Skip to content
2000
image of Development, Validation, and Application of an UHPLC-MS/MS Method for Simultaneous Determination of Vancomycin, Meropenem, and Sulbactam in Human Blood Plasma and Cerebrospinal Fluid

Abstract

Introduction

Postoperative intracranial infections present significant therapeutic challenges in neurosurgery, with inadequate cerebrospinal fluid drainage and antimicrobial resistance constituting primary risk factors. The escalating prevalence of extensively drug-resistant pathogens necessitates combination therapy, particularly vancomycin-meropenem-sulbactam (VCM-MER-SUL) regimens for multidrug-resistant infections. Marked interpatient pharmacokinetic variability complicates dosing, prompting the development of a UHPLC-MS/MS method for precise therapeutic drug monitoring (TDM) of these agents.

Methods

Chromatographic separation was achieved on a BEH C18 column (Waters, 2.1 × 50 mm, 1.7 µm particles) with 0.1% formic acid in water (A) and methanol (B) under gradient elution conditions: 95% A; 0.7 min, 70% A; 1.0 min, 5% A; 2.0 min, 5% A; 2.1 min, 95% A; 3.5 min, 95% A. The column oven and autosampler temperatures were maintained at 37°C and 15°C, respectively. The mobile phase flow rate was set at 0.4 mL/min.

The ion transition was 725.5 > 144.0 for VCM, 383.7 > 141.1 for MER, 234.1 > 124.0 for SUL, and 390.0 > 114.1 for MER-D6 (internal standard). The one-step precipitation by acetonitrile was used for sample pretreatment.

Results

The calibration range for VCM and SUL was established between 0.1 and 40 mg/L, whereas for MER, it was set from 0.02 to 8 mg/L. In all cases, the linearity of the calibration curves was deemed satisfactory; the method demonstrated acceptable accuracy and precision, with intra-day and inter-day bias ranging from -9.98% to 13.40%, while the corresponding imprecision remained below 12.85%. Additionally, the variability in internal standard-normalized recovery and matrix effects was controlled, showing coefficients below 12.76% and 8.77%, respectively. Stability assessments confirmed that all analytes remained within acceptable limits under the tested conditions.

Discussion

Initial trials with an acetonitrile-water mobile phase yielded poor peak symmetry and inadequate resolution for all analytes. Subsequent systematic evaluation of organic modifiers (acetonitrile methanol) and formic acid concentrations identified a 0.1% formic acid aqueous/methanol gradient as optimal. This condition, implemented on a BEH C18 column at 37°C, delivered symmetric peaks for vancomycin, meropenem, and sulbactam within 3.5 min—markedly faster than most reported methods. A single-step acetonitrile protein precipitation doubled vancomycin recovery relative to methanol while maintaining high efficiency for the other analytes. The method’s calibration ranges, matrix effects, recoveries, and long-term stability under clinically relevant storage and handling conditions were fully validated and concordant with literature benchmarks.

Conclusion

The method is fast, sensitive, accurate, and reliable, and has been verified in the study. The streamlined one-step protein precipitation method for sample preparation, coupled with rapid chromatographic separation (3.5 minutes), demonstrated suitability for clinical applications.

Loading

Article metrics loading...

/content/journals/cac/10.2174/0115734110400746251102185303
2026-01-08
2026-01-31
Loading full text...

Full text loading...

