Skip to content
2000
image of A Brief Account of the Technology Significance of Synchrotron Radiation: A State-of-the-art Angle-Resolved Photoemission Spectroscopy (ARPES)

Abstract

This paper highlights the exploitation of the cutting-edge technology of synchrotron radiation in the analytical strategies for various materials. Synchrotron radiation is dedicated to the emission of ultra-relativistic electrons as they travel around magnetic fields within a vacuum chamber. The architecture of a synchrotron facility depends on advancements in the relevant technology. Synchrotron radiation offers outstanding properties, including high brightness, high polarization, and pulsed-light emission. The distinctive features of high-resolution monochromatization and submicron resolution of synchrotron beamlines allow for a continuous band of the electromagnetic spectrum. The synchrotron beamlines are specifically designed for dedicated applications that fall into one of four aspects: spectroscopy, diffraction, scattering, and imaging. Such synchrotron-based methods are highly useful for investigating the composition, structure, morphology, and physico-chemical properties of materials. Among these methods, angle-resolved photoemission spectroscopy (ARPES) serves as a good experimental probe for mapping the electronic structure as a function of energy and momentum in crystalline solids and thin films. ARPES offers valuable insights into the physical properties of various material systems, including topological materials, high-temperature superconductors, graphene, transition metal dichalcogenides, heterostructures, and buried interfaces. Recent technological developments have expanded the scope of ARPES: spin-resolved ARPES, time-resolved ARPES, soft X-ray ARPES, and nano-resolved ARPES.

Loading

Article metrics loading...

/content/journals/cac/10.2174/0115734110371322250417040648
2025-04-25
2025-10-03
Loading full text...

Full text loading...

References

  1. Cramer S.P. X-ray Spectroscopy with Synchrotron Radiation: Fundamentals and Applications. Cham Springer 2020 10.1007/978‑3‑030‑28551‑7
    [Google Scholar]
  2. Prado G. Arthuzzi J.C.L. Osés G.L. Callefo F. Maldanis L. Sucerquia P. Becker-Kerber B. Romero G.R. Quiroz-Valle F.R. Galante D. Synchrotron radiation in palaeontological investigations: Examples from Brazilian fossils and its potential to South American palaeontology. J. S. Am. Earth Sci. 2021 108 102973 10.1016/j.jsames.2020.102973
    [Google Scholar]
  3. Vincze L. Silversmit G. Vekemans B. Terzano R. Brenker F.E. Synchrotron radiation micro-and nano-spectroscopy. Nanoscopic Approaches in Earth and Planetary Sciences. Brenker F.E. Jordan G. London Mineralogical Society of Great Britain and Ireland 2010 169 237 10.1180/EMU‑notes.8.6
    [Google Scholar]
  4. Mobilio S. Boscherini F. Meneghini C. Synchrotron Radiation: Basics, Methods and Applications. Berlin Springer 2015 10.1007/978‑3‑642‑55315‑8
    [Google Scholar]
  5. Olbinado M.P. Rack A. Recent advances on in situ materials characterization using ultra high-speed X-ray imaging at The European Synchrotron–ESRF. 32nd International Congress on High-Speed Imaging and Photonics Twente, Netherlands. 2018, vol. 11051, pp. 80-84. 10.1117/12.2524607
