Skip to content
2000
image of TLC Identification and UPLC-Orbitrap-MS/MS Profiling Chemical Constituents of Chaenomeles sinensis and Chaenomeles speciosa Aided by Chemometrics Approaches

Abstract

Introduction

and are two closely related plant species. The confusion or adulteration between the two species is a common occurrence in the herbal market.

Method

A specific TLC method was established to distinguish from . Furthermore, a new UPLC-Orbitrap-MS/MS method was developed for their classification. This method entailed analyzing massive MS data from species, which were processed using a self-designed VBA program. The classification was facilitated by three chemometric approaches.

Results

3--Acetylursolic acid was discovered, separated, and identified from as the unique chemical marker. A TLC identification test was thus established to discriminate between these two species using this marker. All three chemometric models demonstrated robust classification of 20 samples. Subsequent structural profiling of chemical compositions in species was accomplished.

Discussion

Most of the identified compounds included triterpenoids, with nine compounds common to both species. TLC and UPLC-MS/MS methods were established for differentiating from .

Conclusion

The present study also introduces an integrated analytical workflow that merges rapid TLC prescreening with high-resolution UPLC-MS/MS fingerprinting and chemometric modelling, enabling unequivocal discrimination of phylogenetically proximate plant species.

Loading

Article metrics loading...

/content/journals/cac/10.2174/0115734110428700251130161212
2026-01-21
2026-01-31
Loading full text...

Full text loading...

