Skip to content
2000
image of Pathogenic Mechanisms and Detection Technologies of Metabolic Toxins Produced by Pseudomonas cocovenenans in Food: A Review

Abstract

As a common foodborne pathogen, subsp. has emerged as a significant hazard and hidden risk to food safety due to its rapid growth and toxigenicity. It can rapidly proliferate in grain fermented products, starch products, and other substrates, producing large amounts of deadly toxins such as bongkrekic acid (BA) and toxoflavin (TF) under favorable temperature and humidity conditions. Due to the absence of specific treatments for the bacteria, consumption of contaminated food can lead to severe food poisoning or even death. Considering the characteristics of and the severity of related food poisoning incidents, it is essential to investigate the pathogenic mechanisms of its metabolic toxins. The development of efficient detection technologies and the formulation of effective control strategies are also important. This article systematically reviews the pathogenic mechanism of and elucidates the molecular network underlying multiple organ failure induced by its toxins through targeting mitochondrial function and activating inflammatory pathways. The simultaneous construction of a multimodal detection system, involving integrated chromatography, chromatography-mass spectrometry and nanobiological sensing technology, significantly improves the sensitivity and timeliness of trace toxin monitoring. On this basis, a whole chain control strategy was proposed to form a trinity research paradigm of “mechanism analysis, technological breakthroughs, and strategic innovation”. This review provides scientific support with both theoretical depth and practical application value to address the major food safety challenges caused by , and contributes to building a whole-process risk prevention and control network from farmland to table consumption, which is of milestone significance for ensuring the safety of starch food processing and public health.

This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cac/10.2174/0115734110377254250912092459
2025-10-01
2025-12-08
Loading full text...

Full text loading...

/deliver/fulltext/cac/10.2174/0115734110377254250912092459/BMS-CAC-2024-HT53-6242-2.html?itemId=/content/journals/cac/10.2174/0115734110377254250912092459&mimeType=html&fmt=ahah

References

  1. Yang H. Discussion on the causes and prevention measures of food poisoning caused by Pseudomonas Cocovenenans -- Taking the “Suan-tang-zi” Food Poisoning in Jixi City, Heilongjiang province as an example. Modern Food. 2021 16 168 170 10.16736/j.cnki.cn41‑1434/ts.2021.16.046
    [Google Scholar]
  2. Huang J. Huang J. Liu X. Li L. Lin Z. Liu X. Lai X. Kang L. Liao J. Chen J. The effect of rice and edible starch compound ratios, starch type, and rice nutrients on Burkholderia gladioli pathovar cocovenenans growth and bongkrekic acid production in wet rice noodles and starch products. Lett. Appl. Microbiol. 2025 78 1 ovae124 10.1093/lambio/ovae124 39797707
    [Google Scholar]
  3. Jiao Z. Kawamura Y. Mishima N. Yang R. Li N. Liu X. Ezaki T. Need to differentiate lethal toxin-producing strains of Burkholderia gladioli, which cause severe food poisoning: Description of B. gladioli pathovar cocovenenans and an emended description of B. gladioli. Microbiol. Immunol. 2003 47 12 915 925 10.1111/j.1348‑0421.2003.tb03465.x 14695441
    [Google Scholar]
  4. Zheng J. Liu L. Li X. Xu Z. Gai Z. Zhang X. Lei H. Shen X. Rapid and simple detection of Burkholderia gladioli in food matrices using RPA-CRISPR/Cas12a method. Foods 2023 12 9 1760 10.3390/foods12091760 37174300
