Skip to content
2000
image of Colorimetric Detection of Hydrogen Peroxide and Dopamine using the Peroxidase-like Activity of MOF-2

Abstract

Introduction

Dopamine (DA) is a crucial neurotransmitter in neurological and cardiovascular functions. Accurate measurement of DA in bodily fluids is essential for diagnosing conditions such as Parkinson's disease, schizophrenia, Alzheimer's disease, and heart failure. Traditional colourimetric methods that utilise horseradish peroxidase (HRP) to oxidise 3, 3’, 5, 5’-tetramethylbenzidine (TMB) face limitations, including instability and purification challenges. Recently, MOFs have emerged as promising alternatives due to their stable structures and ease of storage. This study aims to develop a stable colorimetric method for detecting dopamine (DA) and hydrogen peroxide (H2O2) in human serum using MOF-2 for the first time.

Methods

This study, MOF-2, was synthesised a solvothermal method, followed by characterisation using FT-IR, SEM, and XRD techniques. The peroxidase-like activity of MOF-2 was assessed in a TMB and HO system within an acetate buffer. Factors influencing this activity, including reaction time, pH, TMB concentration, and MOF-2 quantity, were systematically optimised. A calibration curve was established to measure HO and DA in human serum samples, and the linear range, limit of detection (LOD), and limit of quantification (LOQ) were calculated.

Results

The optimised method for HO detection exhibited a linear range of 0.76 to 1200 μM, with a detection limit of 0.25 μM and recovery rates between 92.71% and 116.85%. For DA detection, the method showed a linear range of 16.15 to 108.29 μM, a LOD of 0.09 μM, and recoveries ranging from 95.74% to 115.78% in human serum samples.

Discussion

MOF-2 possesses significant peroxidase-mimicking activity, enabling robust and sensitive detection of HO and DA. This method offers advantages over traditional HRP-based approaches in terms of stability, cost-effectiveness, and ease of preparation. Limitations include the need for further validation in clinical settings and comparison with standard diagnostic tools.

Conclusion

MOF-2 demonstrated significant peroxidase-like activity, successfully developing a reliable colorimetric method for determining HO and DA in biological samples.

Loading

Article metrics loading...

/content/journals/cac/10.2174/0115734110392686251106215500
2026-01-15
2026-01-31
Loading full text...

Full text loading...

