Skip to content
2000
image of Recent Advances in Ratiometric Fluorescence Methods for Environmental Pollutant Sensing

Abstract

In recent years, the development of convenient and rapid detection technologies has become an urgent priority due to the increasingly severe environmental pollution issues. Among various analytical approaches, the ratiometric fluorescence method (RFLM) is widely applied in the field of environmental pollutant sensing owing to the merits of high sensitivity and anti-interference ability. Firstly, unlike previous work, this review systematically reports the sensing modes of RFLM for the first time, concerning co-directional, contra-directional, and inconstant-constant variation modes. The sensing mechanisms of RFLM are also briefly outlined, such as aggregation-induced emission, intramolecular charge transfer, photoinduced electron transfer, fluorescence resonance energy transfer, and inner filter effect, as well as the molecular imprinting technique. In addition, we discuss the enhancement of artificial intelligence (AI) for the analytical performance of RFLM. Subsequently, the review provides a detailed summary of recent advances over the past five years in RFLM-based applications, with a focus on luminescent materials, including inorganic nanomaterials and organic fluorophores. Finally, we propose the current challenges associated with RFLM in environmental pollutant sensing and outline potential directions for future research and development.

Loading

Article metrics loading...

/content/journals/cac/10.2174/0115734110402069250914180823
2025-09-19
2026-01-31
Loading full text...

Full text loading...

References

  1. Kumar D. Biswas J.K. Mulla S.I. Singh R. Shukla R. Ahanger M.A. Shekhawat G.S. Verma K.K. Siddiqui M.W. Seth C.S. Micro and nanoplastics pollution: Sources, distribution, uptake in plants, toxicological effects, and innovative remediation strategies for environmental sustainability. Plant Physiol. Biochem. 2024 213 108795 10.1016/j.plaphy.2024.108795 38878390
    [Google Scholar]
  2. Chen J. Li Y. Li J. Han J. Zhu G. Ren L. Crystal design of bismuth oxyiodide with highly exposed (110) facets on curved carbon nitride for the photocatalytic degradation of pollutants in wastewater. Front. Chem. Sci. Eng. 2022 16 7 1125 1138 10.1007/s11705‑021‑2116‑0
    [Google Scholar]
  3. Huang Q. Wu X. Cao G. Zhang J. Wu P. Cai Z. Mass spectrometry-based techniques for determination of microplastics in terrestrial ecosystems. Trends Analyt. Chem. 2024 178 117853 10.1016/j.trac.2024.117853
    [Google Scholar]
  4. Xuesong H. Pu C. Jingyan L. Yupeng X. Dan L. Xiaoli C. Commentary on the review articles of spectroscopy technology combined with chemometrics in the last three years. Appl. Spectrosc. Rev. 2024 59 4 423 482 10.1080/05704928.2023.2204946
    [Google Scholar]
  5. Custodio-Mendoza J.A. Pokorski P. Aktaş H. Napiórkowska A. Kurek M.A. Advances in Chromatographic Analysis of Phenolic Phytochemicals in Foods: Bridging Gaps and Exploring New Horizons. Foods 2024 13 14 2268 10.3390/foods13142268 39063352
    [Google Scholar]
  6. Gatarek P. Rosiak A. Kaluzna-Czaplinska J. Chromatographic methods for the determination of organic pollution in urban water: A current mini review. Crit. Rev. Anal. Chem. 2024 1 18 10.1080/10408347.2024.2318764 38451912
    [Google Scholar]
  7. Cui Y. Wang S. Han D. Yan H. Advancements in detection techniques for per- and polyfluoroalkyl substances: A comprehensive review. Trends Analyt. Chem. 2024 176 117754 10.1016/j.trac.2024.117754
    [Google Scholar]
  8. Song H. Su Y. Zhang L. Lv Y. Quantum dots‐based chemiluminescence probes: An overview. Luminescence 2019 34 6 530 543 10.1002/bio.3633 31025479
    [Google Scholar]
  9. Gao Y. Jiao Y. Zhang H. Lu W. Liu Y. Han H. Gong X. Li L. Shuang S. Dong C. One-step synthesis of a dual-emitting carbon dot-based ratiometric fluorescent probe for the visual assay of Pb 2+ and PPi and development of a paper sensor. J. Mater. Chem. B Mater. Biol. Med. 2019 7 36 5502 5509 10.1039/C9TB01203F 31424064
    [Google Scholar]
  10. Kumar J. Roy I. Highly Selective and Sensitive Ratiometric Detection of Sn 2+ Ions Using NIR-excited rhodamine-B-linked upconversion nanophosphors. ACS Omega 2022 7 34 29840 29849 10.1021/acsomega.2c02671 36061706
    [Google Scholar]
  11. Yu M. Wang H. Fu F. Li L. Li J. Li G. Song Y. Swihart M.T. Song E. Dual-recognition förster resonance energy transfer based platform for one-step sensitive detection of pathogenic bacteria using fluorescent vancomycin–gold nanoclusters and aptamer–gold nanoparticles. Anal. Chem. 2017 89 7 4085 4090 10.1021/acs.analchem.6b04958 28287715
    [Google Scholar]
  12. Qiu X. Zhou Q. Zhu X. Wu Z. Feng W. Li F. Ratiometric upconversion nanothermometry with dual emission at the same wavelength decoded via a time-resolved technique. Nat. Commun. 2020 11 1 4 10.1038/s41467‑019‑13796‑w 31911593
    [Google Scholar]
  13. Huang S. Kou X. Shen J. Chen G. Ouyang G. “Armor‐Plating” enzymes with metal–organic frameworks (MOFs). Angew. Chem. Int. Ed. 2020 59 23 8786 8798 10.1002/anie.201916474 31901003
    [Google Scholar]
  14. Lin C. Jiang L. Cheng H. Qin Y. Wu P. Tang Y. Liu Y. Yang X. Wang J. Dual-Emission Metal–Organic Framework for Highly Selective Ratiometric Sensing of Lithium(I). Ions in Aqueous Solution. 2023 11 13 5262 5269 10.1021/acssuschemeng.3c00022
    [Google Scholar]
  15. Wang X. Chen H. Zhang H. Sun H. Zhang L. Zhu D. Gao D. A novel rare earth ion fluorescent probe towards the trace detection of 2,4,6-trinitrotoluene based on fluorescence resonance energy transfer. Asian J. Chem. 2014 26 6 1695 1697 10.14233/ajchem.2014.17327
    [Google Scholar]
  16. Khan M.F.S. Akbar M. Wu J. Xu Z. A review on fluorescence spectroscopic analysis of water and wastewater. Methods Appl. Fluoresc. 2022 10 1 012001 10.1088/2050‑6120/ac3d79 34823232
    [Google Scholar]
  17. Anguige K. King J.R. Ward J.P. A multi-phase mathematical model of quorum sensing in a maturing Pseudomonas aeruginosa biofilm. Math. Biosci. 2006 203 2 240 276 10.1016/j.mbs.2006.05.009 16962618
    [Google Scholar]
  18. Ge X. Su L. Chen Z. Zhu K. Zhang X. Wu Y. Song J. A radio‐pharmaceutical fluorescent probe for synergistic cancer radiotherapy and ratiometric imaging of tumor reactive oxygen species. Angew. Chem. Int. Ed. 2023 62 29 e202305744 10.1002/anie.202305744 37221136
    [Google Scholar]
  19. Lan Q. Yu P. Yan K. Li X. Zhang F. Lei Z. Polymethine molecular platform for ratiometric fluorescent probes in the second near-infrared window. J. Am. Chem. Soc. 2022 144 46 21010 21015 10.1021/jacs.2c10041 36282615
    [Google Scholar]
  20. Pei X. Pan Y. Zhang L. Lv Y. Recent advances in ratiometric luminescence sensors. Appl. Spectrosc. Rev. 2021 56 4 324 345 10.1080/05704928.2020.1793770
    [Google Scholar]
  21. Shi B. Zhang X. Li W. Liang N. Hu X. Xiao J. Wang D. Zou X. Shi J. An intrinsic dual-emitting fluorescence sensing toward tetracycline with self-calibration model based on luminescent lanthanide-functionalized metal-organic frameworks. Food Chem. 2023 400 133995 10.1016/j.foodchem.2022.133995 36067695
    [Google Scholar]
  22. Fan W. Yang S. Xu Z. Wang W. Miao L. Yang T. Lu J. Jiang G. Zhao D. Li Y. A versatile internal filtration effect-based ratiometric probe for fluorescence and naked eye sensing of 2,2′,4,4′,6,6′-hexanitrostilbene. Microchem. J. 2024 204 111075 10.1016/j.microc.2024.111075
    [Google Scholar]
  23. Xing X. Wang Z. Wang Y. Advances in carbon dot-based ratiometric fluorescent probes for environmental contaminant detection: A review. Micromachines 2024 15 3 331 10.3390/mi15030331 38542578
    [Google Scholar]
