Skip to content
2000
image of Calix[4]arene-Naphthalimide Fluorescent Sensors for Cu2+ and F− Ions: Synthesis and Biological Imaging

Abstract

Introduction

Calix[n]arenes can be selectively functionalized more easily than other cyclic supramolecules such as crown ethers and cyclodextrins. 1,8-Naphthalimide derivatives of calix[4]arenes are very important and versatile fluorophores widely used in fluorescence detection due to their high absorption coefficients, strong fluorescence, high quantum yields, large Stokes shifts, excellent photostability.

Methods

Two Calix[4]arene-based fluorescent probes were synthesized for the detection of Cu2+ and F-. The fluorescence properties of the compounds were evaluated in the presence of various cations and anions using spectroscopic techniques. Their cytotoxicity was tested in Hep-2 and HeLa living cells.

Results

The synthesized calix[4]arene derivatives were evaluated in the presence of various cations and anions using different spectroscopic and analytical techniques. In the tests, the fluorescence intensity of 7 decreased significantly in the presence of Cu2+ or F-. A similar quenching effect was observed for 6 only in the presence of Cu2+. The cytotoxic properties of calix[4]arene derivatives were evaluated against Hep-2 and HeLa living cells. The results showed significant cytotoxicity of compounds and .

Discussion

Confocal microscopy studies revealed that these compounds exhibited strong intracellular fluorescence, indicating efficient cellular uptake by cells. In the presence of Cu2+ or F-, the fluorescence intensity of the diamide derivative decreased significantly, which was attributed to the complexation effect between the ligand and the corresponding ions.

Conclusion

Monoamide derivative has the potential to be a fluorescent sensor for Cu2+, and diamide derivative is a fluorescent sensor for Cu2+ and F- ions. Cells treated with compounds or exhibited high intracellular fluorescence.

Loading

Article metrics loading...

/content/journals/cac/10.2174/0115734110377737250831043859
2025-09-18
2026-01-31
Loading full text...

Full text loading...

