Skip to content
2000
image of Synthesis, Antioxidant Evaluation, and Electrochemical Behavior of Novel Schiff Base-Metal Complexes

Abstract

Introduction

This study presents the synthesis and evaluation of five novel Schiff base–metal complexes containing Cu2+, Cr3+, Co2+, Fe3+, and Hg2+ ions coordinated to a bis(indole)-based Schiff base ligand. The aim was to investigate their antioxidant and electrochemical properties in a comparative framework.

Methods

The complexes were synthesized from indole-3-carbaldehyde and trans-cyclohexane-1,2-diamine and characterized using FT-IR spectroscopy. Antioxidant activities were assessed by DPPH, ABTS, and CUPRAC assays. Electrochemical behavior was analyzed by cyclic voltammetry using a glassy carbon electrode in TBAP/DMSO electrolyte medium.

Results

The Cu(II) complex exhibited the highest DPPH radical scavenging activity, while the Cr(III), Co(II), and the free Schiff base showed superior ABTS activity compared to the standard antioxidant BHA. The free ligand also demonstrated CUPRAC activity comparable to BHA. Cyclic voltammetry revealed that all metal complexes exhibited anodic shifts in oxidation peaks relative to the free ligand. Additionally, the Cu(II) and Co(II) complexes showed extra redox waves, indicating unique redox-active behavior.

Discussion

These findings suggest that metal coordination alters the electron-donating capacity of the Schiff base ligand and enables tunable redox behavior. The observed differences across metal ions underscore their role in defining both antioxidant potential and electrochemical reactivity.

Conclusion

The synthesized Schiff base-metal complexes possess significant antioxidant activity and diverse redox properties, particularly the Cu(II) and Co(II) derivatives. These characteristics make them promising candidates for applications in redox-sensitive medicinal and analytical technologies.

Loading

Article metrics loading...

/content/journals/cac/10.2174/0115734110408174251006160757
2025-10-27
2026-02-01
Loading full text...

Full text loading...