    [Google Scholar]
  5. Wang Y.C. Lei Y. Zhou L. Recent advances on Burkholderia galdioli ( Pseudomonas cocovenenans subsp. Farinofermentans ). 2021 37 05 194-202. 10.13652/j.issn.1003‑5788.2021.05.035
    [Google Scholar]
  6. Chen R.Q. Chen H.J. Hu J. Investigation and risk analysis of Pseudomonas cocovenenans subsp. farinofermentans from rice and edible starch. Xiandai Shipin Keji 2021 37 01 260 267 10.13982/j.mfst.1673‑9078.2021.1.0685
    [Google Scholar]
  7. Zhou P. Wang C.X. Cui X.J. Determination of toxoflavin, reumycin and fervenulin in food by HPLC. Food. Sci. Technol 2021 46 08 325 329 10.13684/j.cnki.spkj.2021.08.050
    [Google Scholar]
  8. Su M.Z. Ding Q.L. Zeng X.C. Research on the inactivation means of Pseudomonas cocovenenans subsp. Farinofermentan s. China Food. Safety 2023 15 128 130 10.16043/j.cnki.cfs.2023.15.054
    [Google Scholar]
  9. Imataki O. Kita N. Nakayama-Imaohji H. Kida J. Kuwahara T. Uemura M. Bronchiolitis and bacteraemia caused by Burkholderia gladioli in a non-lung transplantation patient. New Microbes New Infect. 2014 2 6 175 176 10.1002/nmi2.64 25566397
    [Google Scholar]
  10. Yu C.H. Liao E.C. Su Y.J. Unexpectedly life-threatening meal: Contamination by Bongkrekic acid in Taiwan. Taiwan. J. Obstet. Gynecol. 2025 64 1 142 145 10.1016/j.tjog.2024.10.003 39794022
    [Google Scholar]
  11. Li F. Huang Y. Lei L. The contamination and detection methods of Pseudomonas cocovenenans. Guangdong Chem. Ind. 2021 48 145 146 10.3969/j.issn.1007‑1865.2021.06.071
    [Google Scholar]
  12. Fan L. Luan J. Investigation and analysis for an event of Burkholderiagladioli (Pseudomonas cocovenenans subtype Farino fermentans) food poison in Yunnan province. Shipin Anquan Zhiliang Jiance Xuebao 2019 10 23 8098 8101 10.19812/j.cnki.jfsq11‑5956/ts.2019.23.052
    [Google Scholar]
  13. Shentu P.P. Zhu J.H. Xu X.M. A food poisoning incident caused by pseudomonas cocovenenans subsp farinofermentans. Shanghai Journal of Preventive Medicine 2019 31 06 466 468 10.19428/j.cnki.sjpm.2019.19233
    [Google Scholar]
  14. Shen Y. Liu J. Huang Z.Y. Epidemiological analysis of food poisoning due to contamination of fermented flour with Psedomonas cocovenenans subsp‚farino fermentans in Guangxi. China Trop. Med. 2007 05 814 815 10.3969/j.issn.1009‑9727.2007.05.081
    [Google Scholar]
  15. Yao Y. Zhong X. Zhou Y. Zhang H. Zhao D. Zhang W. Liu Y. Xu J. Xie C. Yu C. Wang Y. Chen Z. Chen K. Yuan J. Exploring the characteristics of Burkholderia gladioli pathovar cocovenenans: Growth, bongkrekic acid production, and potential risks of food contamination in wet rice noodles and vermicelli. Food Microbiol. 2024 120 104449 10.1016/j.fm.2023.104449 38431336
    [Google Scholar]
  16. Zhang H. Guo Y. Chen L. Liu Z. Liang J. Shi M. Gao F. Song Y. Chen J. Fu P. Epidemiology of foodborne bongkrekic acid poisoning outbreaks in China, 2010 to 2020. PLoS One 2023 18 1 e0279957 10.1371/journal.pone.0279957 36630445
    [Google Scholar]
  17. Gao B. Deng H. Wang Y. Zhang C. Zhu J. Detection methods and control measures of Burkholderia gladioli and its toxins: A review. J. Food Sci. 2025 90 2 e17668 10.1111/1750‑3841.17668 39902981
    [Google Scholar]
  18. Li J. Zhou L. Long C. Fang L. Chen Q. Chen Q. Liang J. Yang Y. Zhu H. Chen Z. Gao S. Li Z. Li Q. Huang Q. Zhang Y. An investigation of bongkrekic acid poisoning caused by consumption of a nonfermented rice noodle product without noticeable signs of spoilage. J. Food Prot. 2019 82 10 1650 1654 10.4315/0362‑028X.JFP‑19‑121 31524538
    [Google Scholar]
