Skip to content
2000
image of Identification and Characterization of Bioactive Compounds from a Marine Bivalve Clam Marcia hiantina via Mass Spectrometry Techniques

Abstract

Introduction

Bioactive compounds with unique functional properties derived from marine bivalves have been gaining increasing attention. is a bivalve clam found in many coastal regions of the Philippines but is underutilized despite its nutritional value. The study aimed to isolate bioactive compounds from using a mass spectrometry-guided technique to separate target analytes and characterize their biological activities.

Methods

Bioactive fractions were detected by combining Liquid Chromatography-Mass Spectrometry (LC-MS) and High-Performance Liquid Chromatography (HPLC) with biological assays. The bioactive compounds were subsequently identified using Ultra-High-Performance Liquid Chromatography-Elevated Energy Mass Spectrometry (UHPLC–MSE).

Results

A UHPLC-MSE analysis of the isolate revealed polymeric Tryptophan (Trp) and its metabolites. The -derived peptide exhibited inhibitory effects on the proliferation of human breast cancer cells (MCF-7), with an IC50 value of 95.20 ± 0.11 g/mL, measured by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Moreover, the peptide also inhibited the growth of both Gram-positive and Gram-negative bacterial strains and demonstrated strong antioxidant potential as a 2,2-diphenyl-1-picrylhydrazyl (DPPH) scavenger (73.54% at 2.5 mg/mL).

Discussion

The presence of Trp metabolites, including indole and indole-3-propionic acid in may result from the host-microbe interactions, or be influenced by environmental stress, as Trp requirements in clams increase under oxidative conditions, reflecting their adaptation to stressors like intermittent hypoxia and pollutants.

Conclusion

This study revealed that is a new source of bioactive compounds, and can be a promising novel ingredient in functional foods promoting health and well-being.

Loading

Article metrics loading...

/content/journals/cac/10.2174/0115734110371199250413030326
2025-04-24
2025-10-30
Loading full text...

Full text loading...