References

  1. Jiang M. Su X. Zhong X. Lan Y. Yang F. Qin Y. Jiang C. Recent development of Schiff-base metal complexes as therapeutic agents for lung cancer. J. Mol. Struct. 2024 1318 139403 10.1016/j.molstruc.2024.139403
    [Google Scholar]
  2. Boulechfar C. Ferkous H. Delimi A. Djedouani A. Kahlouche A. Boublia A. Darwish A.S. Lemaoui T. Verma R. Benguerba Y. Schiff bases and their metal Complexes: A review on the history, synthesis, and applications. Inorg. Chem. Commun. 2023 150 110451 10.1016/j.inoche.2023.110451
    [Google Scholar]
  3. Sankara Narayanan V. Dhawa S. Sukumaran A. Ganesh B.H. Rajendran J. Bobba K.N. Ramani P. A preliminary investigation of thermally stable Schiff base metal complexes for hyperthermia: Synthesis and biological evaluation. Antioxidants 2024 13 12 1586 10.3390/antiox13121586 39765913
    [Google Scholar]
  4. Ramani P. Rajendran G. Rajendran A. Advances in antioxidant activity analysis for food application. Natural antioxidants to enhance the shelf-life of food. Developments in Food Quality and Safety 2024 1 27 10.1016/B978‑0‑443‑15386‑0.00001‑1
    [Google Scholar]
  5. Thamaraichelvan G. Sambamoorthy S. Synthesis, characterisation, DFT studies and electrochemical and biological application studies of a new Schiff base based on from naphthalene-1,8-diamine and its Co(II), Ni(II), Cu(II) and Zn(II) complexes. Orient. J. Chem. 2024 40 6 1786 1795 10.13005/ojc/400631
    [Google Scholar]
  6. Janowska S. Khylyuk D. Janowski M. Kosikowska U. Strzyga-Łach P. Struga M. Wujec M. Synthesis and biological evaluation of new Schiff bases derived from 4-amino-5-(3-fluorophenyl)-1,2,4-triazole-3-thione. Molecules 2023 28 6 2718 10.3390/molecules28062718 36985690
    [Google Scholar]
  7. Radhakrishnan S. Balakrishnan R. Selvaraj A. A comparative study on biological activity of Schiff bases derived from 2-(2-amino)-3-(1H-indol-3-yl)propanoic acid. Orient. J. Chem. 2020 36 4 780 787 10.13005/ojc/360426
    [Google Scholar]
  8. Chen Y. Mi Y. Li Q. Dong F. Guo Z. Synthesis of Schiff bases modified inulin derivatives for potential antifungal and antioxidant applications. Int. J. Biol. Macromol. 2020 143 714 723 10.1016/j.ijbiomac.2019.09.127 31726150
    [Google Scholar]
  9. Uluçam G. Okan Ş.E. Aktaş Ş. Yentürk B. New Schiff-base ligands containing thiophene terminals: Synthesis, characterization and biological activities. J. Mol. Struct. 2021 1230 129941 10.1016/j.molstruc.2021.129941
    [Google Scholar]
  10. Hamza A.S. Abd Allatif N.A.A. Karim S.A. Synthesis of new imides and study of their antioxidant activity. Adv. J. Chem. Sect. 2024 7 6 834 841 10.48309/AJCA.2024.464127.1569
    [Google Scholar]
  11. Fadhel A.M. Al Hamdani A.A.S. Historical background, literature review on the synthesis and applicability of azo-dye compounds: An extensive review. Adv. J. Chem. Sect. 2024 7 6 687 724 10.48309/ajca.2024.457840.1527
    [Google Scholar]
  12. Abdulrazzaq A.G. Al-Hamdani A.A.S. Ni2+, Pt4+, Pd2+, and Mn2+ metal ions complexes with azo derived from quinolin-2-ol and 3-amino-N-(5-methylisoxazol-3-yl) benzenesulfonamide: Synthesis, characterization, thermal study, and antioxidant activity. Baghdad Sci. J. 2023 20 6 15 10.21123/bsj.2023.7708
    [Google Scholar]
  13. Alosaimi E.H. Synthesis, spectroscopic, biological and structural characterizations for the gold(III), platinum(IV), and ruthenium(III) ceftriaxone drug complexes. Bull. Chem. Soc. Ethiop. 2024 38 4 937 948 10.4314/bcse.v38i4.10
    [Google Scholar]
  14. Abdulrazzaq A.G. Al-Hamdani A.A.S. Cr (III), Fe (III), Co (II) and Cu(II)Metal ions complexes with azo compound derived from 2-hydroxy quinolin synthesis, characterization, thermal study and antioxidant activity. IHJPAS 2023 36 3 214 230 10.30526/36.3.3068