  19. Chen J.C. Wang X.Q. Zhang F.Y. Determination of toxoflavin and bongkrekic acid in foods by HPLC method. Food. Sci. Technol 2021 46 05 301 306 10.13684/j.cnki.spkj.2021.05.049
    [Google Scholar]
  20. Zhu Y. Wen X. Chu M. Zhang G. Liu X. Consumers’ food safety risk communication on social media following the Suan Tang Zi accident: An extended protection motivation theory perspective. Int. J. Environ. Res. Public Health 2021 18 15 8080 10.3390/ijerph18158080 34360373
    [Google Scholar]
  21. Li H.Y. Jin Y.F. Huang H.Z. Fast determination of bongkrekic acid in foods using mixed-mode weak anion exchange solid phase extraction coupled with high performance liquid chromatography with diode array detection (HPLC-DAD). Shipin Kexue 2016 37 24 247 251 10.7506/spkx1002‑6630‑201624039
    [Google Scholar]
  22. Wu W. Zou F. Sun X. Du L. Sterilization effect of cooking process for guilin rice noodles based on heat conduction model. J. Mod. Phys. 2024 15 8 1300 1312 10.4236/jmp.2024.158052
    [Google Scholar]
  23. Li H. Liang Z. Li Y. Wen J. Zhang R. Molecular docking and molecular dynamics simulation study on the toxicity mechanism of bongkrekic acid. Toxicon 2023 223 107021 10.1016/j.toxicon.2023.107021 36621683
    [Google Scholar]
  24. Shi M. Zeng M. Genjiafu A. Zhang X. Guo L. Shang R. Zhou Z. Jian X. Yu L. Severe bongkrekic acid poisoning caused by eating spoiled Auricularia auricula: A case report. BMC Complement Med. Ther. 2024 24 1 419 419 10.1186/s12906‑024‑04726‑5 39707296
    [Google Scholar]
  25. Rivera Blanco L.E. Kuai D. Titelbaum N. Fiza B. Reehl D. Hassan Z. Dbouk N. Krotulski A.J. Logan B.K. Walton S.E. Liu I. Yu M. Carpenter J. Death from bongkrekic acid toxicity: First report in North America. Toxicol. Commun. 2024 8 1 2377524 10.1080/24734306.2024.2377524
    [Google Scholar]
  26. Moebius N. Ross C. Scherlach K. Rohm B. Roth M. Hertweck C. Biosynthesis of the respiratory toxin bongkrekic acid in the pathogenic bacterium Burkholderia gladioli. Chem. Biol. 2012 19 9 1164 1174 10.1016/j.chembiol.2012.07.022 22999884
    [Google Scholar]
  27. Hu R. Fu T. Xia S. Fei S. Yin Z. Unexplained rhabdomyolysis and hepatic renal dysfunction: A case of bongkrekic acid poisoning. Cureus 2024 16 10 e70625 10.7759/cureus.70625 39483585
    [Google Scholar]
  28. Chen R.Q. Chen H.J. Hu J. Risk analysis of toxin production by Pseudomonas cocovenenans subsp. farinofermantans cultured in wet rice noodle and its raw materials. Xiandai Shipin Keji 2022 38 05 320 327 10.13982/j.mfst.1673‑9078.2022.5.0128
    [Google Scholar]
  29. Yan Q.Y. Li L.S. Sun Y.H. Analysis of toxin production and acidity of one strain of Pseudomonas cocovenenans subsp. farinofermentans in wet rice noodles matrix. Journal of the Chinese Cereals and Oils Association 2023 38 06 164 168 10.20048/j.cnki.issn.1003‑0174.000016
    [Google Scholar]
  30. Zhou E. Sun Y. Fu Y. Wang X. Zhu X. Wu Z. Li P. Wang J. Yang Z. Bongkrekic acid induced neutrophil extracellular traps via p38, ERK, PAD4, and P2X1-mediated signaling. Toxicol. Appl. Pharmacol. 2021 423 115580 10.1016/j.taap.2021.115580 34019862
    [Google Scholar]
  31. Su Y.J. The first time devastating food poisoning happened in Taiwan – Bongkrekic acid poisoning. Taiwan. J. Obstet. Gynecol. 2024 63 5 614 617 10.1016/j.tjog.2024.06.003 39266139
    [Google Scholar]
  32. Yu C.H. Wang I.T. Su Y.J. Bongkrekic acid contaminated food, a life-threatening meal. Am. J. Emerg. Med. 2024 82 209 210 10.1016/j.ajem.2024.05.027 38849225
    [Google Scholar]
  33. Shi R. Long C. Dai Y. Huang Q. Gao Y. Zhang N. Chen Y. Liu S. Ma Q. Quan L. Zhang Y. Luo B. Bongkrekic acid poisoning: Severe liver function damage combined with multiple organ failure caused by eating spoiled food. Leg. Med. 2019 41 11 101622 10.1016/j.legalmed.2019.07.010 31518860
