Skip to content
2000
image of Development of Molecular Subtypes and a Prognostic Model for Ovarian Cancer Based on Lipid Homeostasis Features

Abstract

Introduction

This study aimed to explore the prognostic role of lipid homeostasis in Ovarian Cancer (OV). OV is a lethal female malignancy that is difficult to be diagnosed at an early stage. Emerging evidence suggests that lipid homeostasis dysregulation contributes to tumorigenesis and progression, yet its prognostic implications in OV remain unclear.

Methods

RNA-seq data and scRNA-seq data of OV were collected from public databases. The MSigDB database provided the Lipid Homeostasis-related Gene (LHSRGs) set. The OV samples were clustered using the “ConsensusClusterPlus” package, followed by identifying Differentially Expressed Genes (DEGs) between the molecular subtypes using “limma” package. Subsequently, prognostic genes were selected through univariate Cox and LASSO Cox regression analyses, and multivariate stepwise regression analysis was used to construct a risk model. The CIBERSORT, single sample GSEA (ssGSEA), and MCP-counter methods were used to assess the relation between the RiskScore and immune cell infiltration. The expression of the identified key prognostic genes in different OV cell types was analyzed by performing single-cell analysis on OV samples using the Seurat package. Finally, functional experiments, including qPCR, CCK-8, wound healing, and transwell assays, were carried out for validating the key gene expression, cell viability, migration, and invasion.

Results

We first screened 14 prognostic LHSRGs and stratified OV into two molecular subtypes (C1 and C2). Using the DEGs in C1 and C2, 9 prognostically critical genes (, , , , , , , , and ) were screened to develop a risk model with a strong predictive performance for OV. Notably, high-risk patients showed poor outcomes. RiskScore was significantly negatively correlated with the infiltration of multiple immune cells (., cancer-associated fibroblasts, activated CD4 and CD8 T cells, .). Single-cell analysis revealed that the proportion of T cell types in OV samples was increased and that fibroblasts, epithelial cells, and macrophages may regulate lipid homeostasis. assays demonstrated that knocking down the model gene affected the viability, migration, and invasion of the OV cells.

Discussion

In the present study, a RiskScore model incorporating a 9-gene signature was proposed to stratify OV patients into high/low-risk categories, and patients with different risk types displayed the disparity in the distribution of clinicopathological features and the clinical outcome, which provided a reference for the personalized therapy in OV.

Conclusion

In summary, we established a novel 9-LHSRG signature for OV prognosis and characterized the immune infiltration landscape in OV. These findings contributed to more effective risk stratification for OV patients, improving the diagnostic accuracy and the personalized treatment of OV.

Loading

Article metrics loading...

/content/journals/cac/10.2174/0115734110391970250429060726
2025-05-02
2025-10-29
Loading full text...

Full text loading...