  24. Yang Q. Li J. Wang X. Peng H. Xiong H. Chen L. Strategies of molecular imprinting-based fluorescence sensors for chemical and biological analysis. Biosens. Bioelectron. 2018 112 54 71 10.1016/j.bios.2018.04.028 29698809
    [Google Scholar]
  25. Li Q. Xu S. He L. Huang K. Zhang X. Qin D. A new zinc-organic framework with 1D channel for constructing a ratiometric Al3+-selective sensor and four inputs INHIBIT logic gate. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2022 279 121461 10.1016/j.saa.2022.121461 35691163
    [Google Scholar]
  26. Sasaki Y. Ohshiro K. Zhou Q. Lyu X. Tang W. Okabe K. Takizawa S. Minami T. Spontaneous preparation of a fluorescent ratiometric chemosensor for metal ions using off-the-shelf materials. Chem. Commun. (Camb.) 2023 59 50 7747 7750 10.1039/D3CC00949A 37272870
    [Google Scholar]
  27. Zhong K. Hao C. Liu H. Yang H. Sun R. Synthesis of dual-emissive ratiometric probe of BSA-Au NCs and BSA-Cu NCs and their sensitive and selective detection of copper and mercury ions. J. Photochem. Photobiol. Chem. 2021 408 113100 10.1016/j.jphotochem.2020.113100
    [Google Scholar]
  28. Li R. Mu X. Xu J. Zeng F. Silicon quantum dots based fluorescent probes for detecting methyl parathion pesticide residues in potato, tap water and yellow river. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2025 325 125071 10.1016/j.saa.2024.125071 39236566
    [Google Scholar]
  29. Tang Z. Lv S. Liu D. Liu X. Zhou Z. Wang P. A ratiometric fluorescence method for the detection of diquat by a large Stokes shift fluorescent probe. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2024 323 124889 10.1016/j.saa.2024.124889 39116595
    [Google Scholar]
  30. Yang C.L. Yu L.H. Pang Y.H. Shen X.F. A ratiometric fluorescence sensor for detection of organophosphorus pesticides based on enzyme-regulated multifunctional Fe-based metal-organic framework. Talanta 2024 278 126516 10.1016/j.talanta.2024.126516 38972276
    [Google Scholar]
  31. Li J. Dai Y. Cui J. Abrha H. Kang N. Liu X. Dye-encapsulated Zr-based MOFs composites as a sensitive platform for ratiometric luminescent sensing of antibiotics in water. Talanta 2023 251 123817 10.1016/j.talanta.2022.123817 35952498
    [Google Scholar]
  32. Qiao J. Chen X. Xu X. Fan B. Guan Y.S. Yang H. Li Q. A metal–organic framework-based fluorescence resonance energy transfer nanoprobe for highly selective detection of Staphylococcus Aureus. J. Mater. Chem. B Mater. Biol. Med. 2023 11 35 8519 8527 10.1039/D3TB01428B 37606203
    [Google Scholar]
  33. Hu Y. Lu X. Jiang X. Wu P. Carbon dots and AuNCs co-doped electrospun membranes for ratiometric fluorescent determination of cyanide. J. Hazard. Mater. 2020 384 121368 10.1016/j.jhazmat.2019.121368 31607577
    [Google Scholar]
  34. She Q. Cao Y. Zhou Y. Tan Y. Kan A. Yang J. Yan J. Wu J. Liu C. Novel förster resonance energy transfer (FRET)-based ratiometric fluorescent probe for detection of cyanides by nucleophilic substitution of aromatic hydrogen (SNArH). Spectrochim. Acta A Mol. Biomol. Spectrosc. 2025 327 125339 10.1016/j.saa.2024.125339 39481166
    [Google Scholar]
  35. Chen K. Chen W. Sun J. Bai M. Gao Z. Hou X. A novel ratiometric fluorescent probe for quantitative detection of isocyanates in air. Tetrahedron 2020 76 44 131547 10.1016/j.tet.2020.131547
    [Google Scholar]
  36. Chen J. Chen K. Han B. Xue Y. Chen W. Gao Z. Hou X. A novel single-fluorophore-based ratiometric fluorescent probe for detection of formaldehyde in air. Tetrahedron 2020 76 50 131681 10.1016/j.tet.2020.131681
    [Google Scholar]
  37. Yan L. Zhang B. Zong Z. Zhou W. Shuang S. Shi L. Artificial intelligence-integrated smartphone-based handheld detection of fluoride ion by Al3+-triggered aggregation-induced red-emssion enhanced carbon dots. J. Colloid Interface Sci. 2023 651 59 67 10.1016/j.jcis.2023.07.125 37540930
    [Google Scholar]
  38. Li Y. Lu H. Xu S. The construction of dual-emissive ratiometric fluorescent probes based on fluorescent nanoparticles for the detection of metal ions and small molecules. Analyst 2024 149 2 304 349 10.1039/D3AN01711G 38051130
    [Google Scholar]
  39. Feng Y. Song H. Deng D. Lv Y. Engineering ratiometric persistent luminous sensor arrays for biothiols identification. Anal. Chem. 2020 92 9 6645 6653 10.1021/acs.analchem.0c00464 32281373
    [Google Scholar]
  40. Li F. Dong P.Z. Sun S.K. Zhai S.M. Zhao B.X. Lin Z.M. A near-infrared fluorescent probe for simultaneous detection of pH and viscosity. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2024 318 124486 10.1016/j.saa.2024.124486 38788506
    [Google Scholar]
  41. Si Y. Li Y. Yang G. Zhang S. Yang L. Dai W. Wang H. Zeolitic imidazolate framework-8 for ratiometric fluorescence sensing tetracyclines in environmental water based on AIE effects. Anal. Chim. Acta 2022 1199 339576 10.1016/j.aca.2022.339576 35227384
    [Google Scholar]
  42. Li Q. Zhan Z. Zhang K. Song H. Lv Y. Ratiometric two-photon fluorescent probe for detection of hypochlorite in living cells. Talanta 2020 217 121099 10.1016/j.talanta.2020.121099 32498870
    [Google Scholar]
  43. Li X. Liu P. Niu X. Ye K. Ni L. Du D. Pan J. Lin Y. Tri-functional Fe–Zr bi-metal–organic frameworks enable high-performance phosphate ion ratiometric fluorescent detection. Nanoscale 2020 12 37 19383 19389 10.1039/D0NR04531D 32945814
    [Google Scholar]
  44. Meng H. Yao N. Zeng K. Zhu N. Wang Y. Zhao B. Zhang Z. A novel enzyme-free ratiometric fluorescence immunoassay based on silver nanoparticles for the detection of dibutyl phthalate from environmental waters. Biosensors 2022 12 2 125 10.3390/bios12020125 35200385
    [Google Scholar]
  45. Gao W.J. Tian M.Y. Ren X.H. Zhang H.R. He X.W. Li W.Y. Zhang Y.K. Ultrabright silicon nanoparticles combined with o-phenylenediamine for ratiometric fluorescence and smartphone imaging dual-mode detection of nitrite. J. Hazard. Mater. 2024 480 136233 10.1016/j.jhazmat.2024.136233 39461290
    [Google Scholar]
  46. Dai C. Gu B. Tang S.P. Deng P.H. Liu B. Fluorescent porous organic cage with good water solubility for ratiometric sensing of gold(III) ion in aqueous solution. Anal. Chim. Acta 2022 1192 339376 10.1016/j.aca.2021.339376 35057939
    [Google Scholar]
  47. Xiong J. Xiao Y. Liang J. Sun J. Gao L. Zhou Q. Hong D. Tan K. Dye-based dual-emission eu-mof synthesized by post-modification for the sensitive ratio fluorescence visualization sensing of ClO-. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2023 285 121863 10.1016/j.saa.2022.121863 36126623
    [Google Scholar]
  48. Guo X. Xiao J. Zhang Y. Zhang Q. Yang J. Wei Y. Wang L. Yao W. Portable analysis of tract mercury ions by a hydrogel-based ratiometric fluorescence sensor using C3N4-CdTe0.16S0.84 QDs nanocomposites. Sens. Actuators B Chem. 2024 413 135846 10.1016/j.snb.2024.135846
    [Google Scholar]
  49. paydar, S.; Feizi, F.; Shamsipur, M.; Barati, A.; Mousavi, F.; Matt, D. A novel ratiometric fluorescence probe based on calix[4]arene functionalized polymer dots for bisphenol a detection in real water samples. Talanta 2024 269 125450 10.1016/j.talanta.2023.125450 38042141
    [Google Scholar]
  50. Jia R. Tian W. Bai H. Zhang J. Wang S. Zhang J. Amine-responsive cellulose-based ratiometric fluorescent materials for real-time and visual detection of shrimp and crab freshness. Nat. Commun. 2019 10 1 795 10.1038/s41467‑019‑08675‑3 30770837
    [Google Scholar]
  51. Liu L. Chen M. Zhao T. Yuan L. Mi Z. Bai Y. Fei P. Liu Z. Li C. Wang L. Feng F. Ratiometric fluorescence and smartphone-assisted sensing platform based on dual-emission carbon dots for brilliant blue detection. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2024 322 124782 10.1016/j.saa.2024.124782 38991616
    [Google Scholar]