References

  1. Seidelman J. Anderson D.J. Surgical site infections. Infect. Dis. Clin. North Am. 2021 35 4 901 929 10.1016/j.idc.2021.07.006 34752225
    [Google Scholar]
  2. Yue Z. Zhi X. Bi L. Treatment and prognostic risk factors for intracranial infection after craniocerebral surgery. Neurosurg. Rev. 2023 46 1 199 10.1007/s10143‑023‑02106‑0
    [Google Scholar]
  3. Sy C.L. Chen P.Y. Cheng C.W. Huang L.J. Wang C.H. Chang T.H. Chang Y.C. Chang C.J. Hii I.M. Hsu Y.L. Hu Y.L. Hung P.L. Kuo C.Y. Lin P.C. Liu P.Y. Lo C.L. Lo S.H. Ting P.J. Tseng C.F. Wang H.W. Yang C.H. Lee S.S.J. Chen Y.S. Liu Y.C. Wang F.D. Recommendations and guidelines for the treatment of infections due to multidrug resistant organisms. J. Microbiol. Immunol. Infect. 2022 55 3 359 386 10.1016/j.jmii.2022.02.001 35370082
    [Google Scholar]
  4. Paul M. Carrara E. Retamar P. Tängdén T. Bitterman R. Bonomo R.A. de Waele J. Daikos G.L. Akova M. Harbarth S. Pulcini C. Garnacho-Montero J. Seme K. Tumbarello M. Lindemann P.C. Gandra S. Yu Y. Bassetti M. Mouton J.W. Tacconelli E. Rodríguez-Baño J. European society of clinical microbiology and infectious diseases (ESCMID) guidelines for the treatment of infections caused by multidrug-resistant Gram-negative bacilli (endorsed by European society of intensive care medicine). Clin. Microbiol. Infect. 2022 28 4 521 547 10.1016/j.cmi.2021.11.025 34923128
    [Google Scholar]
  5. Jean S.S. Harnod D. Hsueh P.R. Global threat of carbapenem-resistant gram-negative bacteria. Front. Cell. Infect. Microbiol. 2022 12 823684 10.3389/fcimb.2022.823684
    [Google Scholar]
  6. Zhang Z. Song Y. Kang J. Epidemiology of patients with central nervous system infections, mainly neurosurgical patients: A retrospective study from 2012 to 2019 in a teaching hospital in China. BMC Infect. Dis. 2021 21 1 826 10.1186/s12879‑021‑06561‑2
    [Google Scholar]
  7. Reuter S.E. Stocker S.L. Alffenaar J.W.C. Baldelli S. Cattaneo D. Jones G. Koch B.C.P. Kocic D. Mathew S.K. Molinaro M. Neely M. Sandaradura I. Marriott D.J.E. Optimal practice for vancomycin therapeutic drug monitoring: Position statement from the anti-infectives committee of the international association of therapeutic drug monitoring and clinical toxicology. Ther. Drug Monit. 2022 44 1 121 132 10.1097/FTD.0000000000000944 34882107
    [Google Scholar]
  8. Ye Y. Kong Y. Ma J. Shi G. Carbapenem-resistant gram-negative bacteria-related healthcare-associated ventriculitis and meningitis: Antimicrobial resistance of the pathogens, treatment, and outcome. Microbiol. Spectr. 2022 10 3 e00253 e22 10.1128/spectrum.00253‑22 35467409
    [Google Scholar]
  9. Nalbant D. Reeder J.A. Li P. O’Sullivan C.T. Rogers W.K. An G. Development and validation of a simple and sensitive LC-MS/MS method for quantification of ampicillin and sulbactam in human plasma and its application to a clinical pharmacokinetic study. J. Pharm. Biomed. Anal. 2021 196 113899 10.1016/j.jpba.2021.113899 33508765
    [Google Scholar]
  10. Schneider F. Gessner A. El-Najjar N. Efficacy of vancomycin and meropenem in central nervous system infections in children and adults: Current update. Antibiotics 2022 11 2 173 10.3390/antibiotics11020173
    [Google Scholar]
  11. Xiao Q. Zhang H. Wu X. Augmented renal clearance in severe infections—an important consideration in vancomycin dosing: A narrative review. Front. Pharmacol. 2022 13 835557 10.3389/fphar.2022.835557
    [Google Scholar]