References

  1. Bachner F. Bobek J. Habimana K. Ladurner J. Lepuschutz L. Ostermann H. Rainer L. Schmidt A.E. Zuba M. Quentin W. Winkelmann J. Austria: Health System Review. Health Syst. Transit. 2018 20 3 1 254 30277215
    [Google Scholar]
  2. Ma L. Shao W. Zhu W. Exploring the molecular mechanisms and potential therapeutic strategies of ferroptosis in ovarian cancer. Biocell 2024 48 3 379 386 10.32604/biocell.2024.047812
    [Google Scholar]
  3. Peres L.C. Cushing-Haugen K.L. Köbel M. Harris H.R. Berchuck A. Rossing M.A. Schildkraut J.M. Doherty J.A. Invasive Epithelial Ovarian Cancer Survival by Histotype and Disease Stage. J. Natl. Cancer Inst. 2019 111 1 60 68 10.1093/jnci/djy071 29718305
    [Google Scholar]
  4. Gorodnova T.V. Sokolenko A.P. Kuligina E. Berlev I.V. Imyanitov E.N. Principles of clinical management of ovarian cancer. Chin. Clin. Oncol. 2018 7 6 56 10.21037/cco.2018.10.06 30509078
    [Google Scholar]
  5. Chen G. Xie T. Chen H. Chen L. Expression and clinical significance of miR-152 and CYFRA21-1 in ovarian cancer tissues. Department of Gynecology 2020 22 2 83 93 10.32604/oncologie.2020.012491
    [Google Scholar]
  6. Sant M. Chirlaque Lopez M.D. Agresti R. Sánchez Pérez M.J. Holleczek B. Bielska-Lasota M. Dimitrova N. Innos K. Katalinic A. Langseth H. Larrañaga N. Rossi S. Siesling S. Minicozzi P. Survival of women with cancers of breast and genital organs in Europe 1999-2007: Results of the EUROCARE-5 study. Eur J Cancer 2015 51 15 2191 2205 10.1016/j.ejca.2015.07.022
    [Google Scholar]
  7. Kuroki L. Guntupalli S.R. Treatment of epithelial ovarian cancer. BMJ 2020 371 m3773 10.1136/bmj.m3773 33168565
    [Google Scholar]
  8. Aslan M. Aydın F. Levent A. Voltammetric studies and spectroscopic investigations of the interaction of an anticancer drug bevacizumab-DNA and analytical applications of disposable pencil graphite sensor. Talanta 2023 265 124893 10.1016/j.talanta.2023.124893 37437394
    [Google Scholar]
  9. Wang L. Wang X. Zhu X. Zhong L. Jiang Q. Wang Y. Tang Q. Li Q. Zhang C. Wang H. Zou D. Drug resistance in ovarian cancer: from mechanism to clinical trial. Mol. Cancer 2024 23 1 66 10.1186/s12943‑024‑01967‑3 38539161
    [Google Scholar]
  10. Agrawal M. Agrawal S.K. Chopra K. Overcoming drug resistance in ovarian cancer through PI3K/AKT signaling inhibitors. Gene 2025 948 149352 10.1016/j.gene.2025.149352 39988188
    [Google Scholar]
  11. Moufarrij S. Dandapani M. Arthofer E. Gomez S. Srivastava A. Lopez-Acevedo M. Villagra A. Chiappinelli K.B. Epigenetic therapy for ovarian cancer: promise and progress. Clin. Epigenetics 2019 11 1 7 10.1186/s13148‑018‑0602‑0 30646939
    [Google Scholar]
  12. Yoon H. Shaw J.L. Haigis M.C. Greka A. Lipid metabolism in sickness and in health: Emerging regulators of lipotoxicity. Mol. Cell 2021 81 18 3708 3730 10.1016/j.molcel.2021.08.027 34547235
    [Google Scholar]
  13. Gu Q. Wang Y. Yi P. Cheng C. Theoretical framework and emerging challenges of lipid metabolism in cancer. Semin. Cancer Biol. 2025 108 48 70 10.1016/j.semcancer.2024.12.002 39674303
    [Google Scholar]
