Skip to content
2000
image of Functionalized 2D Hexaazatriphenylene as Hydrogen Storage Platform: A DFT-Guided Design Approach

Abstract

Introduction

The development of sustainable energy systems critically depends on efficient hydrogen storage materials. Conventional physisorption frameworks, such as MOFs and COFs, are constrained by weak binding energies and limited tunability, necessitating new molecular platforms with superior adsorption characteristics.

Methods

We employed density functional theory (DFT) calculations with dispersion corrections to investigate the strategic functionalization of 2D hexaazatriphenylene (HAT), a nitrogen-rich, π-conjugated macrocycle, as a next-generation hydrogen storage platform. Various substituents, including electron-donating (−Bpin, −OH), electron-withdrawing (−NO, −COH), and ambiphilic (−SF, −SOH) groups, were systematically incorporated to modulate adsorption properties.

Results

Our findings reveal that functionalized HAT derivatives synergize van der Waals interactions, quadrupole coupling, and substituent-induced polarization, achieving hydrogen binding energies of up to −8.6 kJ·mol−1, approaching the U.S. DOE target of 15 kJ·mol−1 for physisorption-based materials. The HAT-PB (−Bpin) derivative exhibited optimal non-dissociative physisorption, maintaining an H–H bond length of 0.74 Å, minimal charge transfer (−0.041 e), and tunable HOMO-LUMO gaps (6.4–7.2 eV).

Discussion

This work closes a significant research gap by presenting the first systematic study of HAT derivatives for hydrogen storage. The nitrogen-enriched core of HAT enhances charge localization, while substituent engineering provides precise control over adsorption energy and reversibility.

Conclusion

Our computational insights establish functionalized HAT frameworks as promising candidates for reversible hydrogen storage, offering a design blueprint that could accelerate the development of lightweight, high-capacity energy materials.

Loading

Article metrics loading...

/content/journals/cac/10.2174/0115734110412198250904142334
2025-09-23
2026-01-31
Loading full text...

Full text loading...