    [Google Scholar]
  34. Falconer T.M. Kern S.E. Brzezinski J.L. Turner J.A. Boyd B.L. Litzau J.J. Identification of the potent toxin bongkrekic acid in a traditional African beverage linked to a fatal outbreak. Forensic Sci. Int. 2017 270 e5 e11 10.1016/j.forsciint.2016.10.015 27823840
    [Google Scholar]
  35. Huang Q. Wu Z. Safe eating of fermented corn and coconut food: Mechanism, clinical manifestations and inhibition of food poisoning involved in bongkrekic acid[C]//E3S Web of Conferences. E3S Web Conf 2021 267, 02075. 10.1051/e3sconf/202126702075
    [Google Scholar]
  36. Wu H.J. Li F.J. Zhang S.M. Ultrapathological observation of toxic effect of toxoflavin on kidney of experimental mice. J. Chin Electron. Microsc. Soc. 2012 31 01 51 55 10.3969/j.issn.1000‑6281.2012.01.010
    [Google Scholar]
  37. Wang H. Deng N. Cui X.J. Establishment and stability comparison of detection methods for toxicflavin and fervenulin in fermented corn flour, tremella fuciformis and its processed products. Xiandai Shipin Keji 2022 38 09 345 354 10.13982/j.mfst.1673‑9078.2022.9.1256
    [Google Scholar]
  38. Jeong Y. Kim J. Kim S. Kang Y. Nagamatsu T. Hwang I. Toxoflavin produced by Burkholderia glumae causing rice grain rot is responsible for inducing bacterial wilt in many field crops. Plant Dis. 2003 87 8 890 895 10.1094/PDIS.2003.87.8.890 30812790
    [Google Scholar]
  39. Zhu D. Wu Z. Luo A. Gao H. Characterization and detection of toxoflavin-producing Burkholderia in rice straws and Daqu for Chinese Maotai-flavour liquor brewing. J. Inst. Brew. 2015 121 2 290 294 10.1002/jib.210
    [Google Scholar]
  40. Zhao H.L. Fu L.J. Tang G.C. Main foodborn pathogens in our country. Journal of Medical Pest Control. 2012 28 1212 1216 10.3969/j.issn.1003‑6245.2012.11.012
    [Google Scholar]
  41. Zhong Y.X. Chen Y.M. Wang Y. Rapid determination and dietary risk assessment of bongkrekic acid in foods by SPE-HPLC. Food. Ind. Sci. 2021 17 256 262 10.13386/j.issn1002‑0306.2020100070
    [Google Scholar]
  42. Chen J.C. Wen X.Y. Li M. Uncertainty assessment of bongkrecic acid and toxoflavin content determination in wet rice noodles by high performance liquid chromatography. China Food. Safety Magazine 2024 36 99 103 10.16043/j.cnki.cfs.2024.36.028
    [Google Scholar]
  43. Lin W. Sun J. Zhang T. Xu J. Huang W. Sun X. A rapid and sensitive time-resolved fluorescence microsphere immunochromatographic test strip for bongkrekic acid detection in edible fungi. Food Biosci. 2024 59 103846 10.1016/j.fbio.2024.103846
    [Google Scholar]
  44. Li X.L. Yang Z.S. Guo Y.D. Isolation and identification of Pseudomonas cocovenenans subsp. Farino fermentans from food poisoning accident. Zhongguo Shipin Weisheng Zazhi 2016 28 01 36 39 10.13590/j.cjfh.2016.01.008
    [Google Scholar]
  45. Niu C. Song X. Hao J. Zhao M. Yuan Y. Liu J. Yue T. Identification of Burkholderia gladioli pv. cocovenenans in black fungus and efficient recognition of bongkrekic acid and toxoflavin producing phenotype by back propagation neural network. Foods 2024 13 2 351 10.3390/foods13020351 38275718
    [Google Scholar]
  46. Kang C.X. Mao Y.N. He Y. Fast determination of bongkrekic acid in starch and its products by high performance liquid chromatography. Food. Sci. Technol 2021 46 03 308 312 10.13684/j.cnki.spkj.2021.03.049
    [Google Scholar]
  47. Yu S.Z. Detection method study for bongkrekic acid of fresh tremella. Qual Tech. Superv Res. 2020 02 6 8 10.15902/j.cnki.zljsjdyj.2020.02.002
