Skip to content
2000
Volume 4, Issue 4
  • ISSN: 1573-4110
  • E-ISSN: 1875-6727

Abstract

The development of fiber optic chemical sensors based on the integrated design of novel sensitive nanocoatings combined with advanced sensing configurations is reported in the present study. Different sensitive coating materials have been exploited togheter with their deposition techniques, i.e nano-porous polymers deposited by using dip coating, carbon nanotubes deposited by Langmuir-Blodgett method and metal oxides, prepared by electrostatic spray pyrolysis. In accordance to the chemo-optical properties of these materials novel sensing schemes based on nano-coated Long Period Fiber Gratings, modified Fabry-Perot interferometers involving near field effect and photonic bandgap modification in Hollow-core Optical Fibers, have been proposed, respectively, to provide the best sensing performance. Experimental results reveal the potentiality of the integated approach that simultaneously accounts for the selection of the coating materials and of the fiber optic sensing scheme in developing optical devices for a wide range of applications related to the environmental monitoring either in air and water environments.

Loading

Article metrics loading...

/content/journals/cac/10.2174/157341108785914844
2008-10-01
2025-09-14
Loading full text...

Full text loading...

/content/journals/cac/10.2174/157341108785914844
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test