References

  1. Channer B. Matt S.M. Nickoloff-Bybel E.A. Pappa V. Agarwal Y. Wickman J. Gaskill P.J. Dopamine, immunity, and disease. Pharmacol. Rev. 2023 75 1 62 158 10.1124/pharmrev.122.000618 36757901
    [Google Scholar]
  2. Chen M. Ruan G. Chen L. Ying S. Li G. Xu F. Xiao Z. Tian Y. Lv L. Ping Y. Cheng Y. Wei Y. Neurotransmitter and intestinal interactions: Focus on the microbiota-gut-brain axis in irritable bowel syndrome. Front. Endocrinol. 2022 13 817100 10.3389/fendo.2022.817100 35250873
    [Google Scholar]
  3. Plunkett L.M. Tackett R.L. Central dopamine receptors and their role in digoxin-induced cardiotoxicity in the dog. J. Pharm. Pharmacol. 1987 39 1 29 34 10.1111/j.2042‑7158.1987.tb07157.x 2880980
    [Google Scholar]
  4. Kur’yanova E.V. Tryasuchev A.V. Stupin V.O. Features of the effects of serotonin and dopamine on changes in heart rate variability in non-linear rats under conditions of acute stress. Bull. Exp. Biol. Med. 2022 174 2 185 189 10.1007/s10517‑023‑05670‑z 36602600
    [Google Scholar]
  5. Yang J. Villar V.A.M. Jose P.A. Zeng C. Renal dopamine receptors and oxidative stress: Role in hypertension. Antioxid. Redox Signal. 2021 34 9 716 735 10.1089/ars.2020.8106 32349533
    [Google Scholar]
  6. Torres-Courchoud I. Chen H.H. Is there still a role for low-dose dopamine use in acute heart failure? Curr. Opin. Crit. Care 2014 20 5 467 471 10.1097/MCC.0000000000000133 25137402
    [Google Scholar]
  7. Akdemi̇r Ü.Ö. Bora Tokçaer A. Atay L.Ö. Dopamine transporter SPECT imaging in Parkinson’s disease and parkinsonian disorders. Turk. J. Med. Sci. 2021 51 2 400 410 10.3906/sag‑2008‑253 33237660
    [Google Scholar]
  8. Kang S. Jeon S. Lee Y. Ye B.S. Striatal dopamine transporter uptake, parkinsonism and cognition in Alzheimer’s disease. Eur. J. Neurol. 2023 30 10 3105 3113 10.1111/ene.15995 37493955
    [Google Scholar]
  9. Baik J.H. Stress and the dopaminergic reward system. Exp. Mol. Med. 2020 52 12 1879 1890 10.1038/s12276‑020‑00532‑4 33257725
    [Google Scholar]
  10. Yang A. Tsai S.J. New targets for schizophrenia treatment beyond the dopamine hypothesis. Int. J. Mol. Sci. 2017 18 8 1689 10.3390/ijms18081689 28771182
    [Google Scholar]
  11. Cinar O. Durmus N. Aslan G. Demir O. Evcim A.S. Gidener S. Esen A.A. Effects of the dopamine D3 receptor agonist 7-hydroxy-2-(di- N -propylamino) tetralin in hyperthyroidism-induced premature ejaculation rat model. Andrologia 2018 50 4 e12956 10.1111/and.12956 29369372
    [Google Scholar]
  12. Osinga T.E. Links T.P. Dullaart R.P.F. Pacak K. Horst-Schrivers A.N.A. Kerstens M.N. Kema I.P. Emerging role of dopamine in neovascularization of pheochromocytoma and paraganglioma. FASEB J. 2017 31 6 2226 2240 10.1096/fj.201601131R 28264974
    [Google Scholar]
  13. Shetty S.S. Moosa B. Zhang L. Alshankiti B. Baslyman W. Mani V. Khashab N.M. Salama K.N. Polyoxometalate-cyclodextrin supramolecular entities for real-time in situ monitoring of dopamine released from neuroblastoma cells. Biosens. Bioelectron. 2023 229 115240 10.1016/j.bios.2023.115240 36963326
    [Google Scholar]
  14. Guo Y. Chen M. Yang T. Wang J. Ratio-metric fluorescence/colorimetric and smartphone-assisted visualization for the detection of dopamine based on cu-mof with catecholase-like activity. Chemosensors 2023 11 8 431 10.3390/chemosensors11080431
    [Google Scholar]
  15. Aydın B.S. Bulduk İ. A validated HPLC-UV method for determination of dopamine HCl in injectable solutions. EJBCS 2020 3 2 116 120
    [Google Scholar]