    [Google Scholar]
  48. Han C. Wu J. Tong Y.K. Rapid screening and confirmation of bongkrekic acid in foods by ultra performance liquid chromatography-quadrupoleorbitrap high resolution mass spectrometry. Shipin Anquan Zhiliang Jiance Xuebao 2021 12 18 7267 7271 10.19812/j.cnki.jfsq11‑5956/ts.2021.18.024
    [Google Scholar]
  49. Ye W.F. Chen J.C. Wang X.Q. Discussion on detection of bongkrekic acid and toxoflavin in foods by HPLC-QAMS. Food. and Drug 2021 23 06 509 513 10.3969/j.issn.1672‑979X.2021.06.006
    [Google Scholar]
  50. Ren M. Wang Y. Yuan Y. Du H. Liang Q. Qin F. Xiong Z. Integration of UHPLC-MS and mass spectrometry imaging techniques revealed the protective mechanism of Gushudan in postmenopausal osteoporosis rats via branched-chain amino acid metabolism based on the ‘kidney-bone’ axis. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2025 1256 124540 124540 10.1016/j.jchromb.2025.124540 40023006
    [Google Scholar]
  51. Zhu W.J. Huang Y.D. Huang X.L. Investigation on contamination of Pseudomonas cocovenenans subsp. farinofermentans and risk control of wet rice noodle production. J. Chin Cereal Oil Assoc 2022 37 12 203 211 10.20048/j.cnki.issn.1003‑0174.000487
    [Google Scholar]
  52. Xu X. Fang L. Lv F. Liu R. Huang X. Huang W. Long C. A dispersive liquid-liquid microextraction method for determination of bongkrekic acid in plasma by LC-MS/MS. J. Liq. Chromatogr. Relat. Technol. 2021 44 5-6 279 284 10.1080/10826076.2021.1905660
    [Google Scholar]
  53. Huang Y.Q. Ma K. Wu X.W. Determination of bongkrekic acid in Auricularia auricular combined QuEChERS with UHPLC-MS/MS. Food. Mach 2022 38 7 63 67 10.13652/j.spjx.1003.5788.2022.90113
    [Google Scholar]
  54. Li H.N. Yuan F. Zhang C.Y. The research of detection bongkrekic acid (BA) by LC-ESI-TOF technology. Food Ind. 2018 39 7 324 328
    [Google Scholar]
  55. Tan D.J. Chen R.Z. Lu Y. Determination of bongkrekic acid in Liuzhou river snails rice noodle by ultra performance liquid chromatography-tandem mass spectrometry. Shipin Anquan Zhiliang Jiance Xuebao 2020 11 13 4273 4278 10.19812/j.cnki.jfsq11‑5956/ts.2020.13.025
    [Google Scholar]
  56. Wang J. Qiao Y. Wang J. Zhu Y. Rapid determination of bongkrekic acid in Liushenqu by ultra performance liquid chromatography-tandem mass spectrometry. Se Pu 2019 37 9 963 968 10.3724/SP.J.1123.2019.03014 31642300
    [Google Scholar]
  57. Zou P. Duan S. Hu X. Zheng D. Xia Z. Xia H. Peng X. Determination of bongkrekic acid in tremella and auricularia auricular by improved QuEChERS method combined with ultra-high performance liquid chromatography-triple quadrupole mass spectrometry. Se Pu 2021 39 12 1368 1373 10.3724/SP.J.1123.2021.06013 34812010
    [Google Scholar]
  58. Suo D.C. Xiao Z.M. Zhang J. Determination of bongkrekic acid and toxoflavin in fermented straw feed by liquid chromatography tandem quadrupole linear ion trap mass spectrometry. China Feed 2022 19 93 98 10.15906/j.cnki.cn11‑2975/s.20221916
    [Google Scholar]
  59. Su Y.H. Zhang W. Zhang R.J. Determination of bongkrekic acid in food by solid extraction high performance liquid chromatography. Chin J. Public Health Eng. 2017 16 04 438 439 10.19937/j.issn.1671‑4199.2017.04.010
    [Google Scholar]
  60. Wen H.B. Determination of bongkrekic acid in auricularia auricula by high performance liquid chromatography-tandem mass spectrometry. Modern Food. 2020 12 166 169 10.16736/j.cnki.cn41‑1434/ts.2020.12.057
    [Google Scholar]
  61. Qin D.J. Chen R.Z. Lu Y. Determination of fumonisin in Liuzhou snail rice noodle by ultra performance liquid chromatography-tandem mass spectrometry. J. Food. Saf. Qual 2020 11 13 4273 4278 10.19812/j.cnki.jfsq11‑5956/ts.2020.13.025