    [Google Scholar]
  15. Abdullah S.A.H. Shia J.S. Synthesis of some metal ion complexes of new imidazole derivative, characterization, and biological activity. Bull. Chem. Soc. Ethiop. 2024 38 6 1681 1690 10.4314/bcse.v38i6.14
    [Google Scholar]
  16. Yahya W.I. Mgheed T.H. Kadhium A.J. Preparation, characterization of some metal complexes of new mixed ligands derived from 5-methyl imidazole and study the biological activity of palladium (II) complex as anticancer. Neuroquantology 2022 20 1 71 83 10.14704/nq.2022.20.1.NQ22010
    [Google Scholar]
  17. Khalil M. Jamil I. Khan S. Rehman S.U. Ahmad F. An easy approach to the understanding of complex electrochemistry equations for evaluating catalyst: Part I. Characterization of oxygen reduction reaction (ORR) catalysts. Mater. Chem. Mech. 2024 1 1 39 57 10.22034/mcm.2023.1.4
    [Google Scholar]
  18. Al-Ajili A.A. Karim S.A. Synthesis and characterization of new (bis) Schiff base derivatives based on adamantane and evaluation of antioxidant activity. J. Med. Pharm. Chem. Res. 2023 5 7 748 757 10.22034/ecc.2023.395623.1630
    [Google Scholar]
  19. Bashandeh Z. Hachem K. Khalaji A.D. Alsaikhan F. Bokov D.O. Removal of methyl green using new modified epichlorohydrine chitosan Schiff base as an efficient adsorbent. Cellulose 2022 29 9 5177 5189 10.1007/s10570‑022‑04590‑x
    [Google Scholar]
  20. Yadav M. Sharma S. Devi J. Designing, spectroscopic characterization, biological screening and antioxidant activity of mononuclear transition metal complexes of bidentate Schiff base hydrazones. J. Chem. Sci. 2021 133 1 21 10.1007/s12039‑020‑01854‑6
    [Google Scholar]
  21. Hassan N.S. Mahdi W.K. Spectroscopic and antimicrobial studies of some metal complexes of furfural Schiff base derivative ligand. Chemical Methodologies 2023 7 6 419 434 10.22034/CHEMM.2023.385342.1652
    [Google Scholar]
  22. Ismail A.A. Lateef S.M. Structural, characterization, and biological activity of novel Schiff base ligand derived from pyridoxal with 2-aminobenzothiazole and its complexes. Chem. Methodol. 2022 6 1007 1022 10.22034/chemmethod.2022.157242
    [Google Scholar]
  23. Al-Shammari W.A.M. Lateef S.M. Synthesis, structural, thermal and biological studies of ligand derived from anthrone with 4-aminoantipyrine and its metallic complexes. Chem. Methodol. 2022 6 548 559 10.22034/CHEMM.2022.339536.149
    [Google Scholar]
  24. Ceyhan G. Çelik C. Uruş S. Demirtaş İ. Elmastaş M. Tümer M. Antioxidant, electrochemical, thermal, antimicrobial and alkane oxidation properties of tridentate Schiff base ligands and their metal complexes. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2011 81 1 184 198 10.1016/j.saa.2011.05.106 21752697
    [Google Scholar]
  25. Maghraoui N. Aggoun D. Bouzerafa B. Bezzi H. Ouennoughi Y. López D. Fernández García M. Ourari A. Mubarak M.S. Synthesis, characterization, thermal stability, electrochemical behavior, and antioxidant activity of new oxovanadium(iv) and iron(ii) tetradentate Schiff base complexes. Arab. J. Chem. 2021 14 3 103025 10.1016/j.arabjc.2021.103025
    [Google Scholar]
  26. Bougossa I. Aggoun D. Ourari A. Berenguer R. Bouacida S. Morallón E. Synthesis and characterization of a novel non-symmetrical bidentate Schiff base ligand and its Ni(II) complex: electrochemical and antioxidant studies. Chem. Pap. 2020 74 11 3825 3837 10.1007/s11696‑020‑01200‑7
    [Google Scholar]
  27. Çağlar Dalyan A. Kaya İ. Synthesis of carbazole-based Schiff base and fluorescence turn on sensor sensitive to Cr3+ ion: Oxidative and electrochemical polymerization and investigation of electrochromic properties. Eur. Polym. J. 2024 215 113198 10.1016/j.eurpolymj.2024.113198