  16. Ramadan M.A.A. Almasri I. Khayal G. Spectrophotometric determination of dopamine in bulk and dosage forms using 2, 4-dinitrophenylhydrazine. Turk J. Pharm. Sci. 2020 17 6 679 685 10.4274/tjps.galenos.2019.25902 33389979
    [Google Scholar]
  17. Zhou S. Fu Y. Liu N. Ma C. Tian Y. Xu H. Synthesis of graphene quantum dots inside a nanoreactor for fluorescence detection of dopamine. Fuller. Nanotub. Carbon Nanostruct. 2024 32 8 764 773 10.1080/1536383X.2024.2328235
    [Google Scholar]
  18. Dong Z. Xia S. Alboull A.M.A. Mostafa I.M. Abdussalam A. Zhang W. Han S. Xu G. Bimetallic CoMoO4 nanozymes enhanced luminol chemiluminescence for the detection of dopamine. ACS Appl. Nano Mater. 2024 7 3 2983 2991 10.1021/acsanm.3c05309
    [Google Scholar]
  19. Zhang M. Tan W. Wu X. Wan C. Wen C. Feng L. Zhang F. Qu F. A dual-functional cuprum coordination framework for high proton conduction and electrochemical dopamine detection. Mikrochim. Acta 2024 191 1 67 10.1007/s00604‑023‑06133‑y 38159131
    [Google Scholar]
  20. Umapathi R. Raju C.V. Safarkhani M. Haribabu J. Lee H.U. Rani G.M. Huh Y.S. Versatility of MXene based materials for the electrochemical detection of phenolic contaminants. Coord. Chem. Rev. 2025 525 216305 10.1016/j.ccr.2024.216305
    [Google Scholar]
  21. Umapathi R. Rani G.M. Kim E. Park S.Y. Cho Y. Huh Y.S. Sowing kernels for food safety: Importance of rapid on‐site detction of pesticide residues in agricultural foods. Food Front. 2022 3 4 666 676 10.1002/fft2.166
    [Google Scholar]
  22. Umapathi R. Ghoreishian S.M. Rani G.M. Cho Y. Huh Y.S. Emerging trends in the development of electrochemical devices for the on-site detection of food contaminants. ECS Sens. Plus 2022 1 4 044601 10.1149/2754‑2726/ac9d4a
    [Google Scholar]
  23. Wang H.B. Li Y. Dong G.L. Gan T. Liu Y.M. A convenient and label-free colorimetric assay for dopamine detection based on the inhibition of the Cu(ii)-catalyzed oxidation of a 3,3′,5,5′-tetramethylbenzidine–H 2 O 2 system. New J. Chem. 2017 41 23 14364 14369 10.1039/C7NJ02710A
    [Google Scholar]
  24. Saadat M Hallajzadeh J Nikkhah E Seidi S Colorimetric determination of ascorbic acid using peroxidase activity of allium sativum (Garlic) Extract. Current Analytical Chemistry. 2025
    [Google Scholar]
  25. Xie J. Zhang X. Wang H. Zheng H. Huang Y. Xie J. Analytical and environmental applications of nanoparticles as enzyme mimetics. Trends Analyt. Chem. 2012 39 114 129 10.1016/j.trac.2012.03.021
    [Google Scholar]
  26. Gong C. Wang D. Zhao H. Biomimetic metal‐pyrimidine nanoflowers: Enzyme immobilization platforms with boosted activity. Small 2023 19 49 2304077 10.1002/smll.202304077 37612822
    [Google Scholar]
  27. Peterson M.E. Daniel R.M. Danson M.J. Eisenthal R. The dependence of enzyme activity on temperature: determination and validation of parameters. Biochem. J. 2007 402 2 331 337 10.1042/BJ20061143 17092210
    [Google Scholar]
  28. Nannipieri P. Bollag J.M. Use of enzymes to detoxify pesticide‐contaminated soils and waters. J. Environ. Qual. 1991 20 3 510 517 10.2134/jeq1991.00472425002000030002x
    [Google Scholar]
  29. Meghwanshi G.K. Kaur N. Verma S. Dabi N.K. Vashishtha A. Charan P.D. Purohit P. Bhandari H.S. Bhojak N. Kumar R. Enzymes for pharmaceutical and therapeutic applications. Biotechnol. Appl. Biochem. 2020 67 4 586 601 10.1002/bab.1919 32248597
    [Google Scholar]