References

  1. Pavlicevic M. Maestri E. Marmiroli M. Marine bioactive peptides—an overview of generation, structure and application with a focus on food sources. Mar. Drugs 2020 18 8 424 10.3390/md18080424 32823602
    [Google Scholar]
  2. Odeleye T. White W.L. Lu J. Extraction techniques and potential health benefits of bioactive compounds from marine molluscs: A review. Food Funct. 2019 10 5 2278 2289 10.1039/C9FO00172G 30968919
    [Google Scholar]
  3. Ngo D.H. Vo T.S. Ngo D.N. Wijesekara I. Kim S.K. Biological activities and potential health benefits of bioactive peptides derived from marine organisms. Int. J. Biol. Macromol. 2012 51 4 378 383 10.1016/j.ijbiomac.2012.06.001 22683669
    [Google Scholar]
  4. Chakraborty K. Joy M. High-value compounds from the molluscs of marine and estuarine ecosystems as prospective functional food ingredients: An overview. Food Res. Int. 2020 137 109637 10.1016/j.foodres.2020.109637 33233216
    [Google Scholar]
  5. Tanisha Innovative approaches towards utilization of clams. Int. J. Oceanogr. Aquac. 2023 7 4 000279 10.23880/ijoac‑16000279
    [Google Scholar]
  6. Yu Y. Fan F. Wu D. Yu C. Wang Z. Du M. Antioxidant and ACE inhibitory activity of enzymatic hydrolysates from Ruditapes philippinarum. Molecules 2018 23 5 1189 10.3390/molecules23051189 29772679
    [Google Scholar]
  7. Chi C.F. Hu F.Y. Wang B. Li T. Ding G.F. Antioxidant and anticancer peptides from the protein hydrolysate of blood clam (Tegillarca granosa) muscle. J. Funct. Foods 2015 15 301 313 10.1016/j.jff.2015.03.045
    [Google Scholar]
  8. Benkendorff K. Molluscan biological and chemical diversity: secondary metabolites and medicinal resources produced by marine molluscs. Biol. Rev. Camb. Philos. Soc. 2010 85 4 757 775 10.1111/j.1469‑185X.2010.00124.x 20105155
    [Google Scholar]
  9. Stephens G.C. Epidermal amino acid transport in marine invertebrates. Biochim. Biophys. Acta Rev. Biomembr. 1988 947 1 113 138 10.1016/0304‑4157(88)90022‑6 3278737
    [Google Scholar]
  10. Ghosh J. Lun C.M. Majeske A.J. Sacchi S. Schrankel C.S. Smith L.C. Invertebrate immune diversity. Dev. Comp. Immunol. 2011 35 9 959 974 10.1016/j.dci.2010.12.009 21182860
    [Google Scholar]
  11. Różańska H. Michalski M. Osek J. Antibacterial activity of tissues of bivalve mollusc available on Polish market. Bull. Vet. Inst. Pulawy 2012 56 4 569 571 10.2478/v10213‑012‑0100‑7
    [Google Scholar]
  12. Ghareeb M.A. Hamdi S.A.H. Fol M.F. Ibrahim A.M. Chemical characterization, antibacterial, antibiofilm, and antioxidant activities of the methanolic extract of Paratapes undulatus clams (Born, 1778). J. Appl. Pharm. Sci. 2022 12 5 219 228 10.7324/JAPS.2022.120521
    [Google Scholar]
  13. Lv C. Han Y. Yang D. Zhao J. Wang C. Mu C. Antibacterial activities and mechanisms of action of a defensin from manila clam Ruditapes philippinarum. Fish Shellfish Immunol. 2020 103 266 276 10.1016/j.fsi.2020.05.025 32439511
    [Google Scholar]
  14. Li Y. Niu D. Bai Y. Lan T. Peng M. Dong Z. Li J. Identification of a novel C1q complement component in razor clam Sinonovacula constricta and its role in antibacterial activity. Fish Shellfish Immunol. 2019 87 193 201 10.1016/j.fsi.2019.01.014 30639866
    [Google Scholar]
  15. Joy M. Chakraborty K. Pananghat V. Comparative bioactive properties of bivalve clams against different disease molecular targets. J. Food Biochem. 2016 40 4 593 602 10.1111/jfbc.12256
    [Google Scholar]
  16. Liu M. Zhao X. Zhao J. Xiao L. Liu H. Wang C. Cheng L. Wu N. Lin X. Induction of apoptosis, G₀/G₁ phase arrest and microtubule disassembly in K562 leukemia cells by Mere15, a novel polypeptide from Meretrix meretrix Linnaeus. Mar. Drugs 2012 10 11 2596 2607 10.3390/md10112596 23203280