    [Google Scholar]
  6. Jovanović B.V. Borka D. Arsenić A. Jovanović P. Spectral index distribution over radio lobes of 4C 14.11 using astrophysical data in FITS format. Adv. Space Res. 2023 71 2 1227 1234 10.1016/j.asr.2022.05.062
    [Google Scholar]
  7. Carvalho M.L. Magalhães T. Becker M. Bohlen V.A. Trace elements in human cancerous and healthy tissues: A comparative study by EDXRF, TXRF, synchrotron radiation and PIXE. Spectrochim. Acta B At. Spectrosc. 2007 62 9 1004 1011 10.1016/j.sab.2007.03.030
    [Google Scholar]
  8. Chang D.S. Lasley F.D. Das I.J. Mendonca M.S. Dynlacht J.R. Production and Properties of Radiation, Basic Radiotherapy Physics and Biology. Switzerland Springer 2021 10.1007/978‑3‑030‑61899‑5
    [Google Scholar]
  9. Ishikawa T. Accelerator-based X-ray sources: Synchrotron radiation, X-ray free electron lasers and beyond. Philos. Trans. Math. Phys. Eng. Sci. 2019 377 2147 20180231 10.1098/rsta.2018.0231
    [Google Scholar]
  10. Shenoy G. Basic characteristics of synchrotron radiation. Struct. Chem. 2003 14 1 3 14 10.1023/A:1021656723964
    [Google Scholar]
  11. Couprie M.E. Towards compact Free Electron–Laser based on laser plasma accelerators. Nucl. Instrum. Methods Phys. Res. A 2018 909 5 15 10.1016/j.nima.2018.02.090
    [Google Scholar]
  12. Feng C. Deng H.X. Review of fully coherent free-electron lasers. Nucl. Sci. Tech. 2018 29 11 160 10.1007/s41365‑018‑0490‑1
    [Google Scholar]
  13. Nakajima K. Deng A.H. Yoshitama H. Hafz A.M.N. Lu H.Y. Shen B.F. Liu J.S. Li R.X. Xu Z.Z. Laser-driven table-top X-ray FEL. Free Electron Lasers USA IntecOpen 2012 `
    [Google Scholar]
  14. Vijayan P. Willick I.R. Lahlali R. Karunakaran C. Tanino K.K. Synchrotron radiation sheds fresh light on plant research: The use of powerful techniques to probe structure and composition of plants. Plant Cell Physiol. 2015 56 7 1252 1263 10.1093/pcp/pcv080 26117844
    [Google Scholar]
  15. Wille K. Synchrotron radiation sources. Rep. Prog. Phys. 1991 54 8 1005 1067 10.1088/0034‑4885/54/8/001
    [Google Scholar]
  16. Iwamoto H. Synchrotron radiation X-ray diffraction studies on muscle: Past, present, and future. Biophys. Rev. 2019 11 4 547 558 10.1007/s12551‑019‑00554‑x 31203514
    [Google Scholar]
  17. Couprie M.E. New generation of light sources: Present and future. J. Electron Spectrosc. Relat. Phenom. 2014 196 3 13 10.1016/j.elspec.2013.12.007
    [Google Scholar]
  18. García-Gutiérrez M.C. Rueda D.R. Bases of synchrotron radiation, light sources, and features of X-ray scattering beamlines. Applications of Synchrotron Light to Scattering and Diffraction in Materials and Life Sciences. Ezquerra T.A. Garcia-Gutierrez M.C. Nogales A. Gomez M. Berlin Springer 2009 1 22 10.1007/978‑3‑540‑95968‑7_1
    [Google Scholar]
  19. Li Y.F. Zhao J. Qu Y. Gao Y. Guo Z. Liu Z. Zhao Y. Chen C. Synchrotron radiation techniques for nanotoxicology. Nanomedicine 2015 11 6 1531 1549 10.1016/j.nano.2015.04.008 25933693
    [Google Scholar]
  20. Lombi E. Susini J. Synchrotron-based techniques for plant and soil science: Opportunities, challenges and future perspectives. Plant Soil. 2009 320 1-2 1 35 10.1007/s11104‑008‑9876‑x
