviB. KumarR. Deep learning tools for advancing drug discovery and development.3 Biotech2022125110
    [Google Scholar]
  22. HuangK. FuT. GlassL.M. ZitnikM. XiaoC. SunJ. DeepPurpose: A deep learning library for drug-target interaction prediction.Bioinformatics20213622-235545554710.1093/bioinformatics/btaa100533275143
    [Google Scholar]
  23. DavisA.P. GrondinC.J. JohnsonR.J. SciakyD. WiegersJ. WiegersT.C. MattinglyC.J. Comparative toxicogenomics database (CTD): Update 2021.Nucleic Acids Res.202149D1D1138D114310.1093/nar/gkaa89133068428
    [Google Scholar]
  24. DainaA. MichielinO. ZoeteV. SwissTargetPrediction: Updated data and new features for efficient prediction of protein targets of small molecules.Nucleic Acids Res.201947W1W357W36410.1093/nar/gkz38231106366
    [Google Scholar]
  25. GalloK. GoedeA. PreissnerR. GohlkeB.O. SuperPred 3.0: Drug classification and target prediction-a machine learning approach.Nucleic Acids Res.202250W1W726W73110.1093/nar/gkac29735524552
    [Google Scholar]
  26. CuiY. WangH. WangD. MiJ. ChenG. LiF. WangY. ZhangY. Network pharmacology analysis on the mechanism of huangqi sijunzi decoction in treating cancer-related fatigue.J. Healthc. Eng.2021202111010.1155/2021/978067735154614
    [Google Scholar]
  27. SafranM. DalahI. AlexanderJ. RosenN. Iny SteinT. ShmoishM. NativN. BahirI. DonigerT. KrugH. Sirota-MadiA. OlenderT. GolanY. StelzerG. HarelA. LancetD. GeneCards Version 3: The human gene integrator.Database20102010baq020
    [Google Scholar]
  28. KimJ. SoS. LeeH.J. ParkJ.C. KimJ.J. LeeH. DigSee: Disease gene search engine with evidence sentences (version cancer).Nucleic Acids Res.201371(Web Server issue)W510W7
    [Google Scholar]
  29. ChenH. BoutrosP.C. VennDiagram: A package for the generation of highly-customizable Venn and Euler diagrams in R.BMC Bioinformatics20111213510.1186/1471‑2105‑12‑3521269502
    [Google Scholar]
  30. YuG. WangL.G. HanY. HeQ.Y. clusterProfiler: An R package for comparing biological themes among gene clusters.OMICS201216528428710.1089/omi.2011.011822455463
    [Google Scholar]
  31. SzklarczykD. GableA.L. NastouK.C. LyonD. KirschR. PyysaloS. DonchevaN.T. LegeayM. FangT. BorkP. JensenL.J. von MeringC. Correction to ‘The STRING database in 2021: Customizable protein–protein networks, and functional characterization of user-uploaded gene/measurement sets’.Nucleic Acids Res.202149181080010.1093/nar/gkab83534530444
    [Google Scholar]
  32. TinajeroM.G. MalikV.S. An update on the epidemiology of type 2 diabetes.Endocrinol. Metab. Clin. North Am.202150333735510.1016/j.ecl.2021.05.01334399949
    [Google Scholar]
  33. AierkenA. LiB. LiuP. ChengX. KouZ. TanN. ZhangM. YuS. ShenQ. DuX. EnkhbaatarB.B. ZhangJ. ZhangR. WuX. WangR. HeX. LiN. PengS. JiaW. WangC. HuaJ. Melatonin treatment improves human umbilical cord mesenchymal stem cell therapy in a mouse model of type II diabetes mellitus via the PI3K/AKT signaling pathway.Stem Cell Res. Ther.202213116410.1186/s13287‑022‑02832‑035414044
    [Google Scholar]
  34. LiY. TangY. ShiS. GaoS. WangY. XiaoD. ChenT. HeQ. ZhangJ. LinY. Tetrahedral framework nucleic acids ameliorate insulin resistance in type 2 diabetes mellitus via the PI3K/Akt pathway.ACS Appl. Mater. Interfaces20211334403544036410.1021/acsami.1c1146834410099
    [Google Scholar]
  35. BaiY. MoK. WangG. ChenW. ZhangW. GuoY. SunZ. Intervention of gastrodin in type 2 diabetes mellitus and its mechanism.Front. Pharmacol.20211271072210.3389/fphar.2021.71072234603025
    [Google Scholar]
  36. LeY. YangJ. LiF. JiangY. WeiT. WangD. WangK. CuiX. LinX. YangK. HongT. WeiR. Dapagliflozin improves pancreatic islet function by attenuating microvascular endothelial dysfunction in type 2 diabetes.Diabetes Metab. Res. Rev.2023393e360710.1002/dmrr.360736565185