References

  1. Yazdanie M. Dramani J.B. Orehounig K. Strengthening energy system resilience planning under uncertainty by minimizing regret. RSET 2025 6 100093 10.1016/j.rset.2024.100093
    [Google Scholar]
  2. Awan T.I. Afsheen S. Mushtaq A. Introduction to Sustainable Energy and Climate Change. In: Influence of Noble Metal Nanoparticles in Sustainable Energy. Technologies. Cham Springer 2025 1 18 10.1007/978‑3‑031‑80983‑5_1
    [Google Scholar]
  3. Yuan C.Z. Zhao H.R. Huang S.Y. Zhang L. Li J. Weng Y. Sun Z.T. Zhang X. Ye S. Chen Y. Promoting the activation of H2O via vacancy defects over metal-organic framework-derived cobalt oxide for enhanced oxygen evolution. Int. J. Hydrogen Energy 2023 48 84 32598 32606 10.1016/j.ijhydene.2023.04.279
    [Google Scholar]
  4. Yu L. Tao X. Sun D. Zhang L. Wei C. Han L. Sun Z. Zhao Q. Jin H. Zhu G. In situ phase transformation to form MoO3−MoS2 heterostructure with enhanced printable sodium ion storage. Adv. Funct. Mater. 2024 34 29 2311471 10.1002/adfm.202311471
    [Google Scholar]
  5. Wang X. Lu R. Gong S. Yang S. Wang W. Sun Z. Zhang X. Liu J. Lv X. Identification of the reconstruction induced high-entropy spinel oxide nanosheets for boosting alkaline water oxygen evolution. Chem. Eng. J. 2025 503 158488 10.1016/j.cej.2024.158488
    [Google Scholar]
  6. Zhang L. Zhang N. Shang H. Sun Z. Wei Z. Wang J. Lei Y. Wang X. Wang D. Zhao Y. Sun Z. Zhang F. Xiang X. Zhang B. Chen W. High-density asymmetric iron dual-atom sites for efficient and stable electrochemical water oxidation. Nat. Commun. 2024 15 1 10.1038/s41467‑024‑53871‑5 39487139
    [Google Scholar]
  7. Seck G.S. Hache E. Sabathier J. Guedes F. Reigstad G.A. Straus J. Wolfgang O. Ouassou J.A. Askeland M. Hjorth I. Skjelbred H.I. Andersson L.E. Douguet S. Villavicencio M. Trüby J. Brauer J. Cabot C. Hydrogen and the decarbonization of the energy system in europe in 2050: A detailed model-based analysis. Renew. Sustain. Energy Rev. 2022 167 112779 10.1016/j.rser.2022.112779
    [Google Scholar]
  8. Sun H. Wang Z. Meng Q. White S. Advancements in hydrogen storage technologies: Enhancing efficiency, safety, and economic viability for sustainable energy transition. Int. J. Hydrogen Energy 2025 105 10 22 10.1016/j.ijhydene.2025.01.176
    [Google Scholar]
  9. Alabdulhadi R.A. Khan S. Khan A. Alfuhaid L.T. Khan M.Y. Usman M. Maity N. Helal A. Potential use of reticular materials (MOFs, ZIFs, and COFs) for hydrogen storage. ACS Appl. Energy Mater. 2025 8 3 1397 1413 10.1021/acsaem.4c02317
    [Google Scholar]
  10. Dubey P. Shrivastav V. Boruah T. Zoppellaro G. Zbořil R. Bakandritsos A. Sundriyal S. Unveiling the potential of covalent organic frameworks for energy storage: Developments, challenges, and future prospects. Adv. Energy Mater. 2024 14 24 2400521 10.1002/aenm.202400521
    [Google Scholar]
  11. Segura J.L. Juárez R. Ramos M. Seoane C. Hexaazatriphenylene (HAT) derivatives: From synthesis to molecular design, self-organization and device applications. Chem. Soc. Rev. 2015 44 19 6850 6885 10.1039/C5CS00181A 26168289
    [Google Scholar]
  12. Juárez R. Oliva M.M. Ramos M. Segura J.L. Alemán C. Rodríguez-Ropero F. Curcó D. Montilla F. Coropceanu V. Brédas J.L. Qi Y. Kahn A. Ruiz Delgado M.C. Casado J. López Navarrete J.T. Hexaazatriphenylene (HAT) versus tri-HAT: The bigger the better? Chemistry 2011 17 37 10312 10322 10.1002/chem.201101198 21850722
    [Google Scholar]