    [Google Scholar]
  17. Wang C. Liu M. Cheng L. Wei J. Wu N. Zheng L. Lin X. A novel polypeptide from Meretrix meretrix Linnaeus inhibits the growth of human lung adenocarcinoma. Exp. Biol. Med. 2012 237 4 442 450 10.1258/ebm.2012.011337 22522344
    [Google Scholar]
  18. Yang X.R. Qiu Y.T. Zhao Y.Q. Chi C.F. Wang B. Purification and characterization of antioxidant peptides derived from protein hydrolysate of the marine bivalve mollusk Tergillarca granosa. Mar. Drugs 2019 17 5 251 10.3390/md17050251 31035632
    [Google Scholar]
  19. Umayaparvathi S. Meenakshi S. Vimalraj V. Arumugam M. Sivagami G. Balasubramanian T. Antioxidant activity and anticancer effect of bioactive peptide from enzymatic hydrolysate of oyster (Saccostrea cucullata). Biomed. Prev. Nutr. 2014 4 3 343 353 10.1016/j.bionut.2014.04.006
    [Google Scholar]
  20. Dzuman Z. Jonatova P. Stranska-Zachariasova M. Prusova N. Brabenec O. Novakova A. Fenclova M. Hajslova J. Development of a new LC-MS method for accurate and sensitive determination of 33 pyrrolizidine and 21 tropane alkaloids in plant-based food matrices. Anal. Bioanal. Chem. 2020 412 26 7155 7167 10.1007/s00216‑020‑02848‑6 32803302
    [Google Scholar]
  21. Pratima N.A. Gadikar R. Liquid chromatography-mass spectrometry and its applications: A brief review. Arch. Org. Inorg. Chem. Sci 2018 1 1 10.32474/AOICS.2018.01.000103
    [Google Scholar]
  22. Rathod R.H. Chaudhari S.R. Patil A.S. Shirkhedkar A.A. Ultra-high performance liquid chromatography-MS/MS (UHPLC-MS/MS) in practice: Analysis of drugs and pharmaceutical formulations. Future J. Pharm. Sci. 2019 5 1 6 10.1186/s43094‑019‑0007‑8
    [Google Scholar]
  23. Ajani P.A. Sarowar C. Turnbull A. Farrell H. Zammit A. Helleren S. Hallegraeff G. Murray S.A. A comparative analysis of methods (LC-MS/MS, LC-MS and rapid test kits) for the determination of diarrhetic shellfish toxins in oysters, mussels and pipis. Toxins 2021 13 8 563 10.3390/toxins13080563 34437433
    [Google Scholar]
  24. Wang Z. Doucette G.J. Determination of lipophilic marine biotoxins by liquid chromatography-tandem mass spectrometry in five shellfish species from Washington State, USA. J. Chromatogr. A 2021 1639 461902 10.1016/j.chroma.2021.461902 33486447
    [Google Scholar]
  25. Qiu J. Wright E.J. Thomas K. Li A. McCarron P. Beach D.G. Semiquantitation of paralytic shellfish toxins by hydrophilic interaction liquid chromatography-mass spectrometry using relative molar response factors. Toxins 2020 12 6 398 10.3390/toxins12060398 32560098
    [Google Scholar]
  26. Turner A.D. Dhanji-Rapkova M. Fong S.Y.T. Hungerford J. McNabb P.S. Boundy M.J. Harwood D.T. Aanrud S. Alfonso C. Alvarez M. Amzil Z. Antelo A. Arévalo F. Barrera M. Braekevelt E. Bunæs J. Cagide E. Cangini M. Carrasco D. Casey M. Chan P. Faulkner D. Gago-Martínez A. Gibbs R. Hatfield R. Hayman C. Hiroshi O. Hort V. Hutchinson J. Jordan T. Mariappan M. Leão J. Maskrey B. McCarron P. McGrath S. Milandri A. Milandri S. Moroño A. Murray S. Nicolas M. Queijo A. Pompei M. Réveillon D. Rourke W. Salgado C. Savar V. Stokes B. Suarez-Isla B. Suzuki T. Thomas K. Watanabe R. Collaborators Collaborators. Ultrahigh-performance hydrophilic interaction liquid chromatography with tandem mass spectrometry method for the determination of paralytic shellfish toxins and tetrodotoxin in mussels, oysters, clams, cockles, and scallops: collaborative study. J. AOAC Int. 2020 103 2 533 562 10.5740/jaoacint.19‑0240 31645237