  12. Jalusic K.O. Hempel G. Arnemann P.H. Spiekermann C. Kampmeier T.G. Ertmer C. Gastine S. Hessler M. Population pharmacokinetics of vancomycin in patients with external ventricular drain‐associated ventriculitis. Br. J. Clin. Pharmacol. 2021 87 6 2502 2510 10.1111/bcp.14657 33202067
    [Google Scholar]
  13. Chen Y. Liu L. Zhu M. Effect of augmented renal clearance on the therapeutic drug monitoring of vancomycin in patients after neurosurgery. J. Int. Med. Res. 2020 48 10 0300060520949076 10.1177/0300060520949076 33100081
    [Google Scholar]
  14. Kumta N. Roberts J.A. Lipman J. A systematic review of studies reporting antibiotic pharmacokinetic data in the cerebrospinal fluid of critically ill patients with uninflamed meninges. Antimicrob. Agents Chemother. 2020 65 1 e01998 e20 10.1128/AAC.01998‑20
    [Google Scholar]
  15. Berska J. Bugajska J. Sztefko K. A liquid chromatography-tandem mass spectrometry method for simultaneously determining meropenem and linezolid in blood and cerebrospinal fluid. Ann. Lab. Med. 2024 44 2 174 178 10.3343/alm.2023.0250 37869779
    [Google Scholar]
  16. Wang Q. Wu Y. Chen B. Drug concentrations in the serum and cerebrospinal fluid of patients treated with cefoperazone/sulbactam after craniotomy. BMC Anesthesiol. 2015 15 33 10.1186/s12871‑015‑0012‑1
    [Google Scholar]
  17. Tiede C. Chiriac U. Dubinski D. Cerebrospinal fluid concentrations of meropenem and vancomycin in ventriculitis patients obtained by TDM-guided continuous infusion. Antibiotics 2021 10 11 1421 10.3390/antibiotics10111421
    [Google Scholar]
  18. Valero-Rivera K.P. Magaña-Aquino M. del Carmen Romero-Méndez M. Morales-Barragán M.N. Sagahón-Azúa J. Medellín-Garibay S.E. del Carmen Milán-Segovia R. Martínez-Gutiérrez F. Romano-Moreno S. Development and validation of UPLC tandem mass spectrometry assay for ceftibuten and sulbactam in human plasma. J. Chromatogr. Sci. 2024 62 8 783 788 10.1093/chromsci/bmae010 38521966
    [Google Scholar]
  19. Liu X. Li B. Li S. Wang X. Kong X. Chen Y. Zhang Q. Duan J. Chen W. Li P. Simultaneous determination of three β-Lactam/β-lactamase inhibitor combinations in critically ill patients by UPLC-MS/MS. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2025 1251 124431 10.1016/j.jchromb.2024.124431 39724828
    [Google Scholar]
  20. D’Cunha R. Bach T. Young B.A. Quantification of cefepime, meropenem, piperacillin, and tazobactam in human plasma using a sensitive and robust liquid chromatography-tandem mass spectrometry method, part 2: Stability evaluation. Antimicrob. Agents Chemother. 2018 62 9 e00861 e18 10.1128/AAC.00861‑18
    [Google Scholar]
  21. Shi M. Zhao X. Wang T. Yin L. Li Y. A LC-MS-MS assay for simultaneous determination of two glycopeptides and two small molecule compounds in human plasma. J. Chromatogr. Sci. 2018 56 9 828 834 10.1093/chromsci/bmy060 29905845
    [Google Scholar]
  22. Rehm S. Rentsch K.M. HILIC LC-MS/MS method for the quantification of cefepime, imipenem and meropenem. J. Pharm. Biomed. Anal. 2020 186 113289 10.1016/j.jpba.2020.113289 32428767
    [Google Scholar]
  23. Sauter M. Uhl P. Foerster K.I. Mohr I. Höne R.T. Merle U. Burhenne J. Haefeli W.E. An ultra-sensitive UHPLC-MS/MS assay for the quantification of orally administered vancomycin in plasma. J. Pharm. Biomed. Anal. 2019 174 633 638 10.1016/j.jpba.2019.06.015 31279892
    [Google Scholar]
  24. Lu W. Pan M. Ke H. An LC-MS/MS method for the simultaneous determination of 18 antibacterial drugs in human plasma and its application in therapeutic drug monitoring. Front. Pharmacol. 2022 13 1044234 10.3389/fphar.2022.1044234
    [Google Scholar]