    [Google Scholar]
  62. Hu J. Liang M. Xian Y. Development and validation of a multianalyte method for quantification of aflatoxins and bongkrekic acid in rice and noodle products using PRiME-UHPLC-MS/MS method. Food Chem. 2022 395 133598 10.1016/j.foodchem.2022.133598 35792489
    [Google Scholar]
  63. Liang M. Chen R. Xian Y. Determination of bongkrekic acid and isobongkrekic acid in rice noodles by HPLC-Orbitrap HRMS technology using magnetic halloysite nanotubes. Food Chem. 2021 344 128682 10.1016/j.foodchem.2020.128682 33246684
    [Google Scholar]
  64. Zhao Z.F. Wang X.Q. Ye W.F. Toxoflavin and bongkrekic acid in foods: Determination by UPLC-MS/MS with triple quadrupole. Zhongguo Nongxue Tongbao 2024 40 03 128 134 10.1016/j.foodchem.2020.128682
    [Google Scholar]
  65. Zhao L. Lv R. Song J. Chen X. Lei L. Zeng W. She M. Li D. Yu X. Liu Z. Wang X. Liu Y. Establishment and evaluation of a UPLC-MS/MS method for simultaneous determination of bongkrekic acid and dehydroacetic acid in rice noodles. Front Chem. 2025 12 1386635 10.3389/fchem.2024.1386635 39936086
    [Google Scholar]
  66. Xuan C. Cao Y. Wu H. Wang Y. Xi J. Ma K. Feng Q. Sun B. Yan H. Wang L. Bioinspired Core-shell nanospheres integrated in multi-signal immunochromatographic sensor for high throughput sensitive detection of Bongkrekic acid in food. Food Chem. 2024 460 Pt 2 140565 10.1016/j.foodchem.2024.140565 39068800
    [Google Scholar]
  67. Cao X.M. Li L.H. Liang H.Z. Li J.D. Chen Z.J. Luo L. Lu Y.N. Zhong Y.X. Shen Y.D. Lei H.T. Wang H. Xu Z.L. Dual-modular immunosensor for bongkrekic acid detection using specific monoclonal antibody. J. Hazard. Mater. 2023 455 131634 10.1016/j.jhazmat.2023.131634 37201281
    [Google Scholar]
  68. Zhang Y. Hou S. Song H. Luo X. Wu D. Zheng F. Liu W. Ji S. The dual-mode platform based on cysteamine-stabilized gold nanoparticles for the high throughput and on-site detection of bongkrekic acid. Food Control 2022 136 108887 10.1016/j.foodcont.2022.108887
    [Google Scholar]
  69. Pelosse M. Imamura H. Berger I. Schlattner U. Application of FRET biosensors in energy metabolism. Biophys. J. 2013 104 2 304a 10.1016/j.bpj.2012.11.1692
    [Google Scholar]
  70. Lv X.J. Ju G.X. Qu X. Simultaneous determination of microcystins and anatoxins in marine products by high performance liquid chromatography-tandem mass spectrometry with solid phase extraction. China Food. Saf. Mag 2024 07 86 88 10.16043/j.cnki.cfs.2024.07.022
    [Google Scholar]
  71. Zhang X.B. Wen G.Y. Xin M.M. Development and application of fluorescence quantitative detection card for bongkrekic acid. Shipin Anquan Zhiliang Jiance Xuebao 2019 10 11 3584 3589 10.3969/j.issn.2095‑0381.2019.11.057
    [Google Scholar]
  72. Wan Y.P. Zheng B.Q. Jia F.F. Preparation of a colloidal gold immunochromatographic test strip for rapid detection of polychlorinated biphenyls. China Brewing 2021 40 10 191 195 10.11882/j.issn.0254‑5071.2021.10.032
    [Google Scholar]
  73. Zhang H. Ning X. Hang H. Ru X. Li H. Li Y. Wang L. Zhang X. Yu S. Qiao Y. Wang X. Wang P.G. Total synthesis of thaxtomin A and its stereoisomers and findings of their biological activities. Org. Lett. 2013 15 22 5670 5673 10.1021/ol4026556 24159901
    [Google Scholar]
  74. Cao X.M. Xu Z.L. Su Y.Y. The rapid detection of bongkrekic acid in foods using colloidal gold immunochromatographic assay. J. Chin Inst. Food. Sci. Technol 2023 23 2 10.16429/j.1009‑7848.2023.02.030
    [Google Scholar]