  52. Guo D. Xu Z. Yang D. Ma D. Tang B. Vadim A. Structure design and performance of photomultiplication-type organic photodetectors based on an aggregation-induced emission material. Nanoscale 2020 12 4 2648 2656 10.1039/C9NR09386A 31939957
    [Google Scholar]
  53. Wang S. Chen C. Wu J. Zhang J. Lam J.W.Y. Wang H. Chen L. Tang B.Z. A mitochondria-targeted AIE photosensitizer for enhancing specificity and efficacy of ferroptosis inducer. Sci. China Chem. 2022 65 5 870 876 10.1007/s11426‑021‑1207‑0
    [Google Scholar]
  54. Zhu L. Zhu B. Luo J. Liu B. Design and property modulation of metal–organic frameworks with aggregation-induced emission. ACS Mater. Lett 2021 3 1 77 89 10.1021/acsmaterialslett.0c00477
    [Google Scholar]
  55. Zhang Z. Kang M. Tan H. Song N. Li M. Xiao P. Yan D. Zhang L. Wang D. Tang B.Z. The fast-growing field of photo-driven theranostics based on aggregation-induced emission. Chem. Soc. Rev. 2022 51 6 1983 2030 10.1039/D1CS01138C 35226010
    [Google Scholar]
  56. Khan I.M. Niazi S. Iqbal Khan M.K. Pasha I. Mohsin A. Haider J. Iqbal M.W. Rehman A. Yue L. Wang Z. Recent advances and perspectives of aggregation-induced emission as an emerging platform for detection and bioimaging. Trends Analyt. Chem. 2019 119 115637 10.1016/j.trac.2019.115637
    [Google Scholar]
  57. Luo J. Xie Z. Lam J.W.Y. Cheng L. Tang B.Z. Chen H. Qiu C. Kwok H.S. Zhan X. Liu Y. Zhu D. Aggregation-induced emission of 1-methyl-1,2,3,4,5-pentaphenylsilole. Chem. Commun. (Camb.) 2001 18 1740 1741 10.1039/b105159h 12240292
    [Google Scholar]
  58. Mei J. Huang Y. Tian H. Progress and trends in AIE-Based bioprobes: A brief overview. ACS Appl. Mater. Interfaces 2018 10 15 12217 12261 10.1021/acsami.7b14343 29140079
    [Google Scholar]
  59. Mei J. Hong Y. Lam J.W.Y. Qin A. Tang Y. Tang B.Z. Aggregation-induced emission: The whole is more brilliant than the parts. Adv. Mater. 2014 26 31 5429 5479 10.1002/adma.201401356 24975272
    [Google Scholar]
  60. Bhardwaj V. Sk A.K. Sahoo S.K. Pyridoxal derived red-emitting aggregates for the ratiometric sensing of pH and copper(II). Opt. Mater. 2023 136 113414 10.1016/j.optmat.2022.113414
    [Google Scholar]
  61. Nhien P.Q. Chou W.L. Cuc T.T.K. Khang T.M. Wu C.H. Thirumalaivasan N. Hue B.T.B. Wu J.I. Wu S.P. Lin H.C. Multi-stimuli responsive FRET processes of bifluorophoric AIEgens in an amphiphilic copolymer and its application to cyanide detection in aqueous media. ACS Appl. Mater. Interfaces 2020 12 9 10959 10972 10.1021/acsami.9b21970 32026696
    [Google Scholar]
  62. Zheng M. Xie Z. Qu D. Li D. Du P. Jing X. Sun Z. On-off-on fluorescent carbon dot nanosensor for recognition of chromium(VI) and ascorbic acid based on the inner filter effect. ACS Appl. Mater. Interfaces 2013 5 24 13242 13247 10.1021/am4042355 24274643
    [Google Scholar]
  63. Shang L. Dong S. Design of fluorescent assays for cyanide and hydrogen peroxide based on the inner filter effect of metal nanoparticles. Anal. Chem. 2009 81 4 1465 1470 10.1021/ac802281x 19140677
    [Google Scholar]
  64. Pal A. Karmakar M. Bhatta S.R. Thakur A. A detailed insight into anion sensing based on intramolecular charge transfer (ICT) mechanism: A comprehensive review of the years 2016 to 2021. Coord. Chem. Rev. 2021 448 214167 10.1016/j.ccr.2021.214167
    [Google Scholar]
  65. Udhayakumari D. Mechanistic innovations in fluorescent chemosensors for detecting toxic ions: PET, ICT, ESIPT, FRET and AIE approaches. J. Fluoresc. 2024 35 6 3799 3828 10.1007/s10895‑024‑03843‑1 39018001
    [Google Scholar]
  66. Padghan S.D. Wang L.C. Lin W.C. Hu J.W. Liu W.C. Chen K.Y. Rational design of an ICT-Based chemodosimeter with aggregation-induced emission for colorimetric and ratiometric fluorescent detection of cyanide in a Wide pH Range. ACS Omega 2021 6 8 5287 5296 10.1021/acsomega.0c05409 33681569
    [Google Scholar]
  67. Paul S. Das R. Banerjee P. Recent endeavours in the development of organo chromo-fluorogenic probes towards the targeted detection of the toxic industrial pollutants Cu 2+ and CN −: Recognition to implementation in sensory device. Mater. Chem. Front. 2022 6 18 2561 2595 10.1039/D2QM00454B
    [Google Scholar]
  68. Zhang W. Ma Z. Du L. Li M. Design strategy for photoinduced electron transfer-based small-molecule fluorescent probes of biomacromolecules. Analyst 2014 139 11 2641 2649 10.1039/C3AN02379F 24755654
    [Google Scholar]
  69. de Silva A. Fox D.B. Huxley A.J.M. Moody T.S. Combining luminescence, coordination and electron transfer for signalling purposes. Coord. Chem. Rev. 2000 205 1 41 57 10.1016/S0010‑8545(00)00238‑1
    [Google Scholar]
  70. Liu X. Qi Y. Pu S. Wang Y. Gao Z. Sensing mechanism of a new fluorescent probe for hydrogen sulfide: photoinduced electron transfer and invalidity of excited-state intramolecular proton transfer. RSC Advances 2021 11 36 22214 22220 10.1039/D1RA02511B 35480821
    [Google Scholar]
  71. Ye Y. Wu T. Jiang X. Cao J. Ling X. Mei Q. Chen H. Han D. Xu J.J. Shen Y. Portable smartphone-based QDs for the visual onsite monitoring of fluoroquinolone antibiotics in actual food and environmental samples. ACS Appl. Mater. Interfaces 2020 12 12 14552 14562 10.1021/acsami.9b23167 32134244
    [Google Scholar]
  72. Wu H. Lin L. Zhu M. Guo H. Yang F. “Turn-on” fluorescent sensor for glycerol based on hydrazine-bridged bis-tetraphenylimidazole. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2025 324 124951 10.1016/j.saa.2024.124951 39163770
    [Google Scholar]
  73. Wang X. Hu C. Wang X. Luo Z. Zhen S. Zhan L. Huang C. Li Y. Facile synthesis of dual-ligand terbium-organic gels as ratiometric fluorescence probes for efficient mercury detection. J. Hazard. Mater. 2022 436 129080 10.1016/j.jhazmat.2022.129080 35580503
    [Google Scholar]
  74. Bigdeli A. Ghasemi F. Abbasi-Moayed S. Shahrajabian M. Fahimi-Kashani N. Jafarinejad S. Farahmand Nejad M.A. Hormozi-Nezhad M.R. Ratiometric fluorescent nanoprobes for visual detection: Design principles and recent advances - A review. Anal. Chim. Acta 2019 1079 30 58 10.1016/j.aca.2019.06.035 31387719
    [Google Scholar]
  75. Datta R. Heaster T.M. Sharick J.T. Gillette A.A. Skala M.C. Fluorescence lifetime imaging microscopy: Fundamentals and advances in instrumentation, analysis, and applications. J. Biomed. Opt. 2020 25 7 1 43 10.1117/1.JBO.25.7.071203 32406215
    [Google Scholar]
  76. Wu H. Ling Y. Ju S. Chen Y. Xu M. Tang Y. A smartphone-integrated light-up lanthanide fluorescent probe for the visual and ratiometric detection of total phosphorus in human urine and environmental water samples. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2022 279 121360 10.1016/j.saa.2022.121360 35617833
    [Google Scholar]
  77. Liu F.T. Zhai S.M. Gao D.F. Yang S.H. Zhao B.X. Lin Z.M. A highly sensitive ratiometric fluorescent probe for detecting HSO3−/SO32− and viscosity change based on FRET/TICT mechanism. Anal. Chim. Acta 2024 1305 342588 10.1016/j.aca.2024.342588 38677842
    [Google Scholar]
  78. Chen X. Hussain S. Tang Y. Chen X. Zhang S. Wang Y. Zhang P. Gao R. Wang S. Hao Y. Two-in-one platform based on conjugated polymer for ultrasensitive ratiometric detection and efficient removal of perfluoroalkyl substances from environmental water. Sci. Total Environ. 2023 860 160467 10.1016/j.scitotenv.2022.160467 36436641
    [Google Scholar]
  79. Tong X. Li T. Long R. Guo Y. Wu L. Shi S. Determination of the activity of γ-glutamyl transpeptidase and of its inhibitors by using the inner filter effect on the fluorescence of nitrogen-doped carbon dots. Mikrochim. Acta 2020 187 3 182 10.1007/s00604‑020‑4160‑8 32086563
    [Google Scholar]
  80. Li Z. Yuan H. Yuan W. Su Q. Li F. Upconversion nanoprobes for biodetections. Coord. Chem. Rev. 2018 354 155 168 10.1016/j.ccr.2017.06.025