    [Google Scholar]
  21. Weckert E. The potential of future light sources to explore the structure and function of matter. IUCrJ 2015 2 2 230 245 10.1107/S2052252514024269 25866660
    [Google Scholar]
  22. Zhang H. Pincelli T. Jozwiak C. Kondo T. Ernstorfer R. Sato T. Zhou S. Angle-resolved photoemission spectroscopy. Nat. Rev. Methods Primers 2022 2 1 54 10.1038/s43586‑022‑00133‑7
    [Google Scholar]
  23. Lv B. Qian T. Ding H. Angle-resolved photoemission spectroscopy and its application to topological materials. Nat. Rev. Phys. 2019 1 10 609 626 10.1038/s42254‑019‑0088‑5
    [Google Scholar]
  24. Mo S.K. Angle-resolved photoemission spectroscopy for the study of two-dimensional materials. Nano Converg. 2017 4 1 6 10.1186/s40580‑017‑0100‑7 28191445
    [Google Scholar]
  25. Zhang W. Photoemission Spectroscopy on High Temperature Superconductor: A Study of Bi2Sr2CaCu2O8 by Laser-Based Angle-Resolved Photoemission. Berlin Springer 2012
    [Google Scholar]
  26. Rotenberg E. Many‐body interactions in nanoscale materials by angle‐resolved photoemission spectroscopy. X‐Rays in Nanoscience: Spectroscopy, Spectromicroscopy, and Scattering Techniques. Guo J. Weinheim Wiley 2010 169 209 10.1002/9783527632282.ch6
    [Google Scholar]
  27. Yoshida H. Principle and application of low energy inverse photoemission spectroscopy: A new method for measuring unoccupied states of organic semiconductors. J. Electron Spectrosc. Relat. Phenom. 2015 204 116 124 10.1016/j.elspec.2015.07.003
    [Google Scholar]
  28. Zeybek O. Review: Probing of the unoccupied electronic states in solids by inverse photoemission spectroscopy. Hittite J. Sci. Eng. 2018 5 3 195 201 10.17350/HJSE19030000094
    [Google Scholar]
  29. Béchu S. Ralaiarisoa M. Etcheberry A. Schulz P. Photoemission spectroscopy characterization of halide perovskites. Adv. Energy Mater. 2020 10 26 1904007 10.1002/aenm.201904007
    [Google Scholar]
  30. Whitten J.E. Ultraviolet photoelectron spectroscopy: Practical aspects and best practices. Appl. Surf. Sci. Adv. 2023 13 100384 10.1016/j.apsadv.2023.100384
    [Google Scholar]
  31. Aziz M. Ismail A.F. X-ray photoelectron spectroscopy (XPS). Membrane Characterization. Hilal N. Ismail A.F. Matsuura T. Oatley-Radcliffe D. Amsterdam Elsevier 2017 81 93 10.1016/B978‑0‑444‑63776‑5.00005‑X
    [Google Scholar]
  32. Oswald S. X‐ray photoelectron spectroscopy in analysis of surfaces. Encyclopedia of Analytical Chemistry: Applications, Theory and Instrumentation. Meyers R.A. New Jersey Wiley 2000 10.1002/9780470027318.a2517
    [Google Scholar]
  33. Mitrano M. Johnston S. Kim Y.J. Dean M.P.M. Exploring quantum materials with resonant inelastic X-ray scattering. Phys. Rev. X 2024 14 4 040501 10.1103/PhysRevX.14.040501
    [Google Scholar]
  34. Groot D.F.M.F. Haverkort M.W. Elnaggar H. Juhin A. Zhou K.J. Glatzel P. Resonant inelastic X-ray scattering. Nat. Rev. Meth. Prim. 2024 4 1 45 10.1038/s43586‑024‑00322‑6
    [Google Scholar]
  35. Jaber A.M.D.A. Alsoud A. Al-Bashaish S.R. Dmour A.H. Mousa M.S. Trčka T. Holcman V. Sobola D. Electron energy-loss spectroscopy method for thin-film thickness calculations with a low incident energy electron beam. Technologies 2024 12 6 87 10.3390/technologies12060087