  14. Lytrivi M. Castell A.L. Poitout V. Cnop M. Recent Insights Into Mechanisms of β-Cell Lipo- and Glucolipotoxicity in Type 2 Diabetes. J. Mol. Biol. 2020 432 5 1514 1534 10.1016/j.jmb.2019.09.016 31628942
    [Google Scholar]
  15. Ding X. Zhang W. Li S. Yang H. The role of cholesterol metabolism in cancer. Am. J. Cancer Res. 2019 9 2 219 227 30906624
    [Google Scholar]
  16. González-Ortiz A. Galindo-Hernández O. Hernández-Acevedo G.N. Hurtado-Ureta G. García-González V. Impact of cholesterol-pathways on breast cancer development, a metabolic landscape. J. Cancer 2021 12 14 4307 4321 10.7150/jca.54637 34093831
    [Google Scholar]
  17. Kuzu O.F. Noory M.A. Robertson G.P. The Role of Cholesterol in Cancer. Cancer Res. 2016 76 8 2063 2070 10.1158/0008‑5472.CAN‑15‑2613 27197250
    [Google Scholar]
  18. Criscuolo D. Avolio R. Calice G. Laezza C. Paladino S. Navarra G. Maddalena F. Crispo F. Pagano C. Bifulco M. Landriscina M. Matassa D.S. Esposito F. Cholesterol Homeostasis Modulates Platinum Sensitivity in Human Ovarian Cancer. Cells 2020 9 4 828 10.3390/cells9040828 32235572
    [Google Scholar]
  19. Yang J. Stack M.S. Lipid regulatory proteins as potential therapeutic targets for ovarian cancer in obese women. Cancers 2020 12 11
    [Google Scholar]
  20. Kouba S. Ouldamer L. Garcia C. Fontaine D. Chantome A. Vandier C. Goupille C. Potier-Cartereau M. Lipid metabolism and Calcium signaling in epithelial ovarian cancer. Cell Calcium 2019 81 38 50 10.1016/j.ceca.2019.06.002 31200184
    [Google Scholar]
  21. Sheng D. Yue K. Li H. Zhao L. Zhao G. Jin C. Zhang L. The Interaction between Intratumoral Microbiome and Immunity Is Related to the Prognosis of Ovarian Cancer. Microbiol. Spectr. 2023 11 2 e03549-22 10.1128/spectrum.03549‑22 36975828
    [Google Scholar]
  22. Yoshihara K. Tsunoda T. Shigemizu D. Fujiwara H. Hatae M. Fujiwara H. Masuzaki H. Katabuchi H. Kawakami Y. Okamoto A. Nogawa T. Matsumura N. Udagawa Y. Saito T. Itamochi H. Takano M. Miyagi E. Sudo T. Ushijima K. Iwase H. Seki H. Terao Y. Enomoto T. Mikami M. Akazawa K. Tsuda H. Moriya T. Tajima A. Inoue I. Tanaka K. High-risk ovarian cancer based on 126-gene expression signature is uniquely characterized by downregulation of antigen presentation pathway. Clin. Cancer Res. 2012 18 5 1374 1385 10.1158/1078‑0432.CCR‑11‑2725 22241791
    [Google Scholar]
  23. Li Y. Gong X. Hu T. Chen Y. Two novel prognostic models for ovarian cancer respectively based on ferroptosis and necroptosis. BMC Cancer 2022 22 1 74 10.1186/s12885‑021‑09166‑9 35039008
    [Google Scholar]
  24. O’Connell K.A. Yosufzai Z.B. Campbell R.A. Lobb C.J. Engelken H.T. Gorrell L.M. Carlson T.B. Catana J.J. Mikdadi D. Bonazzi V.R. Klenk J.A. Accelerating genomic workflows using NVIDIA Parabricks. BMC Bioinformatics 2023 24 1 221 10.1186/s12859‑023‑05292‑2 37259021
    [Google Scholar]
  25. Liu T.T. Li R. Huo C. Li J.P. Yao J. Ji X. Qu Y.Q. Identification of CDK2-Related Immune Forecast Model and ceRNA in Lung Adenocarcinoma, a Pan-Cancer Analysis. Front. Cell Dev. Biol. 2021 9 682002 10.3389/fcell.2021.682002 34409029
    [Google Scholar]
  26. Qiu C. Shi W. Wu H. Zou S. Li J. Wang D. Liu G. Song Z. Xu X. Hu J. Geng H. Identification of Molecular Subtypes and a Prognostic Signature Based on Inflammation-Related Genes in Colon Adenocarcinoma. Front. Immunol. 2021 12 769685 10.3389/fimmu.2021.769685 35003085