  13. Yan X.Y. Lin M-D. Zheng S.T. Zhan T.G. Zhang X. Zhang K-D. Zhao X. Recent advances of hexaazatriphenylene (HAT) derivatives: Their applications in self-assembly and porous organic materials. Tetrahedron Lett. 2018 59 7 592 604 10.1016/j.tetlet.2018.01.004
    [Google Scholar]
  14. Geng X. Ma H. Wang Z. Yang K. Zhang W. Zhang H. Zhang J. Song Y. Jin Y. Wang T. Jiang Y. Zhu N. Revealing active sites storage mechanism of organic C O/C N compounds for ultralong-life aqueous zinc-ion batteries. Chem. Eng. J. 2025 510 161584 10.1016/j.cej.2025.161584
    [Google Scholar]
  15. Ishi-i T. Hirashima R. Tsutsumi N. Amemori S. Matsuki S. Teshima Y. Kuwahara R. Mataka S. Expanded π-electron systems, tri(phenanthro)hexaazatriphenylenes and tri(phenanthrolino)hexaa-] zatriphenylenes, that are self-assembled to form one-dimensional aggregates. J. Org. Chem. 2010 75 20 6858 6868 10.1021/jo101212d 20860412
    [Google Scholar]
  16. Nasielski-Hinkens R. Benedek-Vamos M. Maetens D. Nasielski J. A new heterocyclic ligand for transition metals: 1,4,5,8,9,12-hexaazatriphenylene and its chromium carbonyl complexes. J. Organomet. Chem. 1981 217 2 179 182 10.1016/S0022‑328X(00)85778‑2
    [Google Scholar]
  17. Kohne B. Praefcke K. Eine neue und einfache Synthese des Dipyrazino[2,3‐ f:2′,3′‐ h]‐chinoxalin‐Ringsystems. Liebigs Ann. Chem. 1985 1985 3 522 528 10.1002/jlac.198519850312
    [Google Scholar]
  18. Okamura Y. Tanada Y. Sasano M. Akagi K. Isobe M. Tsuchiya S. Takimoto N. Kobayashi F. Tadokoro M. Kanai K. Proton conduction of a hydrothermally synthesized hexaazatriphenylene‐based covalent organic framework. Adv. Mater. Interfaces 2025 12 11 2400928 10.1002/admi.202400928
    [Google Scholar]
  19. Xu P. Jin X. Zhang B. Wang X. Liu D. An insoluble amino-functionalized hexaazatriphenylene as stable organic cathode in lithium-ion batteries. Batteries 2023 9 2 85 10.3390/batteries9020085
    [Google Scholar]
  20. Li J. Huang L. Lv H. Wang J. Wang G. Chen L. Liu Y. Guo W. Yu F. Gu T. Novel organic cathode with conjugated N-heteroaromatic structures for high-performance aqueous zinc-ion batteries. ACS Appl. Mater. Interfaces 2022 14 34 38844 38853 10.1021/acsami.2c10539 35975905
    [Google Scholar]
  21. Tang B. Shao W. Wang Y. Yang M. He Q. Research progress of triazine materials in energy storage batteries. Trans Eng. Technol. Rev. 2024 2 237 250 10.62051/ey340b93
    [Google Scholar]
  22. Huseynova G. Lee J.H. Gasonoo A. Lee H. Kim Y.H. Lee J. Efficient tandem organic light-emitting diode with fluorinated hexaazatrinaphthylene charge generation layer. J. Inf. Disp. 2022 23 4 259 266 10.1080/15980316.2022.2089751
    [Google Scholar]
  23. Yadav S. Mittal P. Negi S. An in-depth analysis of variation in characteristic performance of OLED with respect to position of charge generation layer. ECS J. Solid State Sci. Technol. 2023 12 10 106001 10.1149/2162‑8777/acfd5f
    [Google Scholar]
  24. Joo E. Hur J.W. Ko J.Y. Kim T.G. Hwang J.Y. Smith K.E. Lee H. Cho S.W. Effects of HAT-CN layer thickness on molecular orientation and energy-level alignment with ZnPc. Molecules 2023 28 9 10.3390/molecules28093821 37175231
    [Google Scholar]
  25. Park C.Y. Choi B. Enhanced hole injection characteristics of a top emission organic light-emitting diode with pure aluminum anode. Nanomaterials 2021 11 11 10.3390/nano11112869 34835634
    [Google Scholar]
  26. Kim M. Kwon B.H. Joo C.W. Cho M.S. Jang H. Metal oxide charge transfer complex for effective energy band tailoring in multilayer optoelectronics. Nat. Commun. 2022 13 10.1038/s41467‑021‑27652‑3
    [Google Scholar]