  30. Ramli ANM Hong PK Manas NHA Azelee NIW An overview of enzyme technology used in food industry. Value-Addition in Food. Products and Processing Through Enzyme Technology. Academic Press 2022 333 345 10.1016/B978‑0‑323‑89929‑1.00011‑1
    [Google Scholar]
  31. Razavi B.S. Liu S. Kuzyakov Y. Hot experience for cold-adapted microorganisms: Temperature sensitivity of soil enzymes. Soil Biol. Biochem. 2017 105 236 243 10.1016/j.soilbio.2016.11.026
    [Google Scholar]
  32. Wang J. Hu Y. Zhou Q. Hu L. Fu W. Wang Y. Peroxidase-like activity of metal–organic framework [Cu (PDA)(DMF)] and its application for colorimetric detection of dopamine. ACS Appl. Mater. Interfaces 2019 11 47 44466 44473 10.1021/acsami.9b17488 31691561
    [Google Scholar]
  33. Zhu C. Hong Q. Wang K. Shen Y. Liu S. Zhang Y. Single nanozyme-based colorimetric biosensor for dopamine with enhanced selectivity via reactivity of oxidation intermediates. Chin. Chem. Lett. 2024 35 10 109560 10.1016/j.cclet.2024.109560
    [Google Scholar]
  34. Wang B. Liu P. Hu Y. Zhao H. Zheng L. Cao Q.A. Cu(II) MOF with laccase-like activity for colorimetric detection of 2,4-dichlorophenol and p -nitrophenol. Dalton Trans. 2023 52 8 2309 2316 10.1039/D2DT03268F 36723081
    [Google Scholar]
  35. Zhang Q. Yang H. Zhou T. Chen X. Li W. Pang H. Metal–organic frameworks and their composites for environmental applications. Adv. Sci. 2022 9 32 2204141 10.1002/advs.202204141 36106360
    [Google Scholar]
  36. Jain B. Verma D.K. Singh A.K. Singh J. Metal Organic Frameworks: Fundamentals to Advanced. Elsevier 2024
    [Google Scholar]
  37. Hou Y.L. Yang C. Yang Z. Zhou H. Guo L. Guo J. Zhang X. Building robust metal-organic frameworks with premade ligands. Coord. Chem. Rev. 2024 505 215690 10.1016/j.ccr.2024.215690
    [Google Scholar]
  38. Li D. Yadav A. Zhou H. Roy K. Thanasekaran P. Lee C. Advances and applications of metal‐organic frameworks (MOFs) in emerging technologies: A comprehensive review. Glob. Chall. 2024 8 2 2300244 10.1002/gch2.202300244 38356684
    [Google Scholar]
  39. Lin X. Li J. Wu J. Guo K. Duan N. Wang Z. Wu S. Fe–Co-based metal–organic frameworks as peroxidase mimics for sensitive colorimetric detection and efficient degradation of aflatoxin B 1. ACS Appl. Mater. Interfaces 2024 16 9 11809 11820 10.1021/acsami.3c18878 38386848
    [Google Scholar]
  40. Abdelhamid H.N. Two-dimensional metal-organic frameworks for biosensing applications Functionalization of Two-Dimensional Materials and Their Applications. Elsevier 2024 379 394 10.1016/B978‑0‑323‑89955‑0.00010‑8
    [Google Scholar]
  41. Xie Y. Wu X. Shi Y. Peng Y. Zhou H. Wu X. Ma J. Jin J. Pi Y. Pang H. Recent progress in 2D metal‐organic framework‐related materials. Small 2024 20 1 2305548 10.1002/smll.202305548 37643389
    [Google Scholar]
  42. Hui S. Saha P.C. Guha S. Mahata P. Two-dimensional cu-based mof for selective staining of the cellular nucleus through fluorescence imaging and selective sorption of dye molecules in aqueous medium. Inorg. Chem. 2024 63 29 13439 13449 10.1021/acs.inorgchem.4c01459 38980190
    [Google Scholar]
  43. Rana L. Mahiya K. Synthesis and evaluation of copper (II) complexes for peroxidase-mimicking activity. J. Mol. Struct. 2024 1319 139609
    [Google Scholar]
  44. Wang X. Wang H. Zhang J. Han N. Ma W. Zhang D. Yao M. Wang X. Chen Y. Peroxidase-like active Cu-ZIF-8 with rich copper(I)-nitrogen sites for excellent antibacterial performances toward drug-resistant bacteria. Nano Res. 2024 17 8 7427 7435 10.1007/s12274‑024‑6699‑x
    [Google Scholar]