    [Google Scholar]
  37. HeX. GaoF. HouJ. LiT. TanJ. WangC. LiuX. WangM. LiuH. ChenY. YuZ. YangM. Metformin inhibits MAPK signaling and rescues pancreatic aquaporin 7 expression to induce insulin secretion in type 2 diabetes mellitus.J. Biol. Chem.2021297210100210.1016/j.jbc.2021.10100234303707
    [Google Scholar]
  38. SunX. JiG. LiP. LiW. LiJ. ZhuL. miR-344-5p modulates cholesterol-induced β-cell apoptosis and dysfunction through regulating caveolin-1 expression.Front. Endocrinol.20211269516410.3389/fendo.2021.69516434394002
    [Google Scholar]
  39. LiJ. ShangguanH. ChenX. YeX. ZhongB. ChenP. WangY. XinB. BiY. ZhuD. Advanced glycation end product levels were correlated with inflammation and carotid atherosclerosis in type 2 diabetes patients.Open Life Sci.202015136437210.1515/biol‑2020‑004233817224
    [Google Scholar]
  40. BurrS.D. StewartJ.A.Jr Rap1a Overlaps the AGE/RAGE signaling cascade to alter expression of α-SMA, p-NF-κB, and p-PKC-ζ in cardiac fibroblasts isolated from type 2 diabetic mice.Cells202110355710.3390/cells1003055733806572
    [Google Scholar]
  41. BrozK. WalkR.E. TangS.Y. Complications in the spine associated with type 2 diabetes: The role of advanced glycation end-products.Med. Nov. Technol. Devices202111
    [Google Scholar]
  42. KhalidM. AlkaabiJ. KhanM.A.B. AdemA. Insulin signal transduction perturbations in insulin resistance.Int. J. Mol. Sci.20212216859010.3390/ijms2216859034445300
    [Google Scholar]
  43. ChengK.K. AkasakiY. LecommandeurE. LindsayR.T. MurfittS. WalshK. GriffinJ.L. Metabolomic analysis of akt1-mediated muscle hypertrophy in models of diet-induced obesity and age-related fat accumulation.J. Proteome Res.201514134235210.1021/pr500756u25231380
    [Google Scholar]
  44. YinB. BiY.M. FanG.J. XiaY.Q. Molecular mechanism of the effect of huanglian jiedu decoction on type 2 diabetes mellitus based on network pharmacology and molecular docking.J. Diabetes Res.2020202012410.1155/2020/527391433134394
    [Google Scholar]
  45. LiuS.Y. ZhaoH.D. WangJ.L. HuangT. TianH.W. YaoL.F. TaoH. ChenZ.W. WangC.Y. ShengS.T. LiH. ZhaoB. LiK.S. Association between polymorphisms of the AKT 1 gene promoter and risk of the alzheimer’s disease in a chinese han population with type 2 diabetes.CNS Neurosci. Ther.201521861962510.1111/cns.1243026178916
    [Google Scholar]
  46. LiF. LiH. LiF. XiongX. GaoY. ZhangA. SongJ. HanW. NiuB. LiangH. The effect of dapagliflozin on anemia in elderly patients with heart failure by bioinformatics analysis.Technol. Health Care202311110.3233/THC‑23056337781829
    [Google Scholar]
  47. KimY.H. KwakM.S. LeeB. ShinJ.M. AumS. ParkI.H. LeeM.G. ShinJ.S. Secretory autophagy machinery and vesicular trafficking are involved in HMGB1 secretion.Autophagy20211792345236210.1080/15548627.2020.182669033017561
    [Google Scholar]
  48. ZhangH. HuangJ. FanX. MiaoR. WangY. HSP90AA1 promotes the inflammation in human gingival fibroblasts induced by Porphyromonas gingivalis lipopolysaccharide via regulating of autophagy.BMC Oral Health202222136610.1186/s12903‑022‑02304‑036028869
    [Google Scholar]
  49. YangS. NieT. SheH. TaoK. LuF. HuY. HuangL. ZhuL. FengD. HeD. QiJ. KukarT. MaL. MaoZ. YangQ. Regulation of TFEB nuclear localization by HSP90AA1 promotes autophagy and longevity.Autophagy202319382283810.1080/15548627.2022.210556135941759
    [Google Scholar]
  50. ZhangM. MaL. JiangL. GaoL. WangX. HuangY. QiX. WuY. LiuX. Paeoniflorin protects against cisplatin-induced acute kidney injury through targeting Hsp90AA1-Akt protein-protein interaction.J. Ethnopharmacol.202331011642210.1016/j.jep.2023.11642236972781