  27. Vardhan H. Rummer G. Deng A. Ma S. Large-scale synthesis of covalent organic frameworks: Challenges and opportunities. Membranes 2023 13 8 10.3390/membranes13080696 37623757
    [Google Scholar]
  28. Wang Y. Shahbeik H. Moradi A. Rafiee S. Shafizadeh A. Khoshnevisan B. Ghafarian Nia S.A. Nadian M.H. Li M. Pan J. Tabatabaei M. Aghbashlo M. Predictive modeling for hydrogen storage in functionalized carbonaceous nanomaterials using machine learning. J. Energy Storage 2024 97 112914 10.1016/j.est.2024.112914
    [Google Scholar]
  29. Hector L.G. Herbst J.F. Density functional theory for hydrogen storage materials: Successes and opportunities. J. Phys. Condens. Matter 2008 20 6 064229 10.1088/0953‑8984/20/6/064229
    [Google Scholar]
  30. DiLabio G.A. Johnson E.R. Otero-de-la-Roza A. Performance of conventional and dispersion-corrected density-functional theory methods for hydrogen bonding interaction energies. Phys. Chem. Chem. Phys. 2013 15 31 12821 12828 10.1039/c3cp51559a 23803877
    [Google Scholar]
  31. Sarohan N. Ozbek M.O. Kaya Y. Abdellatief M. Ipek B. Hydrogen adsorption on Co2+ - and Ni2+- exchanged -US-Y and -ZSM-5. A combined sorption, DR UV–Vis, synchrotron XRD and DFT study. Int. J. Hydrogen Energy 2022 47 75 32181 32201 10.1016/j.ijhydene.2022.07.130
    [Google Scholar]
  32. Gaussian 09, Revision d. 01, Gaussian. 2010 Available from:https://cir.nii.ac.jp/crid/1370298757422456580
  33. Zhao Y. Truhlar D.G. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: Two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor. Chem. Acc. 2008 120 1-3 215 241 10.1007/s00214‑007‑0310‑x
    [Google Scholar]
  34. O’boyle N.M. Tenderholt A.L. Langner K.M. cclib: A library for package‐independent computational chemistry algorithms. J. Comput. Chem. 2008 29 5 839 845 10.1002/jcc.20823 17849392
    [Google Scholar]
  35. Lu T. Chen F. Multiwfn: A multifunctional wavefunction analyzer. J. Comput. Chem. 2012 33 5 580 592 10.1002/jcc.22885 22162017
    [Google Scholar]
  36. Becke A.D. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 1993 98 7 5648 5652 10.1063/1.464913
    [Google Scholar]
  37. Chai J.D. Head-Gordon M. Long-range corrected hybrid density functionals with damped atom–atom dispersion corrections. Phys. Chem. Chem. Phys. 2008 10 44 6615 6620 10.1039/b810189b 18989472
    [Google Scholar]
  38. Bang S. Jang J.Y. Ko Y.J. Lee S.M. Kim H.J. Son S.U. Hydroboration of hollow microporous organic polymers: A promising postsynthetic modification method for functional materials. ACS Macro Lett. 2022 11 8 1034 1040 10.1021/acsmacrolett.2c00385 35912468
    [Google Scholar]
  39. Kim J.G. Kang O.Y. Kim S.M. Issabayeva G. Oh I.S. Lee Y. Lee W.H. Lim H.J. Park S.J. Synthesis and properties of pentafluorosulfanyl group (SF5)-containing meta-diamide insecticides. Molecules 2020 25 23 10.3390/molecules25235536 33255851
    [Google Scholar]
  40. Refaat A. Elhaes H. Ibrahim M.A. Effect of alkali metals on physical and spectroscopic properties of cellulose. Sci. Rep. 2023 13 1 10.1038/s41598‑023‑48850‑7 38066105
    [Google Scholar]
  41. Ahmad I. Pawara R.H. Girase R.T. Pathan A.Y. Jagatap V.R. Desai N. Ayipo Y.O. Surana S.J. Patel H. Synthesis, molecular modeling study, and quantum-chemical-based investigations of isoindoline-1,3-diones as antimycobacterial agents. ACS Omega 2022 7 25 21820 21844 10.1021/acsomega.2c01981 35785272
    [Google Scholar]
  42. Bolen E. Dolado J.S. Ayuela A. Cl-, Na+ and Mg2+ adsorption and electronic properties on 2-octyl acrylate and isobornyl acrylate monomers: A comprehensive DFT study. Polymers 2025 17 6 10.3390/polym17060799 40292635