  25. Rao Z. Dang Z.L. Li B. Zhu L. Qin H.Y. Wu X.A. Wei Y.H. Determination of total and unbound meropenem, imipenem/cilastatin, and cefoperazone/sulbactam in human plasma: Application for therapeutic drug monitoring in critically ill patients. Ther. Drug Monit. 2020 42 4 578 587 10.1097/FTD.0000000000000736 32049891
    [Google Scholar]
  26. Jiang X. Qin Y. Lei R. A rapid and simple HPLC-MS/MS method for the therapeutic drug monitoring of six special-grade antimicrobials in pediatric patients. Heliyon 2024 10 1 24198 10.1016/j.heliyon.2024.e24198
    [Google Scholar]
  27. Aboelezz A. Tesfamariam N.S. Kharouba M. The development and validation of a simple HPLC-UV method for the determination of vancomycin concentration in human plasma and application in critically ill patients. Molecules 2025 30 5 1062 10.3390/molecules30051062
    [Google Scholar]
  28. Peris-Vicente J. Albiol-Chiva J. Bose D. Durgbanshi A. Carda-Broch S. A method to determine two antibiotics prescribed to treat nosocomial infections in plasma and urine by micellar liquid chromatography. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2023 1225 123777 10.1016/j.jchromb.2023.123777 37290211
    [Google Scholar]
  29. Hesham N. Hegazy M.A. Wagdy H.A. Therapeutic drug monitoring of six contraindicated/co-administered drugs by simple and green RP-HPLC-PDA; application to spiked human plasma. BMC Chem. 2024 18 1 66 10.1186/s13065‑024‑01161‑y
    [Google Scholar]
  30. Akram M.N. Khokhar M.I. Abbas M. Waqas M.K. Mustafa M.W. Alamri A.S. Alhomrani M. Alsanie W.F. Usman M. Therapeutic drug monitoring of vancomycin in surgical patients using a validated HPLC method. Int. J. Clin. Pharmacol. Ther. 2024 62 6 259 266 10.5414/CP204534 38529928
    [Google Scholar]
  31. Todoroki K. Fukudo N. Kudoh Y. Mizuno H. Min J.Z. Tanaka S. Uchida S. Namiki N. Toyo’oka T. Development of an on-site therapeutic drug monitoring method using a portable spectrometer. Anal. Sci. 2024 40 5 863 869 10.1007/s44211‑024‑00513‑x 38358581
    [Google Scholar]
  32. Garzon V. Salvador J.P. Marco M.P. Development and ELISA characterization of antibodies against the colistin, vancomycin, daptomycin, and meropenem: A therapeutic drug monitoring approach. Antibiotics 2024 13 7 600 10.3390/antibiotics13070600
    [Google Scholar]
  33. Lin Y. Wang Y. Fan F. Rapid and sensitive determination of vancomycin using an AIE-active fluorescent probe for clinical monitoring. Analyst. 2025;150(9):1952. Published 1960 2025 Apr 22 10.1039/D4AN01588F 40192466
    [Google Scholar]
  34. He J. Wang J. Cao L. Zhang X. Li G. Xu B. Ji B. Zhao J. Huang J. Yang J. Determination of vancomycin and meropenem in serum and synovial fluid of patients with prosthetic joint infections using UPLC-MS/MS. J. Mass Spectrom. 2024 59 6 5041 10.1002/jms.5041 38751321
    [Google Scholar]
  35. Guidance for industry Guidance for industry: Bioanalytical method validation. 2018 Available from:https://www.fda.gov/downloads/drugs/guidances/ucm070107. pdf
    [Google Scholar]
  36. Guideline on bioanalytical method validation. 2021 Available from:http://www.ema.europa.eu/docs/en_GB/document_library/Scientific_guideline/2011/08/WC500109686.pdf
  37. Mei S. Wang J. Zhu L.A. UPLC-MS/MS method for analysis of vancomycin in human cerebrospinal fluid and comparison with the chemiluminescence immunoassay. Biomed. Chromatogr. 2017 31 8 10.1002/bmc.3939
    [Google Scholar]
  38. Chen X. Du L. Liu M. Development, validation, and application of an UPLC-MS/MS method for vancomycin, norvancomycin, methotrexate, paclitaxel, and imatinib analysis in human plasma. Ann. Clin. Biochem. 2022 59 4 253 263 10.1177/00045632221077183 35209719