    [Google Scholar]
  36. Hirai H. Electron Energy-loss spectroscopy and its applications to characterization of carbon materials. Carbon Alloys: Novel Concepts to Develop Carbon Science and Technology. Yasuda E. Ingaki M. Kaneko K. Endo M. Oya A. Tanabe Y. Oxford Elsevier 2003 239 256 10.1016/B978‑008044163‑4/50015‑2
    [Google Scholar]
  37. Gries K. Kröger R. Kübel C. Fritz M. Rosenauer A. Investigations of voids in the aragonite platelets of nacre. Acta Biomater. 2009 5 8 3038 3044 10.1016/j.actbio.2009.04.017 19427933
    [Google Scholar]
  38. Oshima M. Nanolayer analysis by photoelectron spectroscopy. Nanolayer Research Methodology and Technology for Green Chemistry. Imae T. Amsterdam Elsevier 2017 285 333
    [Google Scholar]
  39. Kurleto R. Fidrysiak M. Nicolaï L. Minár J. Rosmus M. Walczak Ł. Tejeda A. Rault J.E. Bertran F. Kądzielawa A.P. Legut D. Gnida D. Kaczorowski D. Kissner K. Reinert F. Spałek J. Starowicz P. Photoemission signature of momentum-dependent hybridization in CeCoIn 5. Phys. Rev. B 2021 104 12 125104 10.1103/PhysRevB.104.125104
    [Google Scholar]
  40. Nummy T.J. Waugh J.A. Parham S.P. Liu Q. Yang H.Y. Li H. Zhou X. Plumb N.C. Tafti F.F. Dessau D.S. Measurement of the atomic orbital composition of the near-fermi-level electronic states in the lanthanum monopnictides LaBi, LaSb, and LaAs. npj Quant. Mat. 2018 3 1 24 10.1038/s41535‑018‑0094‑3
    [Google Scholar]
  41. Zemmour K. Bendjemil B. Belbah A. Band structure and quantum oscillations in YBa2Cu3O7: A local spin density approximation with the on-Site coulomb interaction study. J. Supercond. Nov. Magn. 2013 26 1 5 19 10.1007/s10948‑012‑1778‑8
    [Google Scholar]
  42. King P.D.C. Hatch R.C. Bianchi M. Ovsyannikov R. Lupulescu C. Landolt G. Slomski B. Dil J.H. Guan D. Mi J.L. Rienks E.D.L. Fink J. Lindblad A. Svensson S. Bao S. Balakrishnan G. Iversen B.B. Osterwalder J. Eberhardt W. Baumberger F. Hofmann P. Large tunable Rashba spin splitting of a two-dimensional electron gas in Bi2Se3. Phys. Rev. Lett. 2011 107 9 096802 10.1103/PhysRevLett.107.096802 21929260
    [Google Scholar]
  43. Landolt G. Eremeev S.V. Koroteev Y.M. Slomski B. Muff S. Neupert T. Kobayashi M. Strocov V.N. Schmitt T. Aliev Z.S. Babanly M.B. Amiraslanov I.R. Chulkov E.V. Osterwalder J. Dil J.H. Disentanglement of surface and bulk rashba spin splittings in noncentrosymmetric BiTeI. Phys. Rev. Lett. 2012 109 11 116403 10.1103/PhysRevLett.109.116403 23005655
    [Google Scholar]
  44. Nishide A. Taskin A.A. Takeichi Y. Okuda T. Kakizaki A. Hirahara T. Nakatsuji K. Komori F. Ando Y. Matsuda I. Direct mapping of the spin-filtered surface bands of a three-dimensional quantum spin Hall insulator. Phys. Rev. B Condens. Matter Mater. Phys. 2010 81 4 041309 10.1103/PhysRevB.81.041309
    [Google Scholar]
  45. Gao S.Y. Xu S. Li H. Yi C.J. Nie S.M. Rao Z.C. Wang H. Hu Q.X. Chen X.Z. Fan W.H. Huang J.R. Huang Y-B. Pryds N. Shi M. Wang Z-J. Shi Y-G. Xia T-L. Qian T. Ding H. Time-reversal symmetry breaking driven topological phase transition in EuB6. Phys. Rev. X 2021 11 2 021016 10.1103/PhysRevX.11.021016
    [Google Scholar]