  75. Suzuki F. Sawada H. Azegami K. Tsuchiya K. Molecular characterization of the tox operon involved in toxoflavin biosynthesis of Burkholderia glumae. J. Gen. Plant Pathol. 2004 70 2 97 107 10.1007/s10327‑003‑0096‑1
    [Google Scholar]
  76. Philmus B. Shaffer B.T. Kidarsa T.A. Yan Q. Raaijmakers J.M. Begley T.P. Loper J.E. Investigations into the biosynthesis, regulation, and self‐resistance of toxoflavin in Pseudomonas protegens Pf‐5. ChemBioChem 2015 16 12 1782 1790 10.1002/cbic.201500247 26077901
    [Google Scholar]
  77. Zhang W. Tan J.B. Feng G.W. Rapid determination of bongkrekic acid and toxoflavin in ferment corn flour by ultra performance liquid chromatography triple quadrupole tandem mass spectrometry. Chin J. Health. Lab. Technol 2022 32 03 284 287
    [Google Scholar]
  78. Fang L. Jiang Y. Yao S. Yao X. Qiu Q. Li J. Zhang Y. A 3-step load-wash-elute solid-phase extraction tandem dedicated clean-up cartridge prior to UPLC-MS/MS for the simultaneous determination of bongkretic acid, isobongkretic acid and toxoflavin in edible mushrooms and rice noodles. Food Chem. 2025 464 Pt 1 141676 141676 10.1016/j.foodchem.2024.141676 39427611
    [Google Scholar]
  79. Zhang W. Feng G.W. Zhao D.Y. Rapid determination of toxoflavin in food poisoning samples by ultra - high performance liquid chromatography - triple quadrupole/liner ion trap tandem mass spectrometry. Chin J. Health. Lab. Technol 2021 31 15 1811 1813
    [Google Scholar]
  80. Wang C.X. Yin F.P. Wang H. Determination of toxoflavin, reumycin and fervenulin in vegetable oil by liquid-liquid extraction-high performance liquid chromatography. J. Chin Cereal Oil Assoc 2022 37 01 175 181 10.3969/j.issn.1003‑0174.2022.01.027
    [Google Scholar]
  81. Wang H. Hu L. Chang X. Hu Y. Zhang Y. Zhou P. Cui X. Determination of bacterial toxin toxoflavin and fervenulin in food and identification of their degradation products. Food Chem. 2023 399 134010 10.1016/j.foodchem.2022.134010 36058099
    [Google Scholar]
  82. Varzakas T. Nikoleli G.P. Nikolelis D.P. Recent advances of biosensors in food detection including genetically modified organisms in food. Advanced Bioelectronic Materials. Wiley 2015 355 387 10.1002/9781118998861.ch10
    [Google Scholar]
  83. Choi O. Lee Y. Han I. Kim H. Goo E. Kim J. Hwang I. A simple and sensitive biosensor strain for detecting toxoflavin using β-galactosidase activity. Biosens. Bioelectron. 2013 50 256 261 10.1016/j.bios.2013.06.058 23871874
    [Google Scholar]
  84. Choi O. Lee Y. Kang B. Kim J. Toxoflavin contamination in rice samples from rice processing complexes in South Korea. Int. J. Food Microbiol. 2023 385 110014 10.1016/j.ijfoodmicro.2022.110014 36399839
    [Google Scholar]
  85. Kim J. Oh J. Choi O. Kang Y. Kim H. Goo E. Ma J. Nagamatsu T. Moon J.S. Hwang I. Biochemical evidence for ToxR and ToxJ binding to the tox operons of Burkholderia glumae and mutational analysis of ToxR. J. Bacteriol. 2009 191 15 4870 4878 10.1128/JB.01561‑08 19465657
    [Google Scholar]
  86. Zhang S. Yang R. Wang Y. Gao Q. Wang L. Zhou G. Sheng Q. Multifunctional fluorescence sensor based on nitrogen-doped carbon dots and its application for toxoflavin detection. Microchem. J. 2024 207 112168 112168 10.1016/j.microc.2024.112168
    [Google Scholar]
  87. Liu Q.Y. Tang S.Z. Liang, Li On-line monitoring the emergency pollution of toxoflavin in the municipal drinking water by flow injection chemiluminescence. Food. Mach 2020 36 2 73 79 10.13652/j.issn.1003‑5788.2020.02.013
    [Google Scholar]
  88. Peng Z.X. Li F.Q. Biosynthesis mechanism of rice yeast acid in Burkholderia gladiolus. Wei Sheng Yen Chiu 2020 49 02 336 338 10.19813/j.cnki.weishengyanjiu.2020.02.031
    [Google Scholar]