    [Google Scholar]
  39. Riezk A. Vasikasin V. Wilson R.C. Triple quadrupole LC/MS method for the simultaneous quantitative measurement of cefiderocol and meropenem in serum. Anal. Methods 2023 15 6 746 751
    [Google Scholar]
  40. Barco S. Mesini A. Barbagallo L. Maffia A. Tripodi G. Pea F. Saffioti C. Castagnola E. Cangemi G. A liquid chromatography-tandem mass spectrometry platform for the routine therapeutic drug monitoring of 14 antibiotics: Application to critically ill pediatric patients. J. Pharm. Biomed. Anal. 2020 186 113273 10.1016/j.jpba.2020.113273 32251979
    [Google Scholar]
  41. Cao H. Jiang Y. Wang S. Cao H. Li Y. Huang J. Dried plasma spot based LC-MS/MS method for monitoring of meropenem in the blood of treated patients. Molecules 2022 27 6 1991 10.3390/molecules27061991 35335353
    [Google Scholar]
  42. Chen X. Yu L. Guo Y. You J. Shi M. Xi Y. Yin L. High throughput analysis of vancomycin in human plasma by UHPLC-MS/MS. J. Pharm. Biomed. Anal. 2025 258 116729 10.1016/j.jpba.2025.116729 39983299
    [Google Scholar]
  43. Huo J. Guo Y. Zhang B. Zhao Z. Shi G. Mei S.A. UHPLC-MS/MS method for the simultaneous determination of vancomycin, norvancomycin, meropenem, and moxalactam in human plasma and its clinical application. J. Mass Spectrom. 2023 58 6 4925 10.1002/jms.4925 37194366
    [Google Scholar]
  44. Hu S. Leng B. Jiang J. Zhang L. Guo N. Shen C. An HPLC-MS/MS method for determination of sulbactam in human plasma and its pharmacokinetic application in critically ill patients with augmented renal clearance. Int. J. Clin. Pharmacol. Ther. 2023 61 8 329 338 10.5414/CP204339 37212167
    [Google Scholar]
  45. Roenfanz H.F. Nicolau D.P. Kuti J.L. Quantification of sulbactam and durlobactam in saline and human plasma via ultra-performance liquid chromatography tandem mass spectrometry. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2025 1261 124654 10.1016/j.jchromb.2025.124654 40382829
    [Google Scholar]
  46. Rakete S. Schuster C. Paal M. Vogeser M. An isotope-dilution LC-MS/MS method for the simultaneous quantification of meropenem and its open-ring metabolite in serum. J. Pharm. Biomed. Anal. 2021 197 113944 10.1016/j.jpba.2021.113944 33588299
    [Google Scholar]
  47. Radovanovic M. Day R.O. Jones G.D.R. LC-MS/MS method for simultaneous quantification of ten antibiotics in human plasma for routine therapeutic drug monitoring. J. Mass Spectrom. Adv. Clin. Lab 2022 26 48 59 10.1016/j.jmsacl.2022.11.001
    [Google Scholar]
  48. Sun H. Xing H. Tian X. UPLC-MS/MS method for simultaneous determination of 14 antimicrobials in human plasma and cerebrospinal fluid: Application to therapeutic drug monitoring. J. Anal. Methods Chem. 2022 2022 7048605 10.1155/2022/7048605
    [Google Scholar]
  49. Cazorla-Reyes R. Romero-González R. Frenich A.G. Rodríguez Maresca M.A. Martínez Vidal J.L. Simultaneous analysis of antibiotics in biological samples by ultra high performance liquid chromatography-tandem mass spectrometry. J. Pharm. Biomed. Anal. 2014 89 203 212 10.1016/j.jpba.2013.11.004 24291112
    [Google Scholar]
  50. Mortensen J.S. Jensen B.P. Doogue M. Preanalytical stability of flucloxacillin, piperacillin, tazobactam, meropenem, cefalexin, cefazolin, and ceftazidime in therapeutic drug monitoring: A structured review. Ther. Drug Monit. 2022 44 6 709 719 10.1097/FTD.0000000000000975 35175248
    [Google Scholar]
/content/journals/cac/10.2174/0115734110400746251102185303
Loading
/content/journals/cac/10.2174/0115734110400746251102185303
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test