  46. Lev L.L. Maiboroda I.O. Husanu M.A. Grichuk E.S. Chumakov N.K. Ezubchenko I.S. Chernykh I.A. Wang X. Tobler B. Schmitt T. Zanaveskin M.L. Valeyev V.G. Strocov V.N. k-space imaging of anisotropic 2D electron gas in GaN/GaAlN high-electron-mobility transistor heterostructures. Nat. Commun. 2018 9 1 2653 10.1038/s41467‑018‑04354‑x 29992961
    [Google Scholar]
  47. Strocov V.N. Lev L.L. Kobayashi M. Cancellieri C. Husanu M.A. Chikina A. Schröter N.B.M. Wang X. Krieger J.A. Salman Z. k-resolved electronic structure of buried heterostructure and impurity systems by soft-X-ray ARPES. J. Elect. Spectrosc. Relat. Phenom. 2019 236 1 8 10.1016/j.elspec.2019.06.009
    [Google Scholar]
  48. Majchrzak P. Muzzio R. Jones A.J.H. Curcio D. Volckaert K. Biswas D. Gobbo J. Singh S. Robinson J.T. Watanabe K. Taniguchi T. Kim T.K. Cacho C. Miwa J.A. Hofmann P. Katoch J. Ulstrup S. In operando angle‐resolved photoemission spectroscopy with nanoscale spatial resolution: Spatial mapping of the electronic structure of twisted bilayer graphene. Small Sci. 2021 1 6 2000075 10.1002/smsc.202000075
    [Google Scholar]
  49. Cui X.Y. Shimada K. Hoesch M. Sakisaka Y. Kato H. Aiura Y. Higashiguchi M. Miura Y. Namatame H. Taniguchi M. Angle-resolved photoemission spectroscopy study of Fe (1 1 0) single crystal: Many-body interactions between quasi-particles at the Fermi level. Surf. Sci. 2007 601 18 4010 4012 10.1016/j.susc.2007.04.069
    [Google Scholar]
  50. Higashiguchi M. Shimada K. Miura Y. Cui X. Tobita N. Aiura Y. Namatame H. Taniguchi M. High-resolution photoemission study of electron–phonon interaction in Pd (1 1 0). Physica B 2006 383 1 148 149 10.1016/j.physb.2006.03.085
    [Google Scholar]
  51. Kolodrubetz M. Fregoso B.M. Moore J.E. Nonadiabatic bulk-surface oscillations in driven topological insulators. Phys. Rev. B 2016 94 19 195124 10.1103/PhysRevB.94.195124
    [Google Scholar]
  52. Krasovskii E.E. Spin–orbit coupling at surfaces and 2D materials. J. Phys. Condens. Matter 2015 27 49 493001 10.1088/0953‑8984/27/49/493001 26580290
    [Google Scholar]
  53. Zhou X. He S. Liu G. Zhao L. Yu L. Zhang W. New developments in laser-based photoemission spectroscopy and its scientific applications: A key issues review. Rep. Prog. Phys. 2018 81 6 062101 10.1088/1361‑6633/aab0cc 29460857
    [Google Scholar]
  54. Hellmann S. Rossnagel K. Marczynski-Bühlow M. Kipp L. Vacuum space-charge effects in solid-state photoemission. Phys. Rev. B Condens. Matter Mater. Phys. 2009 79 3 035402 10.1103/PhysRevB.79.035402
    [Google Scholar]
  55. Zhou X.J. Cuk T. Devereaux T. Nagaosa N. Shen Z.X. Angle-resolved photoemission spectroscopy on electronic structure and electron–phonon coupling in cuprate superconductors. Handbook of High-Temperature Superconductivity. Schrieffer J.R. Brooks J.S. New York Springer 2007 87 144 10.1007/978‑0‑387‑68734‑6_3
    [Google Scholar]
  56. Bringans R.D. Thin films on semiconductors. Angle-Resolved Photoemission: Theory and Current Applications. Kevan S.D. Amsterdam Elsevier 1992 435 467 10.1016/S0167‑2991(08)61781‑4
    [Google Scholar]
/content/journals/cac/10.2174/0115734110371322250417040648
Loading
/content/journals/cac/10.2174/0115734110371322250417040648
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test