    [Google Scholar]
  27. Song Z. Yu J. Wang M. Shen W. Wang C. Lu T. Shan G. Dong G. Wang Y. Zhao J. CHDTEPDB. Transcriptome Expression Profile Database and Interactive Analysis Platform for Congenital Heart Disease. 2023 18 6 693 701
    [Google Scholar]
  28. Luo X. Wang Y. Zhang H. Chen G. Sheng J. Tian X. Xue R. Wang Y. Identification of a Prognostic Signature for Ovarian Cancer Based on Ubiquitin-Related Genes Suggesting a Potential Role for FBXO9. Biomolecules 2023 13 12 1724 10.3390/biom13121724 38136595
    [Google Scholar]
  29. Zulibiya A. Wen J. Yu H. Chen X. Xu L. Ma X. Zhang B. Single-Cell RNA sequencing reveals potential for Endothelial-to-Mesenchymal transition in tetralogy of fallot. Congenit. Heart Dis. 2023 18 6 611 625
    [Google Scholar]
  30. Zhang X. Hu F. Li G. Li G. Yang X. Liu L. Zhang R. Zhang B. Feng Y. Human colorectal cancer-derived mesenchymal stem cells promote colorectal cancer progression through IL-6/JAK2/STAT3 signaling. Cell Death Dis. 2018 9 2 25 10.1038/s41419‑017‑0176‑3 29348540
    [Google Scholar]
  31. Zeng Q. Feng K. Yu Y. Lv Y. Hsa_Circ_0000021 Sponges miR-3940-3p/KPNA2 Expression to Promote Cervical Cancer Progression. Curr. Mol. Pharmacol. 2023 17 e170223213775 10.2174/1874467216666230217151946 36799424
    [Google Scholar]
  32. Li Y. Liu Y. Wang K. Xue D. Huang Y. Tan Z. Chen Y. STK24 Promotes Progression of LUAD and Modulates the Immune Microenvironment. Mediators Inflamm. 2023 2023 1 10 10.1155/2023/8646088 37181807
    [Google Scholar]
  33. Zhang H. Peng X. Wu X. Wu G. Peng C. Huang B. Huang M. Ding J. Mao C. MiR-129-2-3p Inhibits Esophageal Carcinoma Cell Proliferation, Migration, and Invasion via Targeting DNMT3B. Curr. Mol. Pharmacol. 2023 16 1 116 123 10.2174/1874467215666220308122716 35260066
    [Google Scholar]
  34. Duzkale N. Teker H.-T. The Relationship BRCA1/2 Genes and Family History in Ovarian Cancers. Oncologie 2020 22 2 65 74 10.32604/oncologie.2020.013707
    [Google Scholar]
  35. Zou J. Du K. Li S. Lu L. Mei J. Lin W. Deng M. Wei W. Guo R. Glutamine Metabolism Regulators Associated with Cancer Development and the Tumor Microenvironment: A Pan-Cancer Multi-Omics Analysis. Genes (Basel) 2021 12 9 1305 10.3390/genes12091305 34573287
    [Google Scholar]
  36. Wang N. Chai M. Zhu L. Liu J. Yu C. Huang X. Development and validation of polyamines metabolism-associated gene signatures to predict prognosis and immunotherapy response in lung adenocarcinoma. Front. Immunol. 2023 14 1070953 10.3389/fimmu.2023.1070953 37334367
    [Google Scholar]
  37. Martínez-Reyes I. Chandel N.S. Cancer metabolism: looking forward. Nat. Rev. Cancer 2021 21 10 669 680 10.1038/s41568‑021‑00378‑6 34272515
    [Google Scholar]
  38. Zhan S. Yung M.M.H. Siu M.K.Y. Jiao P. Ngan H.Y.S. Chan D.W. Chan K.K.L. New Insights into Ferroptosis Initiating Therapies (FIT) by Targeting the Rewired Lipid Metabolism in Ovarian Cancer Peritoneal Metastases. Int. J. Mol. Sci. 2022 23 23 15263 10.3390/ijms232315263 36499591
    [Google Scholar]