    [Google Scholar]
  43. Gomaa I. Hosny N.M. Elhaes H. Ezzat H.A. Elmahgary M.G. Ibrahim M.A. Two-dimensional MXene as a promising adsorbent for trihalomethanes removal: A density-functional theory study. Nanomaterials 2024 14 5 454 10.3390/nano14050454 38470784
    [Google Scholar]
  44. Liu F. Proynov E. Yu J.G. Furlani T.R. Kong J. Comparison of the performance of exact-exchange-based density functional methods. J. Chem. Phys. 2012 137 11 114104 10.1063/1.4752396 22998246
    [Google Scholar]
  45. Schneebeli S.T. Bochevarov A.D. Friesner R.A. Parameterization of a B3LYP specific correction for non-covalent interactions and basis set superposition error on a gigantic dataset of CCSD(T) quality non-covalent interaction energies. J. Chem. Theory Comput. 2011 7 3 658 668 10.1021/ct100651f 22058661
    [Google Scholar]
  46. Yamada K. Inokuma T. Evaluation of quantum chemistry calculation methods for conformational analysis of organic molecules using A -value estimation as a benchmark test. RSC Advances 2023 13 51 35904 35910 10.1039/D3RA06783A 38090087
    [Google Scholar]
  47. Chen Y.C. Sihag A. Sarkar R. Chen T.Y. Dyer M.S. Tseng F.G. Tiffany Chen H.Y. Hydrogen adsorption, migration and desorption on amorphous carbon: A DFT and AIMD study. Mater. Chem. Phys. 2024 325 129711 10.1016/j.matchemphys.2024.129711
    [Google Scholar]
  48. Glendening E.D. Landis C.R. Weinhold F. NBO 6.0: Natural bond orbital analysis program. J. Comput. Chem. 2013 34 16 1429 1437 10.1002/jcc.23266 23483590
    [Google Scholar]
  49. Jiang J. Yang D. Zeng W. Wang Z. Zhou Q. Novel gas sensing mechanisms of Pd and Rh-doped h-BN monolayers for detecting dissolved gases (H2、CH4、and C2H4) in transformer oil. Front Chem. 2024 12 1507905 10.3389/fchem.2024.1507905 39712945
    [Google Scholar]
  50. Yang J. Zhang M. Zhang Y. Gao M. Gao M. Wang K. Song Z. Liu Z. Wang Z. Shen B. Density functional theory study of adsorption and dissociation of CH2Cl2 on the surfaces of transition metal (Fe, Co, Ni, and Cu)-doped carbon nanotubes. Chemical Physics Impact 2024 8 100437 10.1016/j.chphi.2023.100437
    [Google Scholar]
  51. Sah M. Khadka M. Lamichhane H.P. Mallik H.S. Physical analysis of aspirin in different phases and states using density functional theory. Heliyon 2024 10 11 32610 10.1016/j.heliyon.2024.e32610 38961960
    [Google Scholar]
  52. Sallam H.H. Mohammed Y.H.E. Al-Ostoot F.H. Sridhar M.A. Khanum S.A. Synthesis, structure analysis, DFT calculations, Hirshfeld surface studies, and energy frameworks of 6-Chloro-3-[(4-chloro-3-methylphenoxy)methyl][1,2,4]triazolo[4,3-b]pyridazine. J. Mol. Struct. 2021 1237 130282 10.1016/j.molstruc.2021.130282
    [Google Scholar]
  53. Mahdavifar M. Khoeini F. Peeters F.M. Phosphorene junctions as a platform for spin-selective quantum dots in next-generation devices. J. Appl. Phys. 2024 136 18 184301 10.1063/5.0234025
    [Google Scholar]
  54. Dronskowski R. Bloechl P.E. Crystal orbital Hamilton populations (COHP): Energy-resolved visualization of chemical bonding in solids based on density-functional calculations. J. Phys. Chem. 1993 97 33 8617 8624 10.1021/j100135a014
    [Google Scholar]
  55. Maintz S. Deringer V.L. Tchougréeff A.L. Dronskowski R. LOBSTER: A tool to extract chemical bonding from plane‐wave based DFT. J. Comput. Chem. 2016 37 11 1030 1035 10.1002/jcc.24300 26914535
    [Google Scholar]
/content/journals/cac/10.2174/0115734110412198250904142334
Loading
/content/journals/cac/10.2174/0115734110412198250904142334
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test