References

  1. Pharmacopoeia of the People’s Republic of China: A Part China Pharmaceutical Science and Technology Press 2020 62
    [Google Scholar]
  2. Lyu M. Liu Y. Qiu Y. Yang S. Yuan H. Wang W. Differentiation between Chaenomelis Fructus and its common adulterant. Guangpi Mugua. J. AOAC Int. 2021 104 6 1652 1660 10.1093/jaoacint/qsab107 34410391
    [Google Scholar]
  3. Xu R. Kuang M. Li N. Phytochemistry and pharmacology of plants in the genus Chaenomeles. Arch. Pharm. Res. 2023 46 11-12 825 854 10.1007/s12272‑023‑01475‑w 38062238
    [Google Scholar]
  4. Kostecka-Gugała A. Quinces (Cydonia oblonga, Chaenomeles sp., and Pseudocydonia sinensis) as medicinal fruits of the Rosaceae family: Current state of knowledge on properties and use. Antioxidants 2024 13 1 71 10.3390/antiox13010071 38247495
    [Google Scholar]
  5. Liu B. Yang G. Tian W.J. Wu Z.S. Research progress of shine skin papaya. Mod. Food. 2024 30 22 80 83 10.16736/j.cnki.cn41‑1434/ts.2024.22.025
    [Google Scholar]
  6. Lou Y. Fang X. Yang Z.C. Fei J.L. Feng Y.R. Qin Z. Liu H.M. Ma Y.X. Wang X.D. Effect of vacuum frying on the structure and bioactivity of proanthocyanidins in Chinese quince (Chaenomeles sinensis Koehne) fruit. Food Chem. 2025 466 142127 10.1016/j.foodchem.2024.142127 39591776
    [Google Scholar]
  7. Zhang R. Zhan S. Li S. Zhu Z. He J. Lorenzo J.M. Barba F.J. Anti-hyperuricemic and nephroprotective effects of extracts from Chaenomeles sinensis (Thouin) Koehne in hyperuricemic mice. Food Funct. 2018 9 11 5778 5790 10.1039/C8FO01480A 30327809
    [Google Scholar]
  8. Jin J. Fan Y.J. Nguyen T.V. Yu Z.N. Song C.H. Lee S.Y. Shin H.S. Chai O.H. Chaenomeles sinensis extract ameliorates ovalbumin-induced allergic rhinitis by inhibiting the IL-33/ST2 axis and regulating epithelial cell dysfunction. Foods 2024 13 4 611 10.3390/foods13040611 38397588
    [Google Scholar]
  9. Sancheti S. Sancheti S. Bafna M. Seo S.Y. Antihyperglycemic, antihyperlipidemic, and antioxidant effects of Chaenomeles sinensis fruit extract in streptozotocin-induced diabetic rats. Eur. Food Res. Technol. 2010 231 3 415 421 10.1007/s00217‑010‑1291‑x
    [Google Scholar]
  10. Song H. Li H. Lu J. Chen M. Cao Y. Chu Q. Chaenomeles sinensis (Thouin) Koehne fruit polyphenols alleviate high-fat diet-induced obesity and liver steatosis by improving lipid metabolism in mice. Nutr. Res. 2024 123 111 119 10.1016/j.nutres.2024.01.008 38310647
    [Google Scholar]
  11. Wei F. Liu W. Yan H. Shi Y. Zhang W.J. Zhang P. Cheng X.L. Ma S.C. National wide quality surveillance and analysis of Chinese material medica and decoction pieces. Chung Kuo Yao Hsueh Tsa Chih 2015 50 4 277 283 10.11669/cpj.2015.04.001
    [Google Scholar]
  12. Jiang C.L. Xie X.M. Zhang L. Lv M.H. Chou G.X. Wang Z.T. Identification of triterpenes and flavonoids in Fructus Chaenomelis by thin-layer chromatography. Anhui Yiyao 2010 14 10 1149 1151
    [Google Scholar]
  13. Ou Y. Ma J. Zhang C.Y. Zhang L. Li Z. Wang S. Identification of Chaenomeles thibetica and determination of oleanic acid and ursolic acid. Huaxi Yaoxue Zazhi 2014 29 6 670 672 10.13375/j.cnki.wcjps.2014.06.022
    [Google Scholar]
  14. Dai Q. Ye Q.B. Luo X. Identification of chaenomelis fructus by TLC. Chin. J. Drug Eval. 2020 37 2 106 110
    [Google Scholar]
  15. Xie J.F. Zhu T.M. Tang T. Duan X.Y. Chen S.H. Improvement of TLC identification method of Chaenomelis sinensis Fructus. Asia-Pac. Tradit. Med. 2022 18 6 85 88 10.11954/ytctyy.202206017
    [Google Scholar]
  16. Yin Z.H. Zhao C. Zhang J.J. Zhang Y. Zhang W. Research progress on chemical constituents and pharmacological activities of Chaenomeles sinensis. Zhongguo Shiyan Fangjixue Zazhi 2017 23 9 221 229 10.13422/j.cnki.syfjx.2017090221
    [Google Scholar]
  17. Zhang R. Li S. Zhu Z. He J. Recent advances in valorization of Chaenomeles fruit: A review of botanical profile, phytochemistry, advanced extraction technologies and bioactivities. Trends Food Sci. Technol. 2019 91 467 482 10.1016/j.tifs.2019.07.012