  45. Niu X. Li X. Lyu Z. Pan J. Ding S. Ruan X. Zhu W. Du D. Lin Y. Metal–organic framework based nanozymes: Promising materials for biochemical analysis. Chem. Commun. 2020 56 77 11338 11353 10.1039/D0CC04890A 32909017
    [Google Scholar]
  46. Liu S. Zhou J. Yuan X. Xiong J. Zong M.H. Wu X. Lou W.Y. A dual-mode sensing platform based on metal–organic framework for colorimetric and ratiometric fluorescent detection of organophosphorus pesticide. Food Chem. 2024 432 137272 10.1016/j.foodchem.2023.137272 37657347
    [Google Scholar]
  47. Abdelhamid H.N. MOFTextile: Metal‐organic frameworks nanosheets incorporated cotton textile for selective vapochromic sensing and capture of pyridine. Appl. Organomet. Chem. 2023 37 5 e7078 10.1002/aoc.7078
    [Google Scholar]
  48. Carson C.G. Hardcastle K. Schwartz J. Liu X. Hoffmann C. Gerhardt R.A. Tannenbaum R. Synthesis and structure characterization of copper terephthalate metal–organic frameworks. Wiley Online Library 2009 10.1002/ejic.200801224
    [Google Scholar]
  49. Jiang N. Zhang C. Li M. Li S. Hao Z. Li Z. Wu Z. Li C. The fabrication of amino acid incorporated nanoflowers with intrinsic peroxidase-like activity and its application for efficiently determining glutathione with tmb Radical Cation as Indicator. Micromachines 2021 12 9 1099 10.3390/mi12091099 34577742
    [Google Scholar]
  50. Jiang X. Sun C. Guo Y. Nie G. Xu L. Peroxidase-like activity of apoferritin paired gold clusters for glucose detection. Biosens. Bioelectron. 2015 64 165 170 10.1016/j.bios.2014.08.078 25218100
    [Google Scholar]
  51. Li S. Liang L. Tian L. Wu J. Zhu Y. Qin Y. Zhao S. Ye F. Enhanced peroxidase-like activity of MOF nanozymes by co-catalysis for colorimetric detection of cholesterol. J. Mater. Chem. B Mater. Biol. Med. 2023 11 33 7913 7919 10.1039/D3TB00958K 37431242
    [Google Scholar]
  52. Liu Q. Jiang Y. Zhang L. Zhou X. Lv X. Ding Y. Sun L. Chen P. Yin H. The catalytic activity of Ag2S-montmorillonites as peroxidase mimetic toward colorimetric detection of H2O2. Mater. Sci. Eng. C 2016 65 109 115 10.1016/j.msec.2016.04.007 27157733
    [Google Scholar]
  53. Rostami S. Mehdinia A. Jabbari A. Intrinsic peroxidase-like activity of graphene nanoribbons for label-free colorimetric detection of dopamine. Mater. Sci. Eng. C 2020 114 111034 10.1016/j.msec.2020.111034 32994022
    [Google Scholar]
  54. Cheng X. Zheng Z. Zhou X. Kuang Q. Metal–organic framework as a compartmentalized integrated nanozyme reactor to enable high-performance cascade reactions for glucose detection. 2020 8 48 17783 17790 10.1021/acssuschemeng.0c06325
    [Google Scholar]
  55. Hu S. Zhu L. Lam C.W. Guo L. Lin Z. Qiu B. Wong K.Y. Chen G. Liu Z. Fluorometric determination of the activity of inorganic pyrophosphatase and its inhibitors by exploiting the peroxidase mimicking properties of a two-dimensional metal organic framework. Mikrochim. Acta 2019 186 3 190 10.1007/s00604‑019‑3250‑y 30771090
    [Google Scholar]
  56. Chen J. Shu Y. Li H. Xu Q. Hu X. Nickel metal-organic framework 2D nanosheets with enhanced peroxidase nanozyme activity for colorimetric detection of H2O2. Talanta 2018 189 254 261 10.1016/j.talanta.2018.06.075 30086915
    [Google Scholar]
  57. Jiang D. Ni D. Rosenkrans Z.T. Huang P. Yan X. Cai W. Nanozyme: New horizons for responsive biomedical applications. Chem. Soc. Rev. 2019 48 14 3683 3704 10.1039/C8CS00718G 31119258
    [Google Scholar]