    [Google Scholar]
  81. Zhang Y. Lu Y. Sun M. Zeng D. A multi-functional fluorescence sensing platform based on a defective UiO-66 for tetracycline and moxifloxacin. Water 2023 16 1 145 10.3390/w16010145
    [Google Scholar]
  82. Liu J. Li W. Li J. Li J. Hydrogel-involved portable ratiometric fluorescence sensor based on Eu3+/CDs-modified metal-organic framework for detection of ofloxacin and tetracycline. Sens. Actuators B Chem. 2025 422 136573 10.1016/j.snb.2024.136573
    [Google Scholar]
  83. Park R. Jeon S. Jeong J. Park S.Y. Han D.W. Hong S.W. Recent advances of point-of-care devices integrated with molecularly imprinted polymers-based biosensors: From biomolecule sensing design to intraoral fluid testing. Biosensors 2022 12 3 136 10.3390/bios12030136 35323406
    [Google Scholar]
  84. Yang H. Liu H.B. Tang Z.S. Qiu Z.D. Zhu H.X. Song Z.X. Jia A.L. Synthesis, performance, and application of molecularly imprinted membranes: A review. J. Environ. Chem. Eng. 2021 9 6 106352 10.1016/j.jece.2021.106352
    [Google Scholar]
  85. Chen L. Wang X. Lu W. Wu X. Li J. Molecular imprinting: Perspectives and applications. Chem. Soc. Rev. 2016 45 8 2137 2211 10.1039/C6CS00061D 26936282
    [Google Scholar]
  86. Huang C. Wang H. Ma S. Bo C. Ou J. Gong B. Recent application of molecular imprinting technique in food safety. J. Chromatogr. A 2021 1657 462579 10.1016/j.chroma.2021.462579 34607292
    [Google Scholar]
  87. Fu J. Zhou S. Zhao P. Wu X. Tang S. Chen S. Yang Z. Zhang Z. A dual-response ratiometric fluorescence imprinted sensor based on metal-organic frameworks for ultrasensitive visual detection of 4-nitrophenol in environments. Biosens. Bioelectron. 2022 198 113848 10.1016/j.bios.2021.113848 34861527
    [Google Scholar]
  88. Wang N. Majid A. Wang K. Tan L. Li H. Wang J. Composite molecularly imprinted ratiometric fluorescent sensor based on carbon dots and CdTe quantum dots for visual detection of ciprofloxacin in seawater. Mater. Sci. Semicond. Process. 2023 167 107800 10.1016/j.mssp.2023.107800
    [Google Scholar]
  89. Wang N. Li H. Tian Y. Tan L. Cheng S. Wang J. Molecularly imprinted ratiometric fluorescence sensor for visual detection of 17β-estradiol in milk: A generalized strategy toward imprinted ratiometric fluorescence construction. Mikrochim. Acta 2024 191 5 249 10.1007/s00604‑024‑06329‑w 38587558
    [Google Scholar]
  90. Yang L. Hu W. Pei F. Du B. Tong Z. Mu X. Xia M. Wang F. Liu B. Novel dual-emission fluorescence imprinted sensor based on Mg, N-CDs and metal-organic frameworks for rapid and smart detection of 2, 4, 6-trinitrophenol. Talanta 2024 266 Pt 2 125115 10.1016/j.talanta.2023.125115 37657376
    [Google Scholar]
  91. Wang F. Wang C. Chen M. Gong W. Zhang Y. Han S. Situ G. Far-field super-resolution ghost imaging with a deep neural network constraint. Light Sci. Appl. 2022 11 1 1 10.1038/s41377‑021‑00680‑w 34974515
    [Google Scholar]
  92. Fogel A.L. Kvedar J.C. Artificial intelligence powers digital medicine. NPJ Digit. Med. 2018 1 1 5 10.1038/s41746‑017‑0012‑2 31304291
    [Google Scholar]
  93. Zhu M. Wang J. Yang X. Zhang Y. Zhang L. Ren H. Wu B. Ye L. A review of the application of machine learning in water quality evaluation. Eco-Environment Health. 2022 1 2 107 116 10.1016/j.eehl.2022.06.001 38075524
    [Google Scholar]
  94. Wang B. Waterhouse G.I.N. Lu S. Carbon dots: mysterious past, vibrant present, and expansive future. Trends Chem. 2023 5 1 76 87 10.1016/j.trechm.2022.10.005
    [Google Scholar]
  95. Yang Y. Xu F. Chen J. Tao C. Li Y. Chen Q. Tang S. Lee H.K. Shen W. Artificial intelligence-assisted smartphone-based sensing for bioanalytical applications: A review. Biosens. Bioelectron. 2023 229 115233 10.1016/j.bios.2023.115233 36965381
    [Google Scholar]
  96. Lu Z. Chen M. Liu T. Wu C. Sun M. Su G. Wang X. Wang Y. Yin H. Zhou X. Ye J. Shen Y. Rao H. Machine Learning System To Monitor Hg 2+ and sulfide using a polychromatic fluorescence-colorimetric paper sensor. ACS Appl. Mater. Interfaces 2023 15 7 9800 9812 10.1021/acsami.2c16565 36750421
    [Google Scholar]
  97. Lu Z. Chen M. Li M. Liu T. Sun M. Wu C. Su G. Yin J. Wu M. Zou P. Lin L. Wang X. Huang Q. Yin H. Rao H. Zhou X. Ye J. Wang Y. Smartphone-integrated multi-color ratiometric fluorescence portable optical device based on deep learning for visual monitoring of Cu2+ and thiram. Chem. Eng. J. 2022 439 135686 10.1016/j.cej.2022.135686
    [Google Scholar]
  98. Lu Z. Li J. Ruan K. Sun M. Zhang S. Liu T. Yin J. Wang X. Chen H. Wang Y. Zou P. Huang Q. Ye J. Rao H. Deep learning-assisted smartphone-based ratio fluorescence for “on–off-on” sensing of Hg2+ and thiram. Chem. Eng. J. 2022 435 134979 10.1016/j.cej.2022.134979
    [Google Scholar]
  99. Lu Z. Chen S. Chen M. Ma H. Wang T. Liu T. Yin J. Sun M. Wu C. Su G. Dai X. Wang X. Wang Y. Yin H. Zhou X. Shen Y. Rao H. Trichromatic ratiometric fluorescent sensor based on machine learning and smartphone for visual and portable monitoring of tetracycline antibiotics. Chem. Eng. J. 2023 454 140492 10.1016/j.cej.2022.140492
    [Google Scholar]
  100. Wang D. Yu L. Li X. Lu Y. Niu C. Fan P. Zhu H. Chen B. Wang S. Intelligent quantitative recognition of sulfide using machine learning-based ratiometric fluorescence probe of metal-organic framework UiO-66-NH2/Ppix. J. Hazard. Mater. 2024 464 132950 10.1016/j.jhazmat.2023.132950 37952335
    [Google Scholar]
  101. Chen S. Yu Y.L. Wang J.H. Inner filter effect-based fluorescent sensing systems: A review. Anal. Chim. Acta 2018 999 13 26 10.1016/j.aca.2017.10.026 29254563
    [Google Scholar]
  102. Ghosh R. Nandi A. Palit D.K. Solvent sensitive intramolecular charge transfer dynamics in the excited states of 4-N,N-dimethylamino-4′-nitrobiphenyl. Phys. Chem. Chem. Phys. 2016 18 11 7661 7671 10.1039/C5CP07778H 26907751
    [Google Scholar]
  103. de Silva A.P. Gunnlaugsson T. Rice T.E. Recent evolution of luminescent photoinduced electron transfer sensors. A review. Analyst 1996 121 12 1759 1762 10.1039/an9962101759
    [Google Scholar]
  104. Chen L. Xu S. Li J. Recent advances in molecular imprinting technology: Current status, challenges and highlighted applications. Chem. Soc. Rev. 2011 40 5 2922 2942 10.1039/c0cs00084a 21359355
    [Google Scholar]
  105. Tarannum N. Kumar D. Khatoon S. Inefficient removal of templates as a limitation for molecular imprinting of polymers. Molecularly imprinted polymers (MIPs). Elsevier 2023 59 80 10.1016/B978‑0‑323‑91925‑8.00001‑6
    [Google Scholar]
  106. Chen R.N. Kang S.H. Li J. Lu L.N. Luo X.P. Wu L. Comparison and recent progress of molecular imprinting technology and dummy template molecular imprinting technology. Anal. Methods 2021 13 39 4538 4556 10.1039/D1AY01014J 34570126
    [Google Scholar]
  107. Bagherpour S. Pérez-García L. Recent advances on nanomaterial-based glutathione sensors. J. Mater. Chem. B Mater. Biol. Med. 2024 12 34 8285 8309 10.1039/D4TB01114G 39081041
    [Google Scholar]
  108. Das R. Pal R. Bej S. Mondal M. Kundu K. Banerjee P. Recent progress in 0D optical nanoprobes for applications in the sensing of (bio)analytes with the prospect of global health monitoring and detailed mechanistic insights. Mater. Adv. 2022 3 11 4421 4459 10.1039/D2MA00238H
    [Google Scholar]
  109. Das S. Somu P. Yadav A.K. Hopke P.K. Paul S. Recent advances in II–VI group semiconductor- and carbon-based quantum dots for fluorescence-based sensing of metal ions in water. Environ. Sci. Nano 2024 11 3 739 765 10.1039/D3EN00541K
    [Google Scholar]
  110. Wang L. Zhang Q. Su P. Yu L. Bu Y. Yuan C. Wang S. Excitation-dependent ratiometric fluorescence response to mercury ion based on single hexagonal boron nitride quantum dots. Anal. Chim. Acta 2022 1236 340585 10.1016/j.aca.2022.340585 36396237