    [Google Scholar]
  27. Huber M. Compendium of Bivalves. A full-color Guide to 3,300 of the World’s Marine Bivalves. A Status on Bivalvia After 250 Years of Research. Hackenheim ConchBooks 2010
    [Google Scholar]
  28. del Norte-Campos A. Burgos L. Villarta K. A ranked inventory of commercially-important mollusks of Panay, West Central Philippines as a guide to prioritize research. The Philipp. Philipp. J. Fish. 2019 26 2 119 136 10.31398/tpjf/26.2.2019‑0004
    [Google Scholar]
  29. Salido G. Plagata N.P. Serisola M.L. Monaya K.J. Garferio R.C. Simora R.M. Antioxidant and antibacterial activities of the protein extracts from four species of underutilised marine bivalves. Philipp. J. Nat. Sci 2022 27 29 40
    [Google Scholar]
  30. Ahmed H.A. Ticar B.F. Black I. Mahdi F. Shami A.A. Misra S.K. Heiss C. Paris J.J. Sharp J.S. Azadi P. Pomin V.H. Structural characterization and biological activity of an α-glucan from the mollusk Marcia hiantina (Lamarck, 1818). Glycoconj. J. 2023 40 1 33 46 10.1007/s10719‑022‑10092‑6 36454453
    [Google Scholar]
  31. Laureta L.V. Compendium of the economically important seashells in Panay, Philippines. Quezon City The University of the Philippines Press 2008
    [Google Scholar]
  32. Anas A. Nakajima A. Naruse C. Tone M. Asukabe H. Harada K. Determination of FVIIa-sTF inhibitors in toxic microcystis cyanobacteria by LC-MS technique. Mar. Drugs 2015 14 1 7 10.3390/md14010007 26729138
    [Google Scholar]
  33. Lacson M.L.B. Arbotante C.A. Magdayao M.J.T.E. Bundalian R.D.L. Jr Anas A.R.J. Ultra-high-performance liquid chromatography-tandem high-resolution elevated mass spectrometry profiling of anti-methicillin-resistant Staphylococcus aureus metabolites from the endophytic bacteria collected from the weeds of a previous dumpsite. J. Chromatogr. A 2023 1706 464228 10.1016/j.chroma.2023.464228 37556933
    [Google Scholar]
  34. Wiegand I. Hilpert K. Hancock R.E.W. Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. Nat. Protoc. 2008 3 2 163 175 10.1038/nprot.2007.521 18274517
    [Google Scholar]
  35. Lopez J.A.V. Al-Lihaibi S.S. Alarif W.M. Abdel-Lateff A. Nogata Y. Washio K. Morikawa M. Okino T. Wewakazole B, a cytotoxic cyanobactin from the cyanobacterium Moorea producens collected in the Red Sea. J. Nat. Prod. 2016 79 4 1213 1218 10.1021/acs.jnatprod.6b00051 26980238
    [Google Scholar]
  36. Denizot F. Lang R. Rapid colorimetric assay for cell growth and survival. J. Immunol. Methods 1986 89 2 271 277 10.1016/0022‑1759(86)90368‑6 3486233
    [Google Scholar]
  37. Bioquest A.A.T. IC50 calculator. Available from: https://www.aatbio.com/tools/ic50-calculator calculator (Accessed February 17, 2024).
  38. Blois M.S. Antioxidant determinations by the use of a stable free radical. Nature 1958 181 4617 1199 1200 10.1038/1811199a0
    [Google Scholar]
  39. R Core Team The R project for statistical computing. Available from: http://www.R-project.org/ (Accessed November 10, 2023).
  40. Ronsein G.E. de Oliveira M.C.B. de Medeiros M.H.G. Di Mascio P. Characterization of O 2 ( 1 Δ g )-derived oxidation products of tryptophan: A combination of tandem mass spectrometry analyses and isotopic labeling studies. J. Am. Soc. Mass Spectrom. 2009 20 2 188 197 10.1016/j.jasms.2008.08.016 18824374
    [Google Scholar]
  41. MassBank L-Tryptophan mass spectrum. Available from: https://massbank.jp/RecordDisplay?id=MSBNK-Washington_State_Univ-BML01197&dsn=Washington_State_Univ/ (Accessed July 21, 2024).