  58. Gunatilake U.B. Pérez-López B. Urpi M. Prat-Trunas J. Carrera-Cardona G. Félix G. Sene S. Beaudhuin M. Dupin J.C. Allouche J. Guari Y. Larionova J. Baldrich E. peroxidase (pod) mimicking activity of different types of poly(ethyleneimine)-mediated prussian blue nanoparticles. Nanomaterials 2024 15 1 41 10.3390/nano15010041 39791800
    [Google Scholar]
  59. Zhang C.Y. Peng L.J. Chen G.Y. Zhang H. Yang F.Q. Investigation on the peroxidase-like activity of vitamin B6 and its applications in colorimetric detection of hydrogen peroxide and total antioxidant capacity evaluation. Molecules 2022 27 13 4262 10.3390/molecules27134262 35807507
    [Google Scholar]
  60. Lin L. Song X. Chen Y. Rong M. Zhao T. Wang Y. Jiang Y. Chen X. Intrinsic peroxidase-like catalytic activity of nitrogen-doped graphene quantum dots and their application in the colorimetric detection of H2O2 and glucose. Anal. Chim. Acta 2015 869 89 95 10.1016/j.aca.2015.02.024 25818144
    [Google Scholar]
  61. Yadav P.K. Singh V.K. Chandra S. Bano D. Kumar V. Talat M. Hasan S.H. Green synthesis of fluorescent carbon quantum dots from Azadirachta indica leaves and their peroxidase-mimetic activity for the detection of H 2 O 2 and ascorbic acid in common fresh fruits. ACS Biomater. Sci. Eng. 2019 5 2 623 632 10.1021/acsbiomaterials.8b01528 33405826
    [Google Scholar]
  62. Lee G. Kim C. Kim D. Hong C. Kim T. Lee M. Lee K. Multibranched Au–Ag–Pt nanoparticle as a nanozyme for the colorimetric assay of hydrogen peroxide and glucose. ACS Omega 2022 7 45 40973 40982 10.1021/acsomega.2c04129 36406559
    [Google Scholar]
  63. Xia F. Shi Q. Nan Z. Facile synthesis of Cu-CuFe 2 O 4 nanozymes for sensitive assay of H 2 O 2 and GSH. Dalton Trans. 2020 49 36 12780 12792 10.1039/D0DT02395G 32959837
    [Google Scholar]
  64. Li R. Zhao Y. Zhang T. Ju Z. Ji X. Cui Y. Wang L. Xiao H. Pd nanoparticles stabilized by bitter gourd polysaccharide with peroxidase properties for H2O2 detection. Int. J. Biol. Macromol. 2023 233 123513 10.1016/j.ijbiomac.2023.123513 36739057
    [Google Scholar]
  65. Uzunoğlu D. Özer A. Colorimetric detection of H2O2 by peroxidase-like catalyst iron-based nanoparticles synthesized by using hyperaccumulator plant-derived metal solution. J. Environ. Chem. Eng. 2023 11 1 109159 10.1016/j.jece.2022.109159
    [Google Scholar]
  66. Wei X. Li Y. Qi S. Chen Y. Yin M. Zhang L. Tian X. Gong S. Wang F. Zhu Y. Liu Y. Qiu J. Xu D. Ce-MOF nanosphere as colorimetric sensor with high oxidase mimicking activity for sensitive detection of H2O2. J. Inorg. Organomet. Polym. Mater. 2022 32 9 3595 3600 10.1007/s10904‑022‑02422‑w
    [Google Scholar]
  67. Ding Y. Yang B. Liu H. Liu Z. Zhang X. Zheng X. Liu Q. FePt-Au ternary metallic nanoparticles with the enhanced peroxidase-like activity for ultrafast colorimetric detection of H2O2. Sens. Actuators B Chem. 2018 259 775 783 10.1016/j.snb.2017.12.115
    [Google Scholar]
  68. Ahmed S.R. Cardoso A.G. Cobas H.V. Das P. Chen A. Srinivasan S. Rajabzadeh A.R. Graphdiyne Quantum Dots for H 2 O 2 and Dopamine Detection. ACS Appl. Nano Mater. 2023 6 10 8434 8443 10.1021/acsanm.3c00771
    [Google Scholar]
  69. Rui Q. Komori K. Tian Y. Liu H. Luo Y. Sakai Y. Electrochemical biosensor for the detection of H2O2 from living cancer cells based on ZnO nanosheets. Anal. Chim. Acta 2010 670 1-2 57 62 10.1016/j.aca.2010.04.065 20685417
    [Google Scholar]
  70. Zhou Y. Guan X. Wu R. Dang Y. Yu S. Zhou Y. Tang J. An electrochemical biosensor based on cufe pba/mos2 nanocomposites for stable and sensitive detection of hydrogen peroxide and carcinoembryonic antigen. J. Electroanal. Chem. 2023 943 117592 10.1016/j.jelechem.2023.117592