    [Google Scholar]
  111. Liu T. Fu L. Yin C. Wu M. Chen L. Niu N. Design of smartphone platform by ratiometric fluorescent for visual detection of silver ions. Microchem. J. 2022 174 107016 10.1016/j.microc.2021.107016
    [Google Scholar]
  112. Qi D. Zhang H. Zhou Z. Ren Z. Preparation of CdTe quantum dots for detecting Cu(II) ions. Opt. Mater. 2023 142 114048 10.1016/j.optmat.2023.114048
    [Google Scholar]
  113. Munusamy S. Mandlimath T.R. Swetha P. Al-Sehemi A.G. Pannipara M. Koppala S. Shanmugam P. Boonyuen S. Pothu R. Boddula R. Nitrogen-doped carbon dots: Recent developments in its fluorescent sensor applications. Environ. Res. 2023 231 Pt 1 116046 10.1016/j.envres.2023.116046 37150390
    [Google Scholar]
  114. Zhang J. Shi G. Rational design of MoS2 QDs and Eu3+ as a ratiometric fluorescent probe for point-of-care visual quantitative detection of tetracycline via smartphone-based portable platform. Anal. Chim. Acta 2022 1198 339572 10.1016/j.aca.2022.339572 35190128
    [Google Scholar]
  115. Han S. Yang L. Wen Z. Chu S. Wang M. Wang Z. Jiang C. A dual-response ratiometric fluorescent sensor by europium-doped CdTe quantum dots for visual and colorimetric detection of tetracycline. J. Hazard. Mater. 2020 398 122894 10.1016/j.jhazmat.2020.122894 32768819
    [Google Scholar]
  116. You J.J. Liu H. Zhang R.R. Pan Q.F. Sun A.L. Zhang Z.M. Shi X.Z. Development and application of tricolor ratiometric fluorescence sensor based on molecularly imprinted nanoparticles for visual detection of dibutyl phthalate in seawater and fish samples. Sci. Total Environ. 2022 848 157675 10.1016/j.scitotenv.2022.157675 35907542
    [Google Scholar]
  117. Yang S. Fan W. Wang X. Kou Y. Tan H. Yang F. Fluorescent and visual sensing of sodium dodecylbenzene sulfonate with an aminosilane self-condensation promoting and electrostatic attraction effect-based ratiometric probe. Anal. Chim. Acta 2023 1284 341997 10.1016/j.aca.2023.341997 37996152
    [Google Scholar]
  118. Ðorđević L. Arcudi F. Cacioppo M. Prato M. A multifunctional chemical toolbox to engineer carbon dots for biomedical and energy applications. Nat. Nanotechnol. 2022 17 2 112 130 10.1038/s41565‑021‑01051‑7 35173327
    [Google Scholar]
  119. Wareing T.C. Gentile P. Phan A.N. Biomass-based carbon dots: Current development and future perspectives. ACS Nano 2021 15 10 15471 15501 10.1021/acsnano.1c03886 34559522
    [Google Scholar]
  120. Chen Z. Xu X. Meng D. Jiang H. Zhou Y. Feng S. Mu Z. Yang Y. Dual-emitting N/S-doped carbon dots-based ratiometric fluorescent and light scattering sensor for high precision detection of Fe(III). Ions. J. Fluoresc 2020 30 5 1007 1013 10.1007/s10895‑020‑02571‑6 32607734
    [Google Scholar]
  121. Wu W. Mao J. Lu Y. Wang S. A facile dual‐emission ratiometric carbon‐dot fluorescent probe and its application in portable chemical sensors and water quality analysis. ChemistrySelect 2023 8 17 e202300345 10.1002/slct.202300345
    [Google Scholar]
  122. Zhang M. Liu Y. Wei Y. Ratiometric fluorescent probe based on dual-emissive carbon dots for determination of silver ions. Dyes Pigments 2024 226 112143 10.1016/j.dyepig.2024.112143
    [Google Scholar]
  123. Zhang Y. Zhou K. Qiu Y. Xia L. Xia Z. Zhang K. Fu Q. Strongly emissive formamide-derived N-doped carbon dots embedded Eu(III)-based metal-organic frameworks as a ratiometric fluorescent probe for ultrasensitive and visual quantitative detection of Ag+. Sens. Actuators B Chem. 2021 339 129922 10.1016/j.snb.2021.129922
    [Google Scholar]
  124. Khozani R.M. Abbasi-Moayed S. Hormozi-Nezhad M.R. Machine learning-assisted chromium speciation using a single-well ratiometric fluorescent nanoprobe. Chemosphere 2024 357 141966 10.1016/j.chemosphere.2024.141966 38614401
    [Google Scholar]
  125. Li D. Sun Y. Shen Q. Zhang Q. Huang W. Kang Q. Shen D. Smartphone-based three-channel ratiometric fluorescent device and application in filed analysis of Hg2+, Fe3+ and Cu2+ in water samples. Microchem. J. 2020 152 104423 10.1016/j.microc.2019.104423
    [Google Scholar]
  126. Wang X. Bai Q. Yan M. Wang H. Xu Y. Ma S. Bo C. Ou J. Chiral carbon dot-modified polymethacrylate resin for adsorption and detection of rare earth ions via tryptophan on-off ratiometric fluorescence. Sens. Actuators B Chem. 2025 423 136765 10.1016/j.snb.2024.136765
    [Google Scholar]
  127. Mohandoss S. Velu K.S. Wahab R. Ahmad N. Palanisamy S. You S. Aslam M. Lee Y.R. Kim S.C. Highly selective and sensitive ratiometric detection of Hg2+ ions with NFS co-doped carbon dots: Real sample analysis, antibacterial properties, and cellular imaging applications. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2025 326 125300 10.1016/j.saa.2024.125300 39432942
    [Google Scholar]
  128. Yin P. Li S. He Y. Yao G. Yu H. Yang W. Wang H. Tan W. A ratiometric fluorescence probe based on the N, S co-doped dots and silver nanoclusters for the sensitive detection of Hg2+. Process Saf. Environ. Prot. 2024 189 267 274 10.1016/j.psep.2024.06.073
    [Google Scholar]
  129. Guo L. Song Y. Cai K. Wang L. “On-off” ratiometric fluorescent detection of Hg2+ based on N-doped carbon dots-rhodamine B@TAPT-DHTA-COF. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2020 227 117703 10.1016/j.saa.2019.117703 31685421
    [Google Scholar]
  130. Wang Z.X. Liu K.Q. Jiang Z.T. Meng X.Y. Li F. Wu K.C. Li H.Y. Wang W.A. MELET- and IFE-based UV–visible luminescent ratiometric probe for quantization of mercury(II) and nitrofurantoin in environmental sewage. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2024 322 124805 10.1016/j.saa.2024.124805 39003827
    [Google Scholar]
  131. Chan K.K. Yap S.H.K. Giovanni D. Sum T.C. Yong K.T. Water-stable perovskite quantum dots-based FRET nanosensor for the detection of rhodamine 6G in water, food, and biological samples. Microchem. J. 2022 180 107624 10.1016/j.microc.2022.107624
    [Google Scholar]
  132. Mohapatro U. Mishra L. Mishra M. Mohapatra S. Zn-CD@Eu Ratiometric fluorescent probe for the detection of dipicolinic acid, uric acid, and ex vivo uric acid imaging. Anal. Chem. 2024 96 21 8630 8640 10.1021/acs.analchem.4c00708 38722183
    [Google Scholar]
  133. Wu M. Liu T. Yin C. Jiang X. Sun Q. Gao L. Niu N. Chen L. Gang H. Portable smartphone-assisted RGB-dependent ratiometric sensing platform for the detection of tetrachloro-p-benzoquinone in river samples. Microchem. J. 2023 190 108686 10.1016/j.microc.2023.108686
    [Google Scholar]
  134. Hassan M.H. Alkordi M.H. Hassanien A. Probing the conductivity of metal-organic framework-graphene nanocomposite. Mater. Lett. 2019 246 13 16 10.1016/j.matlet.2019.02.124
    [Google Scholar]
  135. Sompornpailin D. Ratanatawanate C. Sattayanon C. Namuangruk S. Punyapalakul P. Selective adsorption mechanisms of pharmaceuticals on benzene-1,4-dicarboxylic acid-based MOFs: Effects of a flexible framework, adsorptive interactions and the DFT study. Sci. Total Environ. 2020 720 137449 10.1016/j.scitotenv.2020.137449 32135284
    [Google Scholar]
  136. Zhang S. Yang Z. Gong K. Xu B. Mei H. Zhang H. Zhang J. Kang Z. Yan Y. Sun D. Temperature controlled diffusion of hydroxide ions in 1D channels of Ni-MOF-74 for its complete conformal hydrolysis to hierarchical Ni(OH) 2 supercapacitor electrodes. Nanoscale 2019 11 19 9598 9607 10.1039/C9NR02555C 31063163
    [Google Scholar]
  137. Huang S. Chen G. Ouyang G. Confining enzymes in porous organic frameworks: From synthetic strategy and characterization to healthcare applications. Chem. Soc. Rev. 2022 51 15 6824 6863 10.1039/D1CS01011E 35852480
    [Google Scholar]