    [Google Scholar]
  28. Taha A. Hashmi A.A. Synthesis, characterization, catalytic activity of Schiff base Cu-Complex and Ni-Complex for aromatic nitro compounds and methyl orange reduction. Next Materials 2025 8 100649 10.1016/j.nxmate.2025.100649
    [Google Scholar]
  29. Aburas N. Lolić A. Stevanović N. Tripković T. Nikolić-Mandić S. Baošić R. Electrochemical behavior and antioxidant activity of tetradentate Schiff bases and their copper(II) complexes. J. Indian Chem. Soc. 2012 9 6 859 864 10.1007/s13738‑012‑0102‑7
    [Google Scholar]
  30. Galini M. Salehi M. Kubicki M. Amiri A. Khaleghian A. Structural characterization and electrochemical studies of Co(II), Zn(II), Ni(II) and Cu(II) Schiff base complexes derived from 2-((E)-(2-methoxyphenylimino)methyl)-4-bromophenol; Evaluation of antioxidant and antibacterial properties. Inorg. Chim. Acta 2017 461 167 173 10.1016/j.ica.2017.02.001
    [Google Scholar]
  31. Soltani S. Akhbari K. White J. Synthesis, crystal structure, magnetic, photoluminescence and antibacterial properties of dinuclear Copper(II) complex. J. Mol. Struct. 2020 1214 128233 10.1016/j.molstruc.2020.128233
    [Google Scholar]
  32. Aragón-Muriel A. Reyes-Márquez V. Cañavera-Buelvas F. Parra-Unda J.R. Cuenú-Cabezas F. Polo-Cerón D. Colorado-Peralta R. Suárez-Moreno G.V. Aguilar-Castillo B.A. Morales-Morales D. Pincer complexes derived from tridentate Schiff bases for their use as antimicrobial metallopharmaceuticals. Inorganics (Basel) 2022 10 9 134 10.3390/inorganics10090134
    [Google Scholar]
  33. Pervaiz M. Riaz A. Munir A. Saeed Z. Hussain S. Rashid A. Younas U. Adnan A. Synthesis and characterization of sulfonamide metal complexes as antimicrobial agents. J. Mol. Struct. 2020 1202 127284 10.1016/j.molstruc.2019.127284
    [Google Scholar]
  34. Pervaiz M. Sadiq S. Sadiq A. Younas U. Ashraf A. Saeed Z. Zuber M. Adnan A. Azo-Schiff base derivatives of transition metal complexes as antimicrobial agents. Coord. Chem. Rev. 2021 447 214128 10.1016/j.ccr.2021.214128
    [Google Scholar]
  35. Alterhoni E. Tavman A. Hacioglu M. Şahin O. Seher Birteksöz Tan A. Synthesis, structural characterization and antimicrobial activity of Schiff bases and benzimidazole derivatives and their complexes with CoCl2, PdCl2, CuCl2 and ZnCl2. J. Mol. Struct. 2021 1229 129498 10.1016/j.molstruc.2020.129498
    [Google Scholar]
  36. Alheety M.A. Mohammed L.A. Farhan M.A. Dadoosh S.A. Majeed A.H. Mahmood A.S. Mahmoud Z.H. A review on benzimidazole heterocyclic compounds: Synthesis and their medicinal activity applications. SynOpen 2023 7 4 652 673 10.1055/a‑2155‑9125
    [Google Scholar]
  37. Soroceanu A. Bargan A. Advanced and biomedical applications of Schiff-base ligands and their metal complexes: A review. Crystals (Basel) 2022 12 10 1436 10.3390/cryst12101436
    [Google Scholar]
  38. Nath B.D. Islam M.M. Karim M.R. Rahman S. Shaikh M.A.A. Georghiou P.E. Menelaou M. Recent progress in metal-incorporated acyclic Schiff-base derivatives: Biological aspects. ChemistrySelect 2022 7 14 202104290 10.1002/slct.202104290
    [Google Scholar]
  39. Al-Obaidi O.H.S. Synthesis, characterization and theoretical treatment of sandwich Schiff bases complexes derived from salicylaldehyde with some transition metals and study of its biological activity. Int. J. Chemtech Res. 2012 3 2 1
    [Google Scholar]
  40. Singh B.K. Mishra P. Prakash A. Bhojak N. Spectroscopic, electrochemical and biological studies of the metal complexes of the Schiff base derived from pyrrole-2-carbaldehyde and ethylenediamine. Arab. J. Chem. 2017 10 S472 S483.(Suppl. 1) 10.1016/j.arabjc.2012.10.007