References

  1. Veale E.B. Kitchen J.A. Gunnlaugsson T. Fluorescent tren -based 4-amino-1,8-naphthalimide sensor for Cu(II) based on the use of the (fluorophore–spacer–receptor) photoinduced electron transfer (PET) principle. Supramol. Chem. 2013 25 2 101 108 10.1080/10610278.2012.752088
    [Google Scholar]
  2. Fabbrizzi L. Licchelli M. Pallavicini P. Perotti A. Taglietti A. Sacchi D. Fluorescent sensors for transition metals based on electron‐transfer and energy‐transfer mechanisms. Chemistry 1996 2 1 75 82 10.1002/chem.19960020114
    [Google Scholar]
  3. Bhatti A.A. Oguz M. Memon S. Yilmaz M. Dual fluorescence response of newly synthesized naphthalene appended calix [4] arene derivative towards Cu 2+ and I−. J. Fluoresc. 2017 27 1 263 270 10.1007/s10895‑016‑1953‑6 27796629
    [Google Scholar]
  4. Gunnlaugsson T. Parkesh R. Veale E. Kitchen J. Luminescent Sensing, Luminescent Sensing to Nanomaterials in Supramolecular Chemistry: from Molecules; Steed, J.W. Gale P.A. Chichester, UK 2012 2611 2642
    [Google Scholar]
  5. Veale E.B. Gunnlaugsson T. Fluorescent sensors for ions based on organic structures. Annual Report Sect" B" (Organic Chemistry) 2010 106, 376.
    [Google Scholar]
  6. de Silva A.P. Moody T.S. Wright G.D. Fluorescent P.E.T. Fluorescent PET (Photoinduced Electron Transfer) sensors as potent analytical tools. Analyst (Lond.) 2009 134 12 2385 2393 10.1039/b912527m 19918605
    [Google Scholar]
  7. Oguz M. Bhatti A.A. Karakurt S. Aktas M. Yilmaz M. New water soluble Hg 2+ selective fluorescent calix[4]arenes: Synthesis and application in living cells imaging. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2017 171 340 345 10.1016/j.saa.2016.08.042 27566920
    [Google Scholar]
  8. Duke R.M. Veale E.B. Pfeffer F.M. Kruger P.E. Gunnlaugsson T. Colorimetric and fluorescent anion sensors: an overview of recent developments in the use of 1,8-naphthalimide-based chemosensors. Chem. Soc. Rev. 2010 39 10 3936 3953 10.1039/b910560n 20818454
    [Google Scholar]
  9. Gunnlaugsson T. Glynn M. Tocci G.M. Kruger P.E. Pfeffer F.M. Anion recognition and sensing in organic and aqueous media using luminescent and colorimetric sensors. Coord. Chem. Rev. 2006 250 3094 3117 10.1016/j.ccr.2006.08.017
    [Google Scholar]
  10. Oguz A. Saglik B.N. Oguz M. Ozturk B. Yilmaz M. Novel mitochondrial and DNA damaging fluorescent Calix[4]arenes bearing isatin groups as aromatase inhibitors: Design, synthesis and anticancer activity. Bioorg. Med. Chem. 2024 98 117586 10.1016/j.bmc.2023.117586 38171252
    [Google Scholar]
  11. Oguz M. Alizada M. Gul A. Kursunlu A.N. Yilmaz M. A basket-type fluorescent sensor based calix[4]azacrown ether for multi-analytes: Practicability in living cells and real sample. Microchem. J. 2021 167 106279 10.1016/j.microc.2021.106279
    [Google Scholar]
  12. Chawla H.M. Gupta T. Evaluation of a new calix[4]arene based molecular receptor for sensitive and selective recognition of F− and Cu2+ ions. J. Lumin. 2014 154 89 94 10.1016/j.jlumin.2014.04.004
    [Google Scholar]
  13. Uauy R. Olivares M. Gonzalez M. Essentiality of copper in humans. Am. J. Clin. Nutr. 1998 67 5 952S 959S Suppl. 10.1093/ajcn/67.5.952S 9587135
    [Google Scholar]
  14. Linder M.C. Hazegh-Azam M. Copper biochemistry and molecular biology. Am. J. Clin. Nutr. 1996 63 5 797S 811S 10.1093/ajcn/63.5.797 8615367
    [Google Scholar]
  15. Osredkar J. Sustar N. Copper and zinc, biological role and significance 63 of copper/zinc imbalance., 2011, S3, . J. Clin. Toxicol. 2011 S3 0495 10.4172/2161‑0495.S3‑001
    [Google Scholar]
  16. Groff J.L. Gropper S.S. Advanced nutrition and human metabolism. Cengage Learning 1999
    [Google Scholar]
  17. Harris E.D. Copper homeostasis: the role of cellular transporters. Nutr. Rev. 2001 59 9 281 285 10.1111/j.1753‑4887.2001.tb07017.x 11570430