  138. Wang B. Lv X.L. Feng D. Xie L.H. Zhang J. Li M. Xie Y. Li J.R. Zhou H.C. Highly stable Zr(IV)-based metal–organic frameworks for the detection and removal of antibiotics and organic explosives in water. J. Am. Chem. Soc. 2016 138 19 6204 6216 10.1021/jacs.6b01663 27090616
    [Google Scholar]
  139. Zheng D. Yang J. Zheng Z. Peng M. Ng K.M. Chen Y. Huang L. Gao W. Sensitive photoelectrochemical detection of colitoxin DNA based on NCDs@CuO/ZnO heterostructured nanocomposites with efficient separation capacity of photo-induced carriers. Mikrochim. Acta 2022 189 4 166 10.1007/s00604‑022‑05280‑y 35355135
    [Google Scholar]
  140. Hu P. Zhu X. Luo X. Hu X. Ji L. Cathodic electrodeposited Cu-BTC MOFs assembled from Cu(II) and trimesic acid for electrochemical determination of bisphenol A. Mikrochim. Acta 2020 187 2 145 10.1007/s00604‑020‑4124‑z 31970521
    [Google Scholar]
  141. Yang L. Liu Y. Chen L. Guo L. Lei Y. Wang L. Stable dual-emissive fluorescin@UiO-67 metal-organic frameworks for visual and ratiometric sensing of Al3+ and ascorbic acid. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2021 261 120068 10.1016/j.saa.2021.120068 34147733
    [Google Scholar]
  142. Colombo V. Montoro C. Maspero A. Palmisano G. Masciocchi N. Galli S. Barea E. Navarro J.A.R. Tuning the adsorption properties of isoreticular pyrazolate-based metal-organic frameworks through ligand modification. J. Am. Chem. Soc. 2012 134 30 12830 12843 10.1021/ja305267m 22765315
    [Google Scholar]
  143. Zou J. Zhong W. Gao F. Tu X. Chen S. Huang X. Wang X. Lu L. Yu Y. Sensitive electrochemical platform for trace determination of Pb2+ based on multilayer Bi-MOFs/reduced graphene oxide films modified electrode. Mikrochim. Acta 2020 187 11 603 10.1007/s00604‑020‑04571‑6 33037497
    [Google Scholar]
  144. Meng X. Lv C. Wen X. Hou X. Li C. He J. Construction of novel bimetallic Ti/Ce-MOFs for ratiometric fluorescence sensing of trace copper and photocatalytic reduction of chromium (VI). Microchem. J. 2023 193 109143 10.1016/j.microc.2023.109143
    [Google Scholar]
  145. Du T. Wang J. Zhang T. Zhang L. Yang C. Yue T. Sun J. Li T. Zhou M. Wang J. An integrating platform of ratiometric fluorescent adsorbent for unconventional real-time removing and monitoring of copper ions. ACS Appl. Mater. Interfaces 2020 12 11 13189 13199 10.1021/acsami.9b23098 32134628
    [Google Scholar]
  146. Zhao R. Lu W. Chai X. Dong C. Shuang S. Guo Y. Design of a dual-mode ratiometric fluorescent probe via MOF-on-MOF strategy for Al (III) and pH detection. Anal. Chim. Acta 2024 1298 342403 10.1016/j.aca.2024.342403 38462341
    [Google Scholar]
  147. Wang M. Guan J. Liu S. Chen K. Gao Z. Liu Q. Chen X. Dual-ligand lanthanide metal–organic framework probe for ratiometric fluorescence detection of mercury ions in wastewater. Mikrochim. Acta 2023 190 9 359 10.1007/s00604‑023‑05944‑3 37605047
    [Google Scholar]
  148. Tang K. Chen Y. Tang S. Wu X. Zhao P. Fu J. Lei H. Yang Z. Zhang Z. A smartphone-assisted down/up-conversion dual-mode ratiometric fluorescence sensor for visual detection of mercury ions and l-penicillamine. Sci. Total Environ. 2023 856 Pt 1 159073 10.1016/j.scitotenv.2022.159073 36179841
    [Google Scholar]
  149. Jia P. Yang K. Hou J. Cao Y. Wang X. Wang L. Ingenious dual-emitting Ru@UiO-66-NH2 composite as ratiometric fluorescence sensor for detection of mercury in aqueous. J. Hazard. Mater. 2021 408 124469 10.1016/j.jhazmat.2020.124469 33243635
    [Google Scholar]
  150. Li Y. Si Y. Yang G. Yang L. Wang H. Rational design of a functionalized metal–organic framework for ratiometric fluorimetric sensing of Hg 2+ in environmental water. Anal. Methods 2023 15 21 2599 2605 10.1039/D3AY00546A 37226573
    [Google Scholar]
  151. Guo H. Wang X. Wu N. Xu M. Wang M. Zhang L. Yang W. In-situ synthesis of carbon dots-embedded europium metal-organic frameworks for ratiometric fluorescence detection of Hg2+ in aqueous environment. Anal. Chim. Acta 2021 1141 13 20 10.1016/j.aca.2020.10.028 33248646
    [Google Scholar]
  152. Shu Y. Ye Q. Dai T. Guan J. Ji Z. Xu Q. Hu X. Incorporation of perovskite nanocrystals into lanthanide metal-organic frameworks with enhanced stability for ratiometric and visual sensing of mercury in aqueous solution. J. Hazard. Mater. 2022 430 128360 10.1016/j.jhazmat.2022.128360 35152110
    [Google Scholar]
  153. Liang M. Gao Y. Sun X. Kong R.M. Xia L. Qu F. Metal-organic framework-based ratiometric point-of-care testing for quantitative visual detection of nitrite. J. Hazard. Mater. 2024 469 134021 10.1016/j.jhazmat.2024.134021 38490146
    [Google Scholar]
  154. Li G. Tong C. Dual-functional lanthanide metal organic frameworks for visual and ultrasensitive ratiometric fluorescent detection of phosphate based on aggregation-induced energy transfer. Anal. Chim. Acta 2020 1133 11 19 10.1016/j.aca.2020.07.066 32993863
    [Google Scholar]
  155. Luo Z. Wang X. Hu C. Zhan L. Huang C. Li Y. Dual-ligand two-dimensional terbium-organic frameworks nanosheets for ratiometric fluorescence detection of phosphate. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2023 301 122976 10.1016/j.saa.2023.122976 37295378
    [Google Scholar]
  156. Ma Y. Zhang Y. Li X. Yang P. Yue J.Y. Jiang Y. Tang B. Linker-eliminated nano metal–organic framework fluorescent probe for highly selective and sensitive phosphate ratiometric detection in water and body fluids. Anal. Chem. 2020 92 5 3722 3727 10.1021/acs.analchem.9b04958 32022542
    [Google Scholar]
  157. Yu H. Liu Q. Fan M. Sun J. Su Z.M. Li X. Wang X. Novel Eu-MOF-based mixed matrix membranes and 1D Eu-MOF-based ratiometric fluorescent sensor for the detection of metronidazole and PA in water. Dyes Pigments 2022 197 109812 10.1016/j.dyepig.2021.109812
    [Google Scholar]
  158. Yang Y. Liu X. Mu B. Meng S. Mao S. Tao W. Li Z. Lanthanide metal-organic framework-based surface molecularly imprinted polymers ratiometric fluorescence probe for visual detection of perfluorooctanoic acid with a smartphone-assisted portable device. Biosens. Bioelectron. 2024 257 116330 10.1016/j.bios.2024.116330 38677022
    [Google Scholar]
  159. Bao G.M. Zhang D.J. Li W. Xia Y.F. Cai Z.Q. Sandra A. Yuan H.Q. Chen P. Huang J.P. Fang L. A one-pot synthesized dual-emission MOFs-based ratiometric fluorescent sensor for hypersensitive and portable detection of griseofulvin. Sens. Actuators B Chem. 2025 434 137613 10.1016/j.snb.2025.137613
    [Google Scholar]
  160. Bao G.M. Wei X. Li W. Dou Z.C. Cai Z.Q. Xia Y.F. Sandra A. Huang J.P. Yuan H.Q. Instrument-free detection of natamycin in beer and wastewater based on Eu-MOF ratiometric fluorescence response. Sens. Actuators B Chem. 2025 422 136696 10.1016/j.snb.2024.136696
    [Google Scholar]
  161. Zhang R. Ma L. Qi W. Liu C. A post-synthetically modified Eu@Zn-MOF for ratiometric fluorescence detection of tetracycline in tap water. New J. Chem. 2023 47 38 17783 17789 10.1039/D3NJ03415A
    [Google Scholar]
  162. Yao S. Pang B. Fu Y. Song X. Xu K. Li J. Wang J. Zhao C. Multiplex detection of foodborne pathogens using inductively coupled plasma mass spectrometry, magnetic separation and metal nanoclusters-mediated signal amplification. Sens. Actuators B Chem. 2022 359 131581 10.1016/j.snb.2022.131581
    [Google Scholar]
  163. Li J. Zhu J.J. Xu K. Fluorescent metal nanoclusters: From synthesis to applications. Trends Analyt. Chem. 2014 58 90 98 10.1016/j.trac.2014.02.011
    [Google Scholar]
  164. Zheng Y. Lai L. Liu W. Jiang H. Wang X. Recent advances in biomedical applications of fluorescent gold nanoclusters. Adv. Colloid Interface Sci. 2017 242 1 16 10.1016/j.cis.2017.02.005 28223074
    [Google Scholar]
  165. Rajamanikandan R. Aazaad B. Lakshmipathi S. Ilanchelian M. Glutathione functionalized copper nanoclusters as a fluorescence platform for specific biosensing of cysteine and application in cellular imaging. Microchem. J. 2020 158 105253 10.1016/j.microc.2020.105253