  89. Gudo E.S. Cook K. Kasper A.M. Vergara A. Salomão C. Oliveira F. Ismael H. Saeze C. Mosse C. Fernandes Q. Viegas S.O. Baltazar C.S. Doyle T.J. Yard E. Steck A. Serret M. Falconer T.M. Kern S.E. Brzezinski J.L. Turner J.A. Boyd B.L. Jani I.V. Description of a mass poisoning in a rural district in mozambique: the First documented bongkrekic acid poisoning in Africa. Clin. Infect. Dis. 2018 66 9 1400 1406 10.1093/cid/cix1005 29155976
    [Google Scholar]
  90. Zhao L. Lei L. Sun J. Etiology diagnosis of a food poisoning incident caused by bongkrekic acid. Chin J. Food. Hyg 2022 34 3 606 610 10.13590/j.cjfh.2022.03.034
    [Google Scholar]
  91. Anwar M. Kasper A. Steck A.R. Schier J.G. Bongkrekic acid—a review of a lesser-known mitochondrial toxin. J. Med. Toxicol. 2017 13 2 173 179 10.1007/s13181‑016‑0577‑1 28105575
    [Google Scholar]
  92. Kopustinskiene D.M. Toleikis A. Saris N.E.L. Adenine nucleotide translocase mediates the K(ATP)-channel-openers-induced proton and potassium flux to the mitochondrial matrix. J. Bioenerg. Biomembr. 2003 35 2 141 148 10.1023/A:1023746103401 12887012
    [Google Scholar]
  93. Zhou E. Li Y. Wu Z. Chen Y. Wu H. Ye Y. Li T. Wang J. Yang Z. Neutrophil extracellular traps formation and autophagy in bongkrekic acid exposed human neutrophils. Toxicol. In Vitro 2025 104 106003 10.1016/j.tiv.2024.106003 39730015
    [Google Scholar]
  94. Hussain A. Shahbaz M. Tariq M. Ibrahim M. Hong X. Naeem F. Khalid Z. Raza H.M.Z. Bo Z. Bin L. Genome re-seqeunce and analysis of Burkholderia glumae strain AU6208 and evidence of toxoflavin: A potential bacterial toxin. Comput. Biol. Chem. 2020 86 107245 10.1016/j.compbiolchem.2020.107245 32172200
    [Google Scholar]
  95. Park J. Lee H.H. Jung H. Seo Y.S. Transcriptome analysis to understand the effects of the toxoflavin and tropolone produced by phytopathogenic Burkholderia on Escherichia coli. J. Microbiol. 2019 57 9 781 794 10.1007/s12275‑019‑9330‑1 31452043
    [Google Scholar]
  96. Kim N. Lee D. Lee S.B. Lim G.H. Kim S.W. Kim T.J. Park D.S. Seo Y.S. Understanding burkholderia glumaebgr1 virulence through the application of toxoflavin-degrading enzyme, txea. Plants 2023 12 23 3934 10.3390/plants12233934 38068569
    [Google Scholar]
  97. Justen S.F. Fenwick M.K. Axt K.K. Cherry J.A. Ealick S.E. Philmus B. Crystal structure, modeling, and identification of key residues provide insights into the mechanism of the key toxoflavin biosynthesis protein toxd. Biochemistry 2025 64 6 1199 1211 10.1021/acs.biochem.4c00421 40047534
    [Google Scholar]
  98. Wu T. Liu W. Chen H. Hou L. Ren W. Zhang L. Hu J. Chen H. Chen C. Toxoflavin analog D43 exerts antiproliferative effects on breast cancer by inducing ROS-mediated apoptosis and DNA damage. Sci. Rep. 2024 14 1 4008 4008 10.1038/s41598‑024‑53843‑1 38369538
    [Google Scholar]
  99. Tian F.L. Ma M.S. Qian Z.W. Stduy advancement of toxoflavin produced by burkholderia cocovenenans. Medical Recapitulate 2007 23 1822 1824 10.3969/j.issn.1006‑2084.2007.23.028
    [Google Scholar]
  100. Ma M.S. Tian F.L. Tan M. Observation in smooth muscle cellular ultrastructure of toxflavin intoxicated rat gastric fundus. J. Math. Med. 2009 22 03 280 282 10.3969/j.issn.1004‑4337.2009.03.010
    [Google Scholar]
  101. Chu H.R. Ma M.S. Yang Y.Y. The toxic effect and the mechanism of toxoflavin on HepG2 cells. J. Pathog Biol. 2009 4 07 493 495 10.13350/j.cjpb.2009.07.006
    [Google Scholar]
/content/journals/cac/10.2174/0115734110377254250912092459
Loading
/content/journals/cac/10.2174/0115734110377254250912092459
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test