  39. Wang X. Zhu L. Deng Y. Zhang Q. Li R. Yang L. Screening of potential targets and small-molecule drugs related to lipid metabolism in ovarian cancer based on bioinformatics. Biochem. Biophys. Res. Commun. 2024 733 150673 10.1016/j.bbrc.2024.150673 39293329
    [Google Scholar]
  40. Dores M.R. Lin H. Grimsey N.J. Mendez F. Trejo J. The α-arrestin ARRDC3 mediates ALIX ubiquitination and G protein–coupled receptor lysosomal sorting. Mol. Biol. Cell 2015 26 25 4660 4673 10.1091/mbc.E15‑05‑0284 26490116
    [Google Scholar]
  41. Zhang M. Liu Y. Liu Y. Hou S. Li H. Ma Y. Wang C. Chen X. A Potential Indicator ARRDC2 Has Feasibility to Evaluate Prognosis and Immune Microenvironment in Ovarian Cancer. Front. Genet. 2022 13 815082 10.3389/fgene.2022.815082 35664304
    [Google Scholar]
  42. Lan Y.L. Zou S. Qin B. Zhu X. Analysis of the sodium pump subunit ATP1A3 in glioma patients: Potential value in prognostic prediction and immunotherapy. Int. Immunopharmacol. 2024 133 112045 10.1016/j.intimp.2024.112045 38615384
    [Google Scholar]
  43. Grill J.I. Neumann J. Herbst A. Ofner A. Hiltwein F. Marschall M.K. Zierahn H. Wolf E. Schneider M.R. Kolligs F.T. Loss of DRO1/CCDC80 results in obesity and promotes adipocyte differentiation. Mol. Cell. Endocrinol. 2017 439 286 296 10.1016/j.mce.2016.09.014 27645901
    [Google Scholar]
  44. Liang Z.Q. Gao L. Chen J.H. Dai W.B. Su Y.S. Chen G. Downregulation of the Coiled-Coil Domain Containing 80 and Its Perspective Mechanisms in Ovarian Carcinoma: A Comprehensive Study. Int. J. Genomics 2021 2021 1 20 10.1155/2021/3752871 34820451
    [Google Scholar]
  45. Zheng Y. Wang J. Ling Z. Zhang J. Zeng Y. Wang K. Zhang Y. Nong L. Sang L. Xu Y. Liu X. Li Y. Huang Y. A diagnostic model for sepsis-induced acute lung injury using a consensus machine learning approach and its therapeutic implications. J. Transl. Med. 2023 21 1 620 10.1186/s12967‑023‑04499‑4 37700323
    [Google Scholar]
  46. Jung K. Jeon Y. Jeong D.H. Byun J.M. Bogen B. Choi I. VSIG4-expressing tumor-associated macrophages impair anti-tumor immunity. Biochem. Biophys. Res. Commun. 2022 628 18 24 10.1016/j.bbrc.2022.08.055 36063598
    [Google Scholar]
  47. Garcillán B. Fuentes P. Marin A.V. Megino R.F. Chacon-Arguedas D. Mazariegos M.S. Jiménez-Reinoso A. Muñoz-Ruiz M. Laborda R.G. Cárdenas P.P. Fernández-Malavé E. Toribio M.L. Regueiro J.R. CD3G or CD3D Knockdown in Mature, but Not Immature, T Lymphocytes Similarly Cripples the Human TCRαβ Complex. Front. Cell Dev. Biol. 2021 9 608490 10.3389/fcell.2021.608490 34249896
    [Google Scholar]
  48. Li Q. Yang Z. Ling X. Ye J. Wu J. Wang Y. Yao C. Zheng J. Correlation Analysis of Prognostic Gene Expression, Tumor Microenvironment, and Tumor-Infiltrating Immune Cells in Ovarian Cancer. Dis. Markers 2023 2023 1 24 10.1155/2023/9672158 37841886
    [Google Scholar]
  49. Zou C. Zhao P. Xiao Z. Han X. Fu F. Fu L. γδ T cells in cancer immunotherapy. Oncotarget 2017 8 5 8900 8909 10.18632/oncotarget.13051 27823972
    [Google Scholar]
  50. Zou C. Shen J. Xu F. Ye Y. Wu Y. Xu S. Immunoreactive Microenvironment Modulator GBP5 Suppresses Ovarian Cancer Progression by Inducing Canonical Pyroptosis. J. Cancer 2024 15 11 3510 3530 10.7150/jca.94616 38817865
    [Google Scholar]