    [Google Scholar]
  166. Baral A. Basu K. Ghosh S. Bhattacharyya K. Roy S. Datta A. Banerjee A. Size specific emission in peptide capped gold quantum clusters with tunable photoswitching behavior. Nanoscale 2017 9 13 4419 4429 10.1039/C7NR00353F 28300263
    [Google Scholar]
  167. Basu K. Paul S. Jana R. Datta A. Banerjee A. Red-emitting copper nanoclusters: From bulk-scale synthesis to catalytic reduction. ACS Sustain. Chem.& Eng. 2019 7 2 1998 2007 10.1021/acssuschemeng.8b04301
    [Google Scholar]
  168. Ou G. Zhao J. Chen P. Xiong C. Dong F. Li B. Feng X. Fabrication and application of noble metal nanoclusters as optical sensors for toxic metal ions. Anal. Bioanal. Chem. 2018 410 10 2485 2498 10.1007/s00216‑017‑0808‑6 29392378
    [Google Scholar]
  169. Boonmee C. Promarak V. Tuntulani T. Ngeontae W. Cysteamine-capped copper nanoclusters as a highly selective turn-on fluorescent assay for the detection of aluminum ions. Talanta 2018 178 796 804 10.1016/j.talanta.2017.10.006 29136897
    [Google Scholar]
  170. Sun X. Wen R. Zhang R. Guo Y. Li H. Lee Y.I. Engineering a ratiometric-sensing platform based on a PTA-NH2@GSH-AuNCs composite for the visual detection of copper ions via RGB assay. Microchem. J. 2022 182 107877 10.1016/j.microc.2022.107877
    [Google Scholar]
  171. Liu P. Hao R. Sun W. Lin Z. Jing T. One‐pot synthesis of copper nanocluster/Tb‐MOF composites for the ratiometric fluorescence detection of Cu 2+. Luminescence 2022 37 10 1793 1799 10.1002/bio.4359 35946061
    [Google Scholar]
  172. Cao H. Dong W. Shi S. Shi W. A novel ratiometric fluorescent sensor array based on the copper clusters hydrogels coupling of DNA. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2025 327 125364 10.1016/j.saa.2024.125364 39500206
    [Google Scholar]
  173. Lin S. Dong J. Zhang B. Yuan Z. Lu C. Han P. Xu J. Jia L. Wang L. Synthesis of bifunctional fluorescent nanohybrids of carbon dots–copper nanoclusters via a facile method for Fe 3+ and Tb 3+ ratiometric detection. Anal. Methods 2021 13 32 3577 3584 10.1039/D1AY00762A 34291249
    [Google Scholar]
  174. Li Y. Du Q. Zhang X. Huang Y. Ratiometric detection of tetracycline based on gold nanocluster enhanced Eu3+ fluorescence. Talanta 2020 206 120202 10.1016/j.talanta.2019.120202 31514885
    [Google Scholar]
  175. Ren W. Zhang Y. Liang W.Y. Yang X.P. Jiang W.D. Liu X.H. Zhang W. A facile and sensitive ratiometric fluorescence sensor for rapid visual monitoring of trace resorcinol. Sens. Actuators B Chem. 2021 330 129390 10.1016/j.snb.2020.129390
    [Google Scholar]
  176. Giust D. Lucío M.I. El-Sagheer A.H. Brown T. Williams L.E. Muskens O.L. Kanaras A.G. Graphene oxide–upconversion nanoparticle based portable sensors for assessing nutritional deficiencies in crops. ACS Nano 2018 12 6 6273 6279 10.1021/acsnano.8b03261 29873479
    [Google Scholar]
  177. Chen S. Weitemier A.Z. Zeng X. He L. Wang X. Tao Y. Huang A.J.Y. Hashimotodani Y. Kano M. Iwasaki H. Parajuli L.K. Okabe S. Teh D.B.L. All A.H. Tsutsui-Kimura I. Tanaka K.F. Liu X. McHugh T.J. Near-infrared deep brain stimulation via upconversion nanoparticle–mediated optogenetics. Science 2018 359 6376 679 684 10.1126/science.aaq1144 29439241
    [Google Scholar]
  178. Chung J.W. Gerelkhuu Z. Oh J.H. Lee Y.I. Recent advances in luminescence properties of lanthanide-doped up-conversion nanocrystals and applications for bio-imaging, drug delivery, and optosensing. Appl. Spectrosc. Rev. 2016 51 7-9 678 705 10.1080/05704928.2016.1167070
    [Google Scholar]
  179. Ding C. Cheng S. Zhang C. Xiong Y. Ye M. Xian Y. Ratiometric upconversion luminescence nanoprobe with near-infrared Ag 2 S nanodots as the energy acceptor for sensing and imaging of pH in vivo. Anal. Chem. 2019 91 11 7181 7188 10.1021/acs.analchem.9b00404 31067856
    [Google Scholar]
  180. Li H. Dong H. Yu M. Liu C. Li Z. Wei L. Sun L.D. Zhang H. NIR ratiometric luminescence detection of ph fluctuation in living cells with hemicyanine derivative-assembled upconversion nanophosphors. Anal. Chem. 2017 89 17 8863 8869 10.1021/acs.analchem.7b01324 28707875
    [Google Scholar]
  181. Näreoja T. Deguchi T. Christ S. Peltomaa R. Prabhakar N. Fazeli E. Perälä N. Rosenholm J.M. Arppe R. Soukka T. Schäferling M. Ratiometric sensing and imaging of intracellular ph using polyethylenimine-coated photon upconversion nanoprobes. Anal. Chem. 2017 89 3 1501 1508 10.1021/acs.analchem.6b03223 27977142
    [Google Scholar]
  182. Liu Y. Ouyang Q. Li H. Zhang Z. Chen Q. Development of an inner filter effects-based upconversion nanoparticles–curcumin nanosystem for the sensitive sensing of fluoride ion. ACS Appl. Mater. Interfaces 2017 9 21 18314 18321 10.1021/acsami.7b04978 28485571
    [Google Scholar]
  183. Liu Q. Peng J. Sun L. Li F. High-efficiency upconversion luminescent sensing and bioimaging of Hg(II) by chromophoric ruthenium complex-assembled nanophosphors. ACS Nano 2011 5 10 8040 8048 10.1021/nn202620u 21899309
    [Google Scholar]
  184. Liu Y. Jiang A. Jia Q. Zhai X. Liu L. Ma L. Zhou J. Rationally designed upconversion nanoprobe for simultaneous highly sensitive ratiometric detection of fluoride ions and fluorosis theranostics. Chem. Sci. (Camb.) 2018 9 23 5242 5251 10.1039/C8SC00670A 29997879
    [Google Scholar]
  185. Liu J. Liu Y. Liu Q. Li C. Sun L. Li F. Iridium(III) complex-coated nanosystem for ratiometric upconversion luminescence bioimaging of cyanide anions. J. Am. Chem. Soc. 2011 133 39 15276 15279 10.1021/ja205907y 21892822
    [Google Scholar]
  186. Yang C. Li Y. Wu N. Zhang Y. Feng W. Yu M. Li Z. Ratiometric upconversion luminescence nanoprobes for quick sensing of Hg2+ and cells imaging. Sens. Actuators B Chem. 2021 326 128841 10.1016/j.snb.2020.128841
    [Google Scholar]
  187. Zheng J. Wu Y. Xing D. Zhang T. Synchronous detection of glutathione/hydrogen peroxide for monitoring redox status in vivo with a ratiometric upconverting nanoprobe. Nano Res. 2019 12 4 931 938 10.1007/s12274‑019‑2327‑6
    [Google Scholar]
  188. Wang H. Liu Y. Wang Z. Yang M. Gu Y. 808 nm-light-excited upconversion nanoprobe based on LRET for the ratiometric detection of nitric oxide in living cancer cells. Nanoscale 2018 10 22 10641 10649 10.1039/C8NR03078B 29845132
    [Google Scholar]
  189. Li X. Zhao H. Ji Y. Yin C. Li J. Yang Z. Tang Y. Zhang Q. Fan Q. Huang W. Lysosome-assisted mitochondrial targeting nanoprobe based on dye-modified upconversion nanophosphors for ratiometric imaging of mitochondrial hydrogen sulfide. ACS Appl. Mater. Interfaces 2018 10 46 39544 39556 10.1021/acsami.8b16818 30387597
    [Google Scholar]
  190. Wang H. Li Y. Yang M. Wang P. Gu Y. FRET-based upconversion nanoprobe sensitized by Nd 3+ for the ratiometric detection of hydrogen peroxide in vivo. ACS Appl. Mater. Interfaces 2019 11 7 7441 7449 10.1021/acsami.8b21549 30673225
    [Google Scholar]
  191. Wang N. Yu X. Zhang K. Mirkin C.A. Li J. Upconversion nanoprobes for the ratiometric luminescent sensing of nitric oxide. J. Am. Chem. Soc. 2017 139 36 12354 12357 10.1021/jacs.7b06059 28844137
    [Google Scholar]
  192. Ansari A.A. Thakur V.K. Chen G. Functionalized upconversion nanoparticles: New strategy towards FRET-based luminescence bio-sensing. Coord. Chem. Rev. 2021 436 213821 10.1016/j.ccr.2021.213821
    [Google Scholar]
  193. Sun C. Gradzielski M. Advances in fluorescence sensing enabled by lanthanide-doped upconversion nanophosphors. Adv. Colloid Interface Sci. 2022 300 102579 10.1016/j.cis.2021.102579 34924169
    [Google Scholar]