    [Google Scholar]
  18. Ren J. Wu Z. Zhou Y. Li Y. Xu Z. Colorimetric fluoride sensor based on 1,8-naphthalimide derivatives. Dyes Pigments 2011 91 3 442 445 10.1016/j.dyepig.2011.04.012
    [Google Scholar]
  19. Gai L. Mack J. Lu H. Nyokong T. Li Z. Kobayashi N. Shen Z. Organosilicon compounds as fluorescent chemosensors for fluoride anion recognition. Coord. Chem. Rev. 2015 285 24 51 10.1016/j.ccr.2014.10.009
    [Google Scholar]
  20. Tressaud A. Haufe G. Fluorine and health: Molecular imaging, biomedical materials and pharmaceuticals. Elsevier 2008
    [Google Scholar]
  21. Cheng T.J. Chen T.M. Chen C.H. Lai Y.K. Induction of stress response and differential expression of 70 kDa stress proteins by sodium fluoride in hela and rat brain tumor 9l cells. J. Cell. Biochem. 1998 69 2 221 231 10.1002/(SICI)1097‑4644(19980501)69:2<221:AID‑JCB12>3.0.CO;2‑H 9548569
    [Google Scholar]
  22. Fawell J.K. Fluoride in drinking-water. World Health Organization 2006
    [Google Scholar]
  23. Bassin E.B. Wypij D. Davis R.B. Mittleman M.A. Age-specific fluoride exposure in drinking water and osteosarcoma (United States). Cancer Causes Control 2006 17 4 421 428 10.1007/s10552‑005‑0500‑6 16596294
    [Google Scholar]
  24. Clarkson J.J. McLoughlin J. Role of fluoride in oral health promotion. Int. Dent. J. 2000 50 3 119 128 10.1111/j.1875‑595X.2000.tb00552.x 10967764
    [Google Scholar]
  25. Elmes R.B.P. Gunnlaugsson T. Luminescence anion sensing via modulation of MLCT emission from a naphthalimide–Ru(II)–polypyridyl complex. Tetrahedron Lett. 2010 51 31 4082 4087 10.1016/j.tetlet.2010.05.127
    [Google Scholar]
  26. Rouis A. Echabaane M. Sakly N. Bonnamour I. Ben Ouada H. Characterization of a sensitive and selective copper optode based on β-ketoimine modified calix[4]arene derivative. Mater. Sci. Eng. C 2015 46 125 131 10.1016/j.msec.2014.10.026 25491968
    [Google Scholar]
  27. Gutsche C. Calixarenes Royal Society of Chemistry. Cambridge Royal 1989
    [Google Scholar]
  28. Yildirim A. Karakurt S. Yilmaz M. Synthesized Two New Water‐Soluble Fluorescents Calix[4]arene 4‐sulfo‐1,8‐naphthalimide Derivatives Inhibit Proliferation of Human Colorectal Carcinoma Cells. ChemistrySelect 2021 6 28 7093 7097 10.1002/slct.202101806
    [Google Scholar]
  29. Placido N. Sessler J.L. Wang M-X. . Cham Calixarenes and Beyond Springer International Publishing 2016
    [Google Scholar]
  30. Liu C. Xu J. Yang F. Zhou W. Li Z. Wei L. Yu M. Nanomolar Cu2+ and F− naked-eye detection with a 1,8-naphthalimide-based colorimetric probe. Sens. Actuators B Chem. 2015 212 364 370 10.1016/j.snb.2015.02.010
    [Google Scholar]
  31. Dai F. Jin F. Long Y. Jin X.L. Zhou B.A. 1,8-naphthalimide-based turn-on fluorescent probe for imaging mitochondrial hydrogen peroxide in living cells. Free Radic. Res. 2018 52 11-12 1288 1295 10.1080/10715762.2018.1446530 30129386
    [Google Scholar]
  32. Yildirim A. Bhatti A.A. Uysal A. Yilmaz M. Dual fluorescence response of calix[4]arene-1,8-naphthalimide derivatives towards Hg(II)/Cr(VI) and their antimicrobial studies of transparent biofilms with hyaluronic acid. Int. J. Biol. Macromol. 2024 273 Pt 2 132955 10.1016/j.ijbiomac.2024.132955 38852733
    [Google Scholar]
  33. Lee M.H. Yoon B. Kim J.S. Sessler J.L. Naphthalimide trifluoroacetyl acetonate: A hydrazine-selective chemodosimetric sensor. Chem. Sci. (Camb.) 2013 4 11 4121 4126 10.1039/c3sc51813b
    [Google Scholar]
  34. An L. Wang C. Zheng Y.G. Liu J. Huang T. Design, synthesis and evaluation of calix[4]arene-based carbonyl amide derivatives with antitumor activities. Eur. J. Med. Chem. 2021 210 112984 10.1016/j.ejmech.2020.112984 33183867
    [Google Scholar]