    [Google Scholar]
  71. Tsaplev Y.B. Chemiluminescence determination of hydrogen peroxide. J. Anal. Chem. 2012 67 6 506 514 10.1134/S1061934812040028
    [Google Scholar]
  72. Wang L. Qi H. Chen L. Sun Y. Li Z. Self-assembled ag-cu2o nanocomposite films at air-liquid interfaces for surface-enhanced raman scattering and electrochemical detection of h2o2. Nanomaterials 2018 8 5 332 10.3390/nano8050332 29762527
    [Google Scholar]
  73. Xia X. Weng Y. Zhang L. Tang R. Zhang X. A facile SERS strategy to detect glucose utilizing tandem enzyme activities of Au@Ag nanoparticles. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2021 259 119889 10.1016/j.saa.2021.119889 34015600
    [Google Scholar]
  74. Liang L. Lan F. Li L. Su M. Ge S. Yu J. Liu H. Yan M. Fluorescence “turn-on” determination of H 2 O 2 using multilayer porous SiO 2 /NGQDs and PdAu mimetics enzymatic/oxidative cleavage of single-stranded DNA. Biosens. Bioelectron. 2016 82 204 211 10.1016/j.bios.2016.03.076 27085952
    [Google Scholar]
  75. Tian R. Zhang B. Zhao M. Zou H. Zhang C. Qi Y. Ma Q. Fluorometric enhancement of the detection of H 2 O 2 using different organic substrates and a peroxidase-mimicking polyoxometalate. RSC Advances 2019 9 22 12209 12217 10.1039/C9RA00505F 35515876
    [Google Scholar]
  76. Zhao W. Li Y. Yang S. Chen Y. Zheng J. Liu C. Qing Z. Li J. Yang R. Target-Activated modulation of dual-color and two-photon fluorescence of graphene quantum dots for in vivo imaging of hydrogen peroxide. Anal. Chem. 2016 88 9 4833 4840 10.1021/acs.analchem.6b00521 27072323
    [Google Scholar]
  77. Song Y. Driessens N. Costa M. De Deken X. Detours V. Corvilain B. Maenhaut C. Miot F. Van Sande J. Many M.C. Dumont J.E. Roles of hydrogen peroxide in thyroid physiology and disease. J. Clin. Endocrinol. Metab. 2007 92 10 3764 3773 10.1210/jc.2007‑0660 17666482
    [Google Scholar]
  78. Pravda J. Hydrogen peroxide and disease: Towards a unified system of pathogenesis and therapeutics. Mol. Med. 2020 26 1 41 10.1186/s10020‑020‑00165‑3 32380940
    [Google Scholar]
  79. Tabner B.J. Turnbull S. El-Agnaf O.M.A. Allsop D. Formation of hydrogen peroxide and hydroxyl radicals from A(beta) and alpha-synuclein as a possible mechanism of cell death in Alzheimer’s disease and Parkinson’s disease. Free Radic. Biol. Med. 2002 32 11 1076 1083 10.1016/S0891‑5849(02)00801‑8 12031892
    [Google Scholar]
  80. Razavi M. Barras A. Ifires M. Swaidan A. Khoshkam M. Szunerits S. Kompany-Zareh M. Boukherroub R. Colorimetric assay for the detection of dopamine using bismuth ferrite oxide (Bi2Fe4O9) nanoparticles as an efficient peroxidase-mimic nanozyme. J. Colloid Interface Sci. 2022 613 384 395 10.1016/j.jcis.2022.01.041 35042036
    [Google Scholar]
  81. Marieeswaran M. Panneerselvam P. Transition metal ion-coordinated porous organic polymer to enhance the peroxidase mimic activity for detection of ascorbic acid and dopamine. Mater. Adv. 2022 3 5 2393 2404 10.1039/D1MA01195B
    [Google Scholar]
  82. Ma Q. Qiao J. Liu Y. Qi L. Colorimetric monitoring of serum dopamine with promotion activity of gold nanocluster-based nanozymes. Analyst 2021 146 21 6615 6620 10.1039/D1AN01511G 34590627
    [Google Scholar]
  83. Guo M.X. Li Y.F. Cu (II)-based metal-organic xerogels as a novel nanozyme for colorimetric detection of dopamine. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2019 207 236 241 10.1016/j.saa.2018.09.038 30245138
    [Google Scholar]