  194. López-Peña G. Rodríguez García A. García Solé J. Martín Rodríguez E. Luminescent rare-earth-doped up-converting nanoparticles for Cr3+ sensing in water. J. Lumin. 2024 274 120701 10.1016/j.jlumin.2024.120701
    [Google Scholar]
  195. Wang P. Bai S. Chen C. You Y. Xiao J. Guo X. Wang L. A new ratiometric fluorescence nanosensor based on NaYF4:3%Er@NaYF4 upconversion nanoparticles for sensitive determination of Rose Bengal in water. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2023 303 123242 10.1016/j.saa.2023.123242 37591018
    [Google Scholar]
  196. Song H. Zhou H. Zhuang Q. Li Z. Sun F. Yuan Z. Lou Y. Zhou G. Zhao Y. IFE based nanosensor composed of UCNPs and Fe(II)-phenanthroline for detection of hypochlorous acid and periodic acid. J. Rare Earths 2023 41 2 200 207 10.1016/j.jre.2022.04.005
    [Google Scholar]
  197. Sun L. Sun C. Ge Y. Zhang Z. Zhou J. Ratiometric upconversion nanoprobes for turn-on fluorescent detection of hypochlorous acid. J. Photochem. Photobiol. Chem. 2023 439 114639 10.1016/j.jphotochem.2023.114639
    [Google Scholar]
  198. Wang S. Zeng J. Yao X. Mo, J An Nd³⁺-sensitized upconversion fluorescence sensor coupled with microwell device for the ratiometric detection of doxorubicin. Proceedings of the 2023 IEEE 18th International Conference on Nano/Micro Engineered and Molecular Systems (NEMS) Jeju Island Korea 2023 170 173 10.1109/NEMS57508.2023.10186631
    [Google Scholar]
  199. Zhang C. Ling X. Mei Q. He H. Deng S. Zhang Y. Surface lanthanide activator doping for constructing highly efficient energy transfer-based nanoprobes for the on-site monitoring of atmospheric sulfur dioxide. Analyst 2020 145 2 537 543 10.1039/C9AN01725A 31763636
    [Google Scholar]
  200. Tian J. Tian X. Gong S. Liang Y. Meng Z. Liu W. Xu X. Wang Z. Wang S. A ratiometric fluorescent probe with a large Stokes shift for the detection of Hg2+ and its applications in environmental sample and living system analysis. Anal. Methods 2024 16 13 1846 1855 10.1039/D3AY02106H 38497272
    [Google Scholar]
  201. Zhan Z. Chai L. Lei Q. Zhou X. Wang Y. Deng H. Lv Y. Li W. Two-photon ratiometric fluorescent probe for imaging of hypochlorous acid in acute lung injury and its remediation effect. Anal. Chim. Acta 2021 1187 339159 10.1016/j.aca.2021.339159 34753573
    [Google Scholar]
  202. Dong L.L. Tian R. Wang Y. Yang H. Li M.Y. Liu H.L. Chen X.L. Cui H.L. Wang J.J. A dual emission ratiometric fluorescent probe constructed based on MOF-embedded dye for sequential detection of Al3+ and PPA. J. Mol. Struct. 2025 1322 140494 10.1016/j.molstruc.2024.140494
    [Google Scholar]
  203. Lee J.Y. Mehta P.K. Subedi S. Lee K.H. Development of ratiometric fluorescent probes based on peptides for sensing Pb2+ in aquatic environments and human serum. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2023 294 122502 10.1016/j.saa.2023.122502 36841137
    [Google Scholar]
  204. Divya D. Thennarasu S. Rotational isomerization about C−C single bond in a novel ICT probe facilitates naked‐eye, colorimetric and ratiometric detection of cobalt in aqueous Samples**. ChemistrySelect 2021 6 32 8299 8305 10.1002/slct.202101089
    [Google Scholar]
  205. Yilmaz M.D. A novel ratiometric and colorimetric probe for rapid and ultrasensitive detection of nitrite in water based on an acenaphtho[1,2-d] imidazole derivative. Anal. Chim. Acta 2021 1166 338597 10.1016/j.aca.2021.338597 34022992
    [Google Scholar]
  206. Mu X. Zhu J. Yan L. Tang N. A ratiometric fluorescent probe for the rapid and specific detection of HSO 3− in water samples. Luminescence 2021 36 4 923 927 10.1002/bio.4016 33458934
    [Google Scholar]
  207. Li Z. Xiao L. Sun X. Luo C. Li R. Zhang W. Wang Z. Xiao H. Shu W. An ESIPT-based ratiometric fluorescent probe for detecting H2O2 in water environment and biosystems. Sci. Total Environ. 2023 867 161609 10.1016/j.scitotenv.2023.161609 36642271
    [Google Scholar]
  208. Wang J. Li H. Xu W. Zhang B. Wang Y. Chen N. Zhou Q. Ren T. A unique colorimetric and ratiometric reversible fluorescent probe for HSO3−/H2O2 detection and imaging in real water samples, rice leaves and roots. Dyes Pigments 2022 205 110591 10.1016/j.dyepig.2022.110591
    [Google Scholar]
  209. Shen S. Yuan Y. Song J. Zhu Y. Wang Y. Yue C. Du M. Wei J. Feng F. Tian M. A phenothiazine-based ratiometric fluorescent probe for detecting hypochlorite (ClO−) and its application in foods and water samples. Food Chem. 2025 485 144547 10.1016/j.foodchem.2025.144547 40311560
    [Google Scholar]
  210. Li Z.Y. Xiao M.M. Zheng Y. Zhao B.X. A spectroscopic probe with FRET-ICT feature for thiophenol monitoring in real water samples. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2022 279 121397 10.1016/j.saa.2022.121397 35598576
    [Google Scholar]
  211. Ding Y. Li Y. Chakir S. Mei J. Wang X. Fluorescein@NH2-UiO-66 probe for ratiometric fluorescence sensing of trace phosphate in water. ECS J. Solid State Sci. Technol. 2024 13 5 057004 10.1149/2162‑8777/ad4ddf
    [Google Scholar]
  212. Lv L. Luo W. Zhou Y. Li T. Diao Q. Ma P. Song D. A highly sensitive ratiometric fluorescent probe based on fluorescein coumarin for detecting hydrazine in actual water and biological samples. Luminescence 2023 38 2 159 165 10.1002/bio.4435 36601685
    [Google Scholar]
  213. Zhang F. Li D. Liang X. Guo K. Li B. Xu H. Li J. Zhang Z. Wang S. Fan F. Sun Y. Forming luminescent oligomer nanoparticles via condensation polymerization: A strategy for real-time visualized detection of hydrazine in solution and gas phase. Dyes Pigments 2021 185 108931 10.1016/j.dyepig.2020.108931
    [Google Scholar]
  214. Caponetti V. Mavridi-Printezi A. Cingolani M. Rampazzo E. Genovese D. Prodi L. Fabbri D. Montalti M. A selective ratiometric fluorescent probe for no-wash detection of PVC microplastic. Polymers 2021 13 10 1588 10.3390/polym13101588 34069160
    [Google Scholar]
  215. Charan Behera K. Mallick D. Narayan Patra B. Bag B. A Pyrene-Rhodamine FRET couple as a chemosensor for selective detection of picric acid. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2022 271 120934 10.1016/j.saa.2022.120934 35101722
    [Google Scholar]
  216. Liu T. Huang Z. Feng R. Ou Z. Wang S. Yang L. Ma L.J. An intermolecular pyrene excimer-based ratiometric fluorescent probes for extremely acidic pH and its applications. Dyes Pigments 2020 174 108102 10.1016/j.dyepig.2019.108102
    [Google Scholar]
  217. Shen Z. Yang Y. Gu Y. Wang Z. Wang S. Carbazole-pyrimidine-based novel ratiometric fluorescent probe with large Stokes shift for detection of hydrazine in real environments and organisms. J. Hazard. Mater. 2025 482 136593 10.1016/j.jhazmat.2024.136593 39577292
    [Google Scholar]
  218. Ge C. Pei F. Zhang P. Wang X. Li Z. Sai Z. Ni T. Chang K. Yang Z. Naked-eye and fluorescence resonance energy transfer based ratiometric fluorescent probe for rapid, sensitive and selective detection of hydrazine and its applications in imaging of environmental samples and living systems. J. Hazard. Mater. 2025 484 136781 10.1016/j.jhazmat.2024.136781 39642742
    [Google Scholar]
  219. Liang G. Minghao Z. Haiyi L. Jun X. Tianhao G. Kunming L. Juanhua L. Jinbiao L. A novel HBI-based ratiometric fluorescent probe for rapid detection of trifluoroborate. RSC Advances 2023 13 34 23812 23817 10.1039/D3RA04474B 37564257
    [Google Scholar]
  220. He Y. Wang H. He C. Zeng R. Cheng F. Hao Y. Chen S. Zhang P. A porphyrin-based colorimetric and near infrared fluorescent probe for reversible and rapid detection of diethyl chlorophosphate. Sens. Actuators B Chem. 2025 425 136983 10.1016/j.snb.2024.136983
    [Google Scholar]
/content/journals/cac/10.2174/0115734110402069250914180823
Loading
/content/journals/cac/10.2174/0115734110402069250914180823
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test