  35. Oguz M. Synthesis and anticancer activity of new p-tertbutylcalix[4]] arenes integrated with trifluoromethyl aniline groups against several cell lines. Tetrahedron 2022 116 132816 10.1016/j.tet.2022.132816
    [Google Scholar]
  36. Singh N. Kaur N. Dunn J. Behan R. Mulrooney R.C. Callan J.F. A polymeric sensor for the chromogenic and luminescent detection of anions. Eur. Polym. J. 2009 45 1 272 277 10.1016/j.eurpolymj.2008.10.040
    [Google Scholar]
  37. Gutsche C.D. Iqbal M. Stewart D. Calixarenes. 19. Syntheses procedures for p-tert-butylcalix[4]arene. J. Org. Chem. 1986 51 5 742 745 10.1021/jo00355a033
    [Google Scholar]
  38. Gutsche C. Iqbal M. p‐tert‐Butylcalix [4] arene. Org. Synth. 2003 68 234 234
    [Google Scholar]
  39. Collins E.M. McKervey M.A. Madigan E. Moran M.B. Owens M. Ferguson G. Harris S.J. Chemically modified calix[4]arenes. Regioselective synthesis of 1,3-(distal) derivatives and related compounds. X-Ray crystal structure of a diphenol-dinitrile. J. Chem. Soc., Perkin Trans. 1 1991 12 3137 3142 10.1039/p19910003137
    [Google Scholar]
  40. Ackermann T. Connors K.A. Binding constants—the measurement of molecular complex stability. John Wiley and Sons 1987
    [Google Scholar]
  41. Sayin S. Yilmaz M. Synthesis of a new calixarene derivative and its immobilization onto magnetic nanoparticle surfaces for excellent extractants toward Cr(VI), As(V), and U(VI). J. Chem. Eng. Data 2011 56 5 2020 2029 10.1021/je1010328
    [Google Scholar]
  42. Lee M. Jo S. Lee D. Xu Z. Yoon J. A new naphthalimide derivative as a selective fluorescent and colorimetric sensor for fluoride, cyanide and CO2. Dyes Pigments 2015 120 288 292 10.1016/j.dyepig.2015.04.029
    [Google Scholar]
  43. Sahin O. Akceylan E. A phenanthrene-based calix[4]arene as a fluorescent sensor for Cu2+ and F−. Tetrahedron 2014 70 39 6944 6950 10.1016/j.tet.2014.07.100
    [Google Scholar]
  44. Xu J. Wang Z. Fluorescence analysis. Beijing Science 2006
    [Google Scholar]
  45. Kursunlu A.N. Bastug E. Oguz A. Oguz M. Yilmaz M. A highly branched macrocycle-based dual-channel sensor: Bodipy and pillar[5]arene combination for detection of Sn (II) &Hg (II) and bioimaging in living cells. Anal. Chim. Acta 2022 1196 339542 10.1016/j.aca.2022.339542 35151403
    [Google Scholar]
  46. Larsen R.W. Helms M.K. Everett W.R. Jameson D.M. ground‐and excited‐state characterization of an electrostatic complex between tetrakis‐(4‐Sulfonatophenyl) porphyrin and 16-Pyrimidinium Crown-4. Photochem. Photobiol. 1999 69 429 434
    [Google Scholar]
  47. Misra A. Shahid M. Dwivedi P. Srivastava P. Ali R. Razi S.S. A simple naphthalimide-based receptor for selective recognition of fluoride anion. ARKIVOC 2013 2 133 145
    [Google Scholar]
  48. Rampersad S.N. Multiple applications of Alamar Blue as an indicator of metabolic function and cellular health in cell viability bioassays. Sensors 2012 12 9 12347 12360 10.3390/s120912347 23112716
    [Google Scholar]
  49. Oguz M. Gul A. Karakurt S. Yilmaz M. Synthesis and evaluation of the antitumor activity of Calix[4]arene l-proline derivatives. Bioorg. Chem. 2020 94 103207 10.1016/j.bioorg.2019.103207 31451296
    [Google Scholar]
  50. Oguz M. Gul A. Kursunlu A.N. Yilmaz M. A bifunctional and multi-responsive fluorescent sensor for toxic analytes in the aqueous medium: Easy synthesis, NIR-visible effect, imaging in living cells. J. Mol. Liq. 2021 336 116861 10.1016/j.molliq.2021.116861
    [Google Scholar]
/content/journals/cac/10.2174/0115734110377737250831043859
Loading
/content/journals/cac/10.2174/0115734110377737250831043859
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article


  • Article Type:
    Research Article
Keywords: cytotoxicity ; calix[4]arene ; fluoride ; HeLa cell ; Copper(II) ; Naphthalimide ; fluorescence
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test