    [Google Scholar]
  41. Salehi M. Hasanzadeh M. Characterization, crystal structures, electrochemical and antibacterial studies of four new binuclear cobalt(III) complexes derived from o-aminobenzyl alcohol. Inorg. Chim. Acta 2015 426 6 14 10.1016/j.ica.2014.10.023
    [Google Scholar]
  42. Habibi M.H. Mokhtari R. Mikhak M. Amirnasr M. Amiri A. Synthesis, spectral and electrochemical studies of Cu(II) and Ni(II) complexes with new N2O2 ligands: A new precursor capable of depositing copper nanoparticles using thermal reduction. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2011 79 5 1524 1527 10.1016/j.saa.2011.05.010 21641857
    [Google Scholar]
  43. Meghdadi S. Amirnasr M. Majedi M. Bagheri M. Amiri A. Abbasi S. Mereiter K. Template synthesis, and X-ray crystal structures of copper(II) and nickel(II) complexes of new unsymmetrical tetradentate Schiff base ligands. Electrochemistry, antibacterial properties, and metal ion effect on hydrolysis–recondensation of the ligand. Inorg. Chim. Acta 2015 437 64 69 10.1016/j.ica.2015.08.006
    [Google Scholar]
  44. Anthonysamy A. Balasubramanian S. Synthesis, spectral, thermal and electrochemical studies of nickel (II) complexes with N2O2 donor ligands. Inorg. Chem. Commun. 2005 8 10 908 911 10.1016/j.inoche.2005.06.026
    [Google Scholar]
  45. Jadhav S.M. Shelke V.A. Munde A.S. Shankarwar S.G. Patharkar V.R. Chondhekar T.K. Chondhekar T.K. Synthesis, characterization, potentiometry, and antimicrobial studies of transition metal complexes of a tridentate ligand. J. Coord. Chem. 2010 63 23 4153 4164 10.1080/00958972.2010.529136
    [Google Scholar]
  46. Alomari A.A. Ibrahim M.M. Mohamed M.E. Schiff bases of hydroxyacetophenones and their copper(II) and nickel(II) complexes: Synthesis, antioxidant activity and theoretical study. Asian J. Chem. 2016 28 11 2505 2511 10.14233/ajchem.2016.20055
    [Google Scholar]
  47. Pham N. M. Q. Vuong Q. V. Sakoff J. A. Bowyer M. C. Le V. A. Scarlett C. J. Determination of bioactive compounds, antioxidant and anticancer activities of Tuckeroo (Cupaniopsis anacardioides) fruits. 3 Biotech 2022 10 12 10 257.Oct 10.1007/s13205‑022‑03314‑z
    [Google Scholar]
  48. Sönmez M. Hacıyusufoğlu M.E. Levent A. Zengin H. Zengin G. Synthesis of pyrimidine Schiff base transition metal complexes: characterization, spectral and electrochemical analyses, and photoluminescence properties. Res. Chem. Intermed. 2018 44 9 5531 5546 10.1007/s11164‑018‑3438‑5
    [Google Scholar]
  49. Ilhan S. Baykara H. Seyitoglu M.S. Levent A. Özdemir S. Dündar A. Öztomsuk A. Cornejo M.H. Preparation, spectral studies, theoretical, electrochemical and antibacterial investigation of a new Schiff base and its some metal complexes. J. Mol. Struct. 2014 1075 32 42 10.1016/j.molstruc.2014.06.062
    [Google Scholar]
  50. Warad I. Ali O. Al Ali A. Jaradat N.A. Hussein F. Abdallah L. Al-Zaqri N. Alsalme A. Alharthi F.A. Synthesis and spectral identification of three Schiff bases with a 2-(piperazin-1-yl)-N-(thiophen-2-yl methylene)ethanamine moiety acting as novel pancreatic lipase inhibitors: Thermal, DFT, antioxidant, antibacterial, and molecular docking investigations. Molecules 2020 25 9 2253 10.3390/molecules25092253 32403218
    [Google Scholar]
  51. Poormohammadi E.B. Behzad M. Abbasi Z. Astaneh S.D.A. Copper complexes of pyrazolone-based Schiff base ligands: Synthesis, crystal structures and antibacterial properties. J. Mol. Struct. 2020 1205 127603 10.1016/j.molstruc.2019.127603
    [Google Scholar]