  84. Umek N. Geršak B. Vintar N. Šoštarič M. Mavri J. Dopamine autoxidation is controlled by acidic pH. Front. Mol. Neurosci. 2018 11 467 10.3389/fnmol.2018.00467 30618616
    [Google Scholar]
  85. Guan H. Zhang Z. Zhang Q. Wang D. Liu Q. Ye H. A smartphone-enabled colorimetric sensing platform based on Au-decorated Fe3O4 nanoparticles as nanozyme for dual-mode visual monitoring of dopamine hydrochloride. Food Biosci. 2024 59 104221 10.1016/j.fbio.2024.104221
    [Google Scholar]
  86. Yin Q. Wang Y. Yang D. Yang Y. Zhu Y. A colorimetric detection of dopamine in urine and serum based on the CeO 2 @ZIF‐8/Cu‐CDs laccase‐like nanozyme activity. Luminescence 2024 39 2 e4684 10.1002/bio.4684 38332470
    [Google Scholar]
  87. Li J. Lu C. Yang S. Xie Q. Danzeng Q. Liu C. Zhou C.H. Integrating carbon dots and gold/silver core-shell nanoparticles to achieve sensitive detection of dopamine with fluorometric/colorimetric dual signal. Anal. Bioanal. Chem. 2024 416 22 4951 4960 10.1007/s00216‑024‑05427‑1 39046501
    [Google Scholar]
  88. Sliesarenko V. Bren U. Lobnik A. Fluorescence based dopamine detection. Sens. Actuators Rep 2024 7 100199 10.1016/j.snr.2024.100199
    [Google Scholar]
  89. Liu Q. Chen S. Nie Y. Li Q. Chen F. Determination of 4-n-butylresorcinol by fluorescence derivatization based on dopamine. Talanta 2025 281 126909 10.1016/j.talanta.2024.126909 39321559
    [Google Scholar]
  90. Chen Y. Guan H. Du S. Wang D. Liu Q. Biomass carbon quantum dots: Mimicking peroxidase-like activity and sensitive fluorometric and colorimetric detection of dopamine hydrochloride in meat products. Food Biosci. 2024 61 104719 10.1016/j.fbio.2024.104719
    [Google Scholar]
  91. Khajehpour MH Ghaffarinejad A Dopamine neurotransmitter determination using graphite sheet–graphene nano-sensor. Graphene and 2D Materials 2024 9 125 135 10.1007/s41127‑024‑00075‑9
    [Google Scholar]
  92. Shahparast S. Asadpour-Zeynali K. Development of an efficient electrochemical sensor based on CuAl-LDH using an electrostatic repulsion approach for the selective determination of dopamine in the presence of uric acid and ascorbic acid species. Electrochem. Commun. 2024 165 107756 10.1016/j.elecom.2024.107756
    [Google Scholar]
  93. Yu A.X. Liang X.H. Hao C.D. Hu X.Z. Li J.J. Bo X.J. Du D.Y. Su Z.M. Heterometallic MIL-125(Ti–Al) frameworks for electrochemical determination of ascorbic acid, dopamine and uric acid. Dalton Trans. 2024 53 14 6275 6281 10.1039/D4DT00021H 38506644
    [Google Scholar]
  94. Zhou F. Lim H.N. Ibrahim I. Endot N.A. Malek E.A. Gowthaman N.S.K. Simultaneous electrochemical detection of dopamine and uric acid via Au@Cu‐Metal organic framework. ChemPlusChem 2024 89 5 e202300686 10.1002/cplu.202300686 38261267
    [Google Scholar]
  95. Xin Y.Y. Liu L.H. Liu Y. Deng Z.P. Cheng X.L. Zhang X.F. Xu Y-M. Huo L-H. Gao S. Nanoflower MoS2/rGO composite rich in edge defects for enhanced electrochemical sensing of nM-level dopamine. Microchem. J. 2024 197 109878 10.1016/j.microc.2023.109878
    [Google Scholar]
  96. Aldughaylibi F.S. Ulla H. Allag N. Alam M.W. BaQais, A.; Al-Othoum, M.A.S.; Sadaf, S. Development of molybdenum trioxide based modified graphite sheet electrodes for enhancing the electrochemical sensing of dopamine. Mater. Sci. Semicond. Process. 2024 173 108107 10.1016/j.mssp.2024.108107
    [Google Scholar]
/content/journals/cac/10.2174/0115734110392686251106215500
Loading
/content/journals/cac/10.2174/0115734110392686251106215500
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test