    [Google Scholar]
  18. Wang X. Zhang A. Yan G. Han Y. Sun H. UHPLC-MS for the analytical characterization of traditional Chinese medicines. Trends Analyt. Chem. 2014 63 180 187 10.1016/j.trac.2014.05.013
    [Google Scholar]
  19. Liu S. Liang Y.Z. Liu H. Chemometrics applied to quality control and metabolomics for traditional Chinese medicines. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2016 1015-1016 82 91 10.1016/j.jchromb.2016.02.011 26901849
    [Google Scholar]
  20. Gnoatto S.C.B. Dassonville-Klimpt A. Da Nascimento S. Galéra P. Boumediene K. Gosmann G. Sonnet P. Moslemi S. Evaluation of ursolic acid isolated from Ilex paraguariensis and derivatives on aromatase inhibition. Eur. J. Med. Chem. 2008 43 9 1865 1877 10.1016/j.ejmech.2007.11.021 18192087
    [Google Scholar]
  21. Fang X. Wang J. Yu X. Zhang G. Zhao J. Optimization of microwave‐assisted extraction followed by RP‐HPLC for the simultaneous determination of oleanolic acid and ursolic acid in the fruits of Chaenomeles sinensis. J. Sep. Sci. 2010 33 8 1147 1155 10.1002/jssc.200900726 20183824
    [Google Scholar]
  22. Zhang S.Y. Han L.Y. Zhang H. Xin H.L. Chaenomeles speciosa: A review of chemistry and pharmacology. Biomed. Rep. 2014 2 1 12 18 10.3892/br.2013.193 24649061
    [Google Scholar]
  23. Sheng Y.J. Zhou H.L. Zhou Q. Sun L.L. Jiang H.Q. Zhang S.M. Guo F. Hou L.J. Zhang C.S. Dong S.H. Analysis on chemical constituents of fruit of Chaenomeles speciosa by UPLC-Q-Exactive Orbitrap-MS. Chin. Tradit. Herbal Drugs 2018 49 20 4773 4779 10.7501/j.issn.0253‑2670.2018.20.010
    [Google Scholar]
  24. Huang R. Ma S. Dai S. Zheng J. Application of data fusion in traditional Chinese medicine: A review. Sensors 2023 24 1 106 10.3390/s24010106 38202967
    [Google Scholar]
  25. Zheng Z.X. Hu H.W. Zheng L. Yang G.H. Fan Y.X. Guo D.L. Deng F. Quality evaluation of Citri Sarcodactylis Fructus from different origins based on HPLC fingerprint and chemometrics. Zhongguo Shiyan Fangjixue Zazhi 2021 27 21 174 180 10.13422/j.cnki.syfjx.20211551
    [Google Scholar]
  26. Li H.J. Deinzer M.L. Structural identification and distribution of proanthocyanidins in 13 different hops. J. Agric. Food Chem. 2006 54 11 4048 4056 10.1021/jf060395r 16719533
    [Google Scholar]
  27. Mullen W. Rouanet J.M. Auger C. Teissèdre P.L. Caldwell S.T. Hartley R.C. Lean M.E.J. Edwards C.A. Crozier A. Bioavailability of [2-(14)C]quercetin-4′-glucoside in rats. J. Agric. Food Chem. 2008 56 24 12127 12137 10.1021/jf802754s 19053221
    [Google Scholar]
  28. Gutzeit D. Klaubert B. Rychlik M. Winterhalter P. Jerz G. Effects of processing and of storage on the stability of pantothenic acid in sea buckthorn products (Hippophaë rhamnoides L. ssp. rhamnoides) assessed by stable isotope dilution assay. J. Agric. Food Chem. 2007 55 10 3978 3984 10.1021/jf070223+ 17447792
    [Google Scholar]
  29. Yang W. Ye M. Liu M. Kong D. Shi R. Shi X. Zhang K. Wang Q. Lantong Z. A practical strategy for the characterization of coumarins in Radix Glehniae by liquid chromatography coupled with triple quadrupole-linear ion trap mass spectrometry. J. Chromatogr. A 2010 1217 27 4587 4600 10.1016/j.chroma.2010.04.076 20537341
    [Google Scholar]
  30. Perin E.C. Crizel R.L. Galli V. da Silva Messias R. Rombaldi C.V. Chaves F.C. Extraction and quantification of abscisic acid and derivatives in strawberry by LC-MS. Food Anal. Methods 2018 11 9 2547 2552 10.1007/s12161‑018‑1224‑z
    [Google Scholar]
  31. Švehlíková V. Bennett R.N. Mellon F.A. Needs P.W. Piacente S. Kroon P.A. Bao Y. Isolation, identification and stability of acylated derivatives of apigenin 7-O-glucoside from chamomile (Chamomilla recutita [L. Rauschert). Phytochemistry 2004 65 16 2323 2332 10.1016/j.phytochem.2004.07.011 15381003
    [Google Scholar]
  32. Oleszek W. Price K.R. Colquhoun I.J. Jurzysta M. Ploszynski M. Fenwick G.R. Isolation and identification of alfalfa (Medicago sativa L.) root saponins: Their activity in relation to a fungal bioassay. J. Agric. Food Chem. 1990 38 9 1810 1817 10.1021/jf00099a006