    [Google Scholar]
  51. MussbacherM. SalzmannM. BrostjanC. HoeselB. SchoergenhoferC. DatlerH. HohensinnerP. BasílioJ. PetzelbauerP. AssingerA. SchmidJ.A. Cell type-specific roles of NF-κB linking inflammation and thrombosis.Front. Immunol.2019108510.3389/fimmu.2019.0008530778349
    [Google Scholar]
  52. CuiX. QianD.W. JiangS. ShangE.X. ZhuZ.H. DuanJ.A. Scutellariae radix and coptidis rhizoma improve glucose and lipid metabolism in T2DM rats via regulation of the metabolic profiling and MAPK/PI3K/Akt signaling pathway.Int. J. Mol. Sci.20181911363410.3390/ijms1911363430453687
    [Google Scholar]
  53. LiuL. LuoH. LiangY. TangJ. ShuY. Dapagliflozin ameliorates STZ-induced cardiac hypertrophy in type 2 diabetic rats by inhibiting the calpain-1 expression and nuclear transfer of NF-κB.Comput. Math. Methods Med.2022202211110.1155/2022/329305435096128
    [Google Scholar]
  54. TedescoL. RossiF. RuoccoC. RagniM. CarrubaM.O. ValerioA. NisoliE. An original amino acid formula favours in vitro corneal epithelial wound healing by promoting Fn1, ITGB1, and PGC-1α expression.Exp. Eye Res.202221910906010.1016/j.exer.2022.10906035390334
    [Google Scholar]
  55. Ruiz-OjedaF.J. WangJ. BäckerT. KruegerM. ZamaniS. RosowskiS. GruberT. OnogiY. FeuchtingerA. SchulzT.J. FässlerR. MüllerT.D. García-CáceresC. MeierM. BlüherM. UssarS. Active integrins regulate white adipose tissue insulin sensitivity and brown fat thermogenesis.Mol. Metab.20214510114710.1016/j.molmet.2020.10114733359386
    [Google Scholar]
  56. ZhaoY.X. BorjiginS. YanZ.L. Functional annotation and enrichment analysis of differentially expressed serum proteins in patients with type 2 diabetes after dapagliflozin.World J. Diabetes202213322423910.4239/wjd.v13.i3.22435432754
    [Google Scholar]
  57. QiY. YaoR. ZhangW. CuiQ. KAT1 triggers YTHDF2-mediated ITGB1 mRNA instability to alleviate the progression of diabetic retinopathy.Pharmacol. Res.202117010571310.1016/j.phrs.2021.10571334098071
    [Google Scholar]
  58. SliwinskaA. KasznickiJ. KosmalskiM. MikolajczykM. RogalskaA. PrzybylowskaK. MajsterekI. DrzewoskiJ. Tumour protein 53 is linked with type 2 diabetes mellitus.Indian J. Med. Res.2017146223724310.4103/ijmr.IJMR_1401_1529265025
    [Google Scholar]
  59. GuoD. FangL. YuX. WangC. WangY. GuoW. Different roles of TP53 Codon 72 polymorphism in Type 2 diabetes and its complications: Evidence from a case-control study on a chinese han population.Int. J. Gen. Med.2021144259426810.2147/IJGM.S32284034393505
    [Google Scholar]
  60. HaghnazariL. SabziR. Relationship between TP53 and interleukin-6 gene variants and the risk of types 1 and 2 diabetes mellitus development in the Kermanshah province.J. Med. Life2021141374410.25122/jml‑2019‑015033767783
    [Google Scholar]
  61. SeferovićP.M. PetrieM.C. FilippatosG.S. AnkerS.D. RosanoG. BauersachsJ. PaulusW.J. KomajdaM. CosentinoF. de BoerR.A. FarmakisD. DoehnerW. LambrinouE. LopatinY. PiepoliM.F. TheodorakisM.J. WiggersH. LekakisJ. MebazaaA. MamasM.A. TschöpeC. HoesA.W. SeferovićJ.P. LogueJ. McDonaghT. RileyJ.P. MilinkovićI. PolovinaM. van VeldhuisenD.J. LainscakM. MaggioniA.P. RuschitzkaF. McMurrayJ.J.V. Type 2 diabetes mellitus and heart failure: A position statement from the heart failure association of the european society of cardiology.Eur. J. Heart Fail.201820585387210.1002/ejhf.117029520964
    [Google Scholar]
/content/journals/cad/10.2174/0115734099274407231207070451
Loading
/content/journals/cad/10.2174/0115734099274407231207070451
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test