  51. Wawrzyniak J.A. Bianchi-Smiraglia A. Bshara W. Mannava S. Ackroyd J. Bagati A. Omilian A.R. Im M. Fedtsova N. Miecznikowski J.C. Moparthy K.C. Zucker S.N. Zhu Q. Kozlova N.I. Berman A.E. Hoek K.S. Gudkov A.V. Shewach D.S. Morrison C.D. Nikiforov M.A. A purine nucleotide biosynthesis enzyme guanosine monophosphate reductase is a suppressor of melanoma invasion. Cell Rep. 2013 5 2 493 507 10.1016/j.celrep.2013.09.015 24139804
    [Google Scholar]
  52. Novoselova T.V. Larder R. Rimmington D. Lelliott C. Wynn E.H. Gorrigan R.J. Tate P.H. Guasti L. O’Rahilly S. Clark A.J. Logan D.W. Coll A.P. Chan L.F. Loss of Mrap2 is associated with Sim1 deficiency and increased circulating cholesterol. J. Endocrinol. 2016 230 1 13 26 10.1530/JOE‑16‑0057 27106110
    [Google Scholar]
  53. Payne K.K. Mine J.A. Biswas S. Chaurio R.A. Perales-Puchalt A. Anadon C.M. Costich T.L. Harro C.M. Walrath J. Ming Q. Tcyganov E. Buras A.L. Rigolizzo K.E. Mandal G. Lajoie J. Ophir M. Tchou J. Marchion D. Luca V.C. Bobrowicz P. McLaughlin B. Eskiocak U. Schmidt M. Cubillos-Ruiz J.R. Rodriguez P.C. Gabrilovich D.I. Conejo-Garcia J.R. BTN3A1 governs antitumor responses by coordinating αβ and γδ T cells. Science 2020 369 6506 942 949 10.1126/science.aay2767 32820120
    [Google Scholar]
  54. Sato E. Olson S.H. Ahn J. Bundy B. Nishikawa H. Qian F. Jungbluth A.A. Frosina D. Gnjatic S. Ambrosone C. Kepner J. Odunsi T. Ritter G. Lele S. Chen Y.T. Ohtani H. Old L.J. Odunsi K. Intraepithelial CD8 + tumor-infiltrating lymphocytes and a high CD8 + /regulatory T cell ratio are associated with favorable prognosis in ovarian cancer. Proc. Natl. Acad. Sci. USA 2005 102 51 18538 18543 10.1073/pnas.0509182102 16344461
    [Google Scholar]
  55. Kroeger D.R. Milne K. Nelson B.H. Tumor-Infiltrating Plasma Cells Are Associated with Tertiary Lymphoid Structures, Cytolytic T-Cell Responses, and Superior Prognosis in Ovarian Cancer. Clin. Cancer Res. 2016 22 12 3005 3015 10.1158/1078‑0432.CCR‑15‑2762 26763251
    [Google Scholar]
  56. Yakubovich E. Cook D.P. Rodriguez G.M. Vanderhyden B.C. Mesenchymal ovarian cancer cells promote CD8+ T cell exhaustion through the LGALS3-LAG3 axis. NPJ Syst. Biol. Appl. 2023 9 1 61 10.1038/s41540‑023‑00322‑4 38086828
    [Google Scholar]
  57. Lan C. Huang X. Lin S. Huang H. Cai Q. Wan T. Lu J. Liu J. Expression of M2-polarized macrophages is associated with poor prognosis for advanced epithelial ovarian cancer. Technol. Cancer Res. Treat. 2013 12 3 259 267 10.7785/tcrt.2012.500312 23289476
    [Google Scholar]
  58. Macciò A. Gramignano G. Cherchi M.C. Tanca L. Melis L. Madeddu C. Role of M1-polarized tumor-associated macrophages in the prognosis of advanced ovarian cancer patients. Sci. Rep. 2020 10 1 6096 10.1038/s41598‑020‑63276‑1 32269279
    [Google Scholar]
  59. Ji Z. Shen Y. Feng X. Kong Y. Shao Y. Meng J. Zhang X. Yang G. Deregulation of Lipid Metabolism: The Critical Factors in Ovarian Cancer. Front. Oncol. 2020 10 593017 10.3389/fonc.2020.593017 33194756
    [Google Scholar]
/content/journals/cac/10.2174/0115734110391970250429060726
Loading
/content/journals/cac/10.2174/0115734110391970250429060726
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test