  52. Shi J. Ge H. Song F. Guo S. Synthesis, characterization, crystal structure and antibacterial activity studies of cobalt(II) and zinc(II) complexes containing halogen quinoline Schiff base ligand. J. Mol. Struct. 2022 1253 132263 10.1016/j.molstruc.2021.132263
    [Google Scholar]
  53. Zinman P.S. Welsh A. Omondi R.O. Khan S. Prince S. Nordlander E. Smith G.S. Aminoquinoline-based Re(I) tricarbonyl complexes: Insights into their antiproliferative activity and mechanisms of action. Eur. J. Med. Chem. 2024 266 116094 10.1016/j.ejmech.2023.116094 38219660
    [Google Scholar]
  54. Shekhar S. Khan A.M. Sharma S. Sharma B. Sarkar A. Schiff base metallodrugs in antimicrobial and anticancer chemotherapy applications: a comprehensive review. Emergent Mater. 2022 5 2 279 293 10.1007/s42247‑021‑00234‑1
    [Google Scholar]
  55. Malik M.A. Dar O.A. Gull P. Wani M.Y. Hashmi A.A. Heterocyclic Schiff base transition metal complexes in antimicrobial and anticancer chemotherapy. MedChemComm 2018 9 3 409 436 10.1039/C7MD00526A 30108933
    [Google Scholar]
  56. Yousif E. Majeed A. Al-Sammarrae K. Salih N. Salimon J. Abdullah B. Metal complexes of Schiff base: Preparation, characterization and antibacterial activity. Arab. J. Chem. 2017 10 S1639 S1644.(Suppl. 2) 10.1016/j.arabjc.2013.06.006
    [Google Scholar]
  57. Bursal E. Turkan F. Buldurun K. Turan N. Aras A. Çolak N. Murahari M. Yergeri M.C. Transition metal complexes of a multidentate Schiff base ligand containing pyridine: synthesis, characterization, enzyme inhibitions, antioxidant properties, and molecular docking studies. Biometals 2021 34 2 393 406 10.1007/s10534‑021‑00287‑z 33528765
    [Google Scholar]
  58. Murphy B.L. Marker S.C. Lambert V.J. Woods J.J. MacMillan S.N. Wilson J.J. Synthesis, characterization, and biological properties of rhenium(I) tricarbonyl complexes bearing nitrogen-donor ligands. J. Organomet. Chem. 2020 907 121064 10.1016/j.jorganchem.2019.121064
    [Google Scholar]
  59. Lv L. Zheng T. Tang L. Wang Z. Liu W. Recent advances of Schiff base metal complexes as potential anticancer agents. Coord. Chem. Rev. 2025 525 216327 10.1016/j.ccr.2024.216327
    [Google Scholar]
  60. Abd-El-Aziz A. Li Z. Zhang X. Elnagdy S. Mansour M.S. ElSherif A. Ma N. Abd-El-Aziz A.S. Advances in coordination chemistry of Schiff base complexes: A journey from nanoarchitectonic design to biomedical applications. Top. Curr. Chem. (Cham) 2025 383 1 8 10.1007/s41061‑025‑00489‑w 39900838
    [Google Scholar]
  61. Golbedaghi R. Tabanez A.M. Esmaeili S. Fausto R. Biological applications of macrocyclic Schiff base ligands and their metal complexes: A survey of the literature (2005–2019). Appl. Organomet. Chem. 2020 34 10 5884 10.1002/aoc.5884
    [Google Scholar]
  62. Savir S. Wei Z.J. Liew J.W.K. Vythilingam I. Lim Y.A.L. Saad H.M. Sim K.S. Tan K.W. Synthesis, cytotoxicity and antimalarial activities of thiosemicarbazones and their nickel (II) complexes. J. Mol. Struct. 2020 1211 128090 10.1016/j.molstruc.2020.128090
    [Google Scholar]
  63. Kumar B. Devi J. Dubey A. Tufail A. Sharma S. Exploring the antimalarial, antioxidant, anti-inflammatory activities of newly synthesized transition metal(II) complexes bearing thiosemicarbazone ligands: Insights from molecular docking, DFT, MESP and ADMET studies. Inorg. Chem. Commun. 2024 159 111674 10.1016/j.inoche.2023.111674
    [Google Scholar]
  64. Dalal M. Antil N. Kumar B. Garg S. Unveiling the therapeutic potential of organotellurium(IV) Schiff base complexes through structural elucidation, antimalarial, antioxidant and antimicrobial studies. J. Mol. Struct. 2024 1313 138558 10.1016/j.molstruc.2024.138558
    [Google Scholar]