    [Google Scholar]
  33. Xia B. Bai L. Li X. Xiong J. Xu P. Xue M. Structural analysis of metabolites of asiatic acid and its analogue madecassic acid in zebrafish using LC/IT-MSn. Molecules 2015 20 2 3001 3019 10.3390/molecules20023001 25685908
    [Google Scholar]
  34. Abdelaziz S. Hassan W.H.B. Elhassanny A.E.M. Al-Yousef H.M. Elsayed M.A. Adel R. Ultra performance liquid chromatography-tandem mass spectrometeric analysis of ethyl acetate fraction from saudi Lavandula coronopifolia Poir and evaluation of its cytotoxic and antioxidant activities. J. Herbmed. Pharmacol. 2020 9 3 268 276 10.34172/jhp.2020.34
    [Google Scholar]
  35. Sakna S.T. Mocan A. Sultani H.N. El-fiky N.M. Wessjohann L.A. Farag M.A. Metabolites profiling of Ziziphus leaf taxa via UHPLC/PDA/ESI-MS in relation to their biological activities. Food Chem. 2019 293 233 246 10.1016/j.foodchem.2019.04.097 31151607
    [Google Scholar]
  36. Duyen Vu T.P. Quan Khong T. Nguyet Nguyen T.M. Kim Y.H. Kang J.S. Phytochemical profile of Syzygium formosum (Wall.) Masam leaves using HPLC-PDA-MS/MS and a simple HPLC-ELSD method for quality control. J. Pharm. Biomed. Anal. 2019 168 1 12 10.1016/j.jpba.2019.02.014 30776566
    [Google Scholar]
  37. Huang L. Wang Z. Wang F. Wang S. Wang D. Gao M. Li H. Song M. Zhang X. Triterpenoids from the leaves of Diospyros digyna and their PTP1B inhibitory activity. Molecules 2024 29 7 1640 10.3390/molecules29071640 38611920
    [Google Scholar]
  38. Zhang Y.L. Yu G. Hu D. Zhang L. Xie X.M. Wang D. Hu H.X. Discrimination of xuanmugua and ziqiumugua by UPLC-QTRAP-MS/MS coupled with chemometrics. Trad. Chin. Drug Res. Clin. Pharmacol. 2023 34 1 96 102 10.19378/j.issn.1003‑9783.2023.01.013
    [Google Scholar]
  39. Rafi M. Karomah A.H. Septaningsih D.A. Trivadila; Rahminiwati, M.; Prama Putri, S.; Iswantini, D. LC-MS/MS based metabolite profiling and lipase enzyme inhibitory activity of Kaempferia angustifolia Rosc. with different extracting solvents. Arab. J. Chem. 2022 15 11 104232 10.1016/j.arabjc.2022.104232
    [Google Scholar]
  40. Li Z.H. Ni Q.Y. Du G.H. Identification of the major components in the effective component group of Xiao-Xu-Ming decoction by high performance liquid chromatography-electrospray ionization-mass spectrometry/mass spectrometry. Chin. J. Anal. Chem. 2007 2 233 239
    [Google Scholar]
  41. Yuan J. Wang Y. Mi S. Zhang J. Sun Y. Rapid screening and characterization of caffeic acid metabolites in rats by UHPLC-Q-TOF mass spectrometry. Trop. J. Pharm. Res. 2022 20 2 389 401 10.4314/tjpr.v20i2.25
    [Google Scholar]
  42. Rubino F.M. Dei Cas M. Bignotto M. Ghidoni R. Iriti M. Paroni R. Discovery of unexpected sphingolipids in almonds and pistachios with an innovative use of triple quadrupole tandem mass spectrometry. Foods 2020 9 2 110 10.3390/foods9020110 31972966
    [Google Scholar]
  43. Sumner L.W. Amberg A. Barrett D. Beale M.H. Beger R. Daykin C.A. Fan T.W.M. Fiehn O. Goodacre R. Griffin J.L. Hankemeier T. Hardy N. Harnly J. Higashi R. Kopka J. Lane A.N. Lindon J.C. Marriott P. Nicholls A.W. Reily M.D. Thaden J.J. Viant M.R. Proposed minimum reporting standards for chemical analysis. Metabolomics 2007 3 3 211 221 10.1007/s11306‑007‑0082‑2 24039616
    [Google Scholar]
  44. Li Y. Wang J. Li L. Song W. Li M. Hua X. Wang Y. Yuan J. Xue Z. Natural products of pentacyclic triterpenoids: From discovery to heterologous biosynthesis. Nat. Prod. Rep. 2023 40 8 1303 1353 10.1039/D2NP00063F 36454108
    [Google Scholar]
  45. Yin K. Gao H.Y. Li X.N. Wu L.J. Chemical constituents of Chaenomeles speciosa (Sweet.). Nakai. J. Shenyang Pharm. Univ. 2006 12 760 763
    [Google Scholar]
/content/journals/cac/10.2174/0115734110428700251130161212
Loading
/content/journals/cac/10.2174/0115734110428700251130161212
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test