  65. Hu M. Wang X. Wang C. Chu H. Song X. Dong G. Zhang J. Xing J. Synthesis and structure characterization of boron complexes containing C2-symmetric tertiary amine ligands: Assessment catalytic degradation of dyes and antioxidant properties. J. Mol. Struct. 2025 1334 141842 10.1016/j.molstruc.2025.141842
    [Google Scholar]
  66. Abu-Yamin A.A. Abduh M.S. Saghir S.A.M. Al-Gabri N. Synthesis, characterization and biological activities of new Schiff base compound and its lanthanide complexes. Pharmaceuticals (Basel) 2022 15 4 454 10.3390/ph15040454 35455451
    [Google Scholar]
  67. El-Gammal O.A. Mohamed F.S. Rezk G.N. El-Bindary A.A. Structural characterization and biological activity of a new metal complexes based of Schiff base. J. Mol. Liq. 2021 330 115522 10.1016/j.molliq.2021.115522
    [Google Scholar]
  68. Fetoh A. Asla K.A. El-Sherif A.A. El-Didamony H. Abu El-Reash G.M. Synthesis, structural characterization, thermogravimetric, molecular modelling and biological studies of Co(II) and Ni(II) Schiff bases complexes. J. Mol. Struct. 2019 1178 524 537 10.1016/j.molstruc.2018.10.066
    [Google Scholar]
  69. Catalano A. Sinicropi M.S. Iacopetta D. Ceramella J. Mariconda A. Rosano C. Scali E. Saturnino C. Longo P. A review on the advancements in the field of metal complexes with Schiff bases as antiproliferative agents. Appl. Sci. (Basel) 2021 11 13 6027 10.3390/app11136027
    [Google Scholar]
  70. Aljahdali M. S. El-Sherif A. A. Synthesis and biological evaluation of novel Zn(II) and Cd(II) Schiff base complexes as antimicrobial, antifungal, and antioxidant agents. Bioinorganic Chemistry Applied Hoboken, New Jersey Wiley Online Library 2020 10.1155/2020/8866382
    [Google Scholar]
  71. Zalevskaya O.A. Gur’eva Y.A. Recent studies on the antimicrobial activity of copper complexes. Russ. J. Coord. Chem. 2021 47 12 861 880 10.1134/S1070328421120046
    [Google Scholar]
  72. Liang J. Sun D. Yang Y. Li M. Li H. Chen L. Discovery of metal-based complexes as promising antimicrobial agents. Eur. J. Med. Chem. 2021 224 113696 10.1016/j.ejmech.2021.113696 34274828
    [Google Scholar]
  73. Sandhu Q.U.A. Pervaiz M. Majid A. Younas U. Saeed Z. Ashraf A. Khan R.R.M. Ullah S. Ali F. Jelani S. Review: Schiff base metal complexes as anti-inflammatory agents. J. Coord. Chem. 2023 76 9-10 1094 1118 10.1080/00958972.2023.2226794
    [Google Scholar]
  74. Kizilkaya H. Dag B. Aral T. Genç N. Erenler R. Synthesis, characterization, and antioxidant activity of heterocyclic Schiff bases. J. Chin. Chem. Soc. (Taipei) 2020 67 9 1696 1701 10.1002/jccs.202000161
    [Google Scholar]
  75. Blois M.S. Antioxidant determinations by the use of a stable free radical. Nature 1958 181 4617 1199 1200 10.1038/1811199a0
    [Google Scholar]
  76. Re R. Pellegrini N. Proteggente A. Pannala A. Yang M. Rice-Evans C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999 26 9-10 1231 1237 10.1016/S0891‑5849(98)00315‑3 10381194
    [Google Scholar]
  77. Apak R. Güçlü K. Özyürek M. Karademir S.E. Novel total antioxidant capacity index for dietary polyphenols and vitamins C and E, using their cupric ion reducing capability in the presence of neocuproine: CUPRAC method. J. Agric. Food Chem. 2004 52 26 7970 7981 10.1021/jf048741x 15612784
    [Google Scholar]
  78. Gülçin İ. Küfrevioǧlu Ö.İ. Oktay M. Büyükokuroǧlu M.E. Antioxidant, antimicrobial, antiulcer and analgesic activities of nettle (Urtica dioica L.). J. Ethnopharmacol. 2004 90 2-3 205 215 10.1016/j.jep.2003.09.028 15013182
    [Google Scholar]
/content/journals/cac/10.2174/0115734110408174251006160757
Loading
/content/journals/cac/10.2174/0115734110408174251006160757
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test