  42. Sahayanathan G.J. Padmanaban D. Raja K. Chinnasamy A. Anticancer effect of purified polysaccharide from marine clam Donax variabilis on A549 cells. J. Food Biochem. 2020 44 11 e13486 10.1111/jfbc.13486 32996209
    [Google Scholar]
  43. Song E.J. Chan M.W.Y. Shin J.W. Chen C.C. Hard clam extracts induce atypical apoptosis in human gastric cancer cells. Exp. Ther. Med. 2017 14 2 1409 1418 10.3892/etm.2017.4630 28810604
    [Google Scholar]
  44. Song L. Ren S. Yu R. Yan C. Li T. Zhao Y. Purification, characterization and in vitro anti-tumor activity of proteins from Arca subcrenata Lischke. Mar. Drugs 2008 6 3 418 430 10.3390/md6030418 19005577
    [Google Scholar]
  45. Yau W.M. Wimley W.C. Gawrisch K. White S.H. The preference of tryptophan for membrane interfaces. Biochemistry 1998 37 42 14713 14718 10.1021/bi980809c 9778346
    [Google Scholar]
  46. Charoenkwan P. Chiangjong W. Lee V.S. Nantasenamat C. Hasan M.M. Shoombuatong W. Improved prediction and characterization of anticancer activities of peptides using a novel flexible scoring card method. Sci. Rep. 2021 11 1 3017 10.1038/s41598‑021‑82513‑9 33542286
    [Google Scholar]
  47. Dong J. Li Y. Zhao P. Xu T. Zhang B. Gao L. Li L. Synthesis and biological evaluation of six L-tryptophan Schiff base copper(II) complexes as promising anticancer agents in vitro. J. Mol. Struct. 2022 1256 132578 10.1016/j.molstruc.2022.132578
    [Google Scholar]
  48. Chiangjong W. Chutipongtanate S. Hongeng S. Anticancer peptide: Physicochemical property, functional aspect and trend in clinical application (Review). Int. J. Oncol. 2020 57 3 678 696 10.3892/ijo.2020.5099 32705178
    [Google Scholar]
  49. He Y. Gao L. Machine learning‐based genetic evolution of antitumor proteins containing unnatural amino acids by integrating chemometric modeling and cytotoxicity analysis. J. Chemometr. 2018 32 5 e2974 10.1002/cem.2974
    [Google Scholar]
  50. Nguyen L.T. Chau J.K. Perry N.A. de Boer L. Zaat S.A.J. Vogel H.J. Serum stabilities of short tryptophan- and arginine-rich antimicrobial peptide analogs. PLoS One 2010 5 9 e12684 10.1371/journal.pone.0012684 20844765
    [Google Scholar]
  51. Khemaissa S. Sagan S. Walrant A. Tryptophan, an amino-acid endowed with unique properties and its many roles in membrane proteins. Crystals 2021 11 9 1032 10.3390/cryst11091032
    [Google Scholar]
  52. Sake F. Nasser O. Sabha A. Antimicrobial activity of some crude marine Mollusca extracts against some human pathogenic bacteria. Int. J. Agric. Environ. Sci. 2020 7 1 6 12 10.14445/23942568/IJAES‑V7I1P102
    [Google Scholar]
  53. Alzaben F. Fat’hi S. Elbehiry A. Alsugair M. Marzouk E. Abalkhail A. Almuzaini A.M. Rawway M. Ibrahem M. Sindi W. Alshehri T. Hamada M. Laboratory diagnostic methods and antibiotic resistance patterns of Staphylococcus aureus and Escherichia coli strains: An evolving human health challenge. Diagnostics 2022 12 11 2645 10.3390/diagnostics12112645 36359489
    [Google Scholar]
  54. Takahashi D. Shukla S.K. Prakash O. Zhang G. Structural determinants of host defense peptides for antimicrobial activity and target cell selectivity. Biochimie 2010 92 9 1236 1241 10.1016/j.biochi.2010.02.023 20188791
    [Google Scholar]
  55. Jenssen H. Hamill P. Hancock R.E.W. Peptide antimicrobial agents. Clin. Microbiol. Rev. 2006 19 3 491 511 10.1128/CMR.00056‑05 16847082
    [Google Scholar]
  56. Maisetta G. Di Luca M. Esin S. Florio W. Brancatisano F.L. Bottai D. Campa M. Batoni G. Evaluation of the inhibitory effects of human serum components on bactericidal activity of human beta defensin 3. Peptides 2008 29 1 1 6 10.1016/j.peptides.2007.10.013 18045738
    [Google Scholar]
  57. Zhu X. Ma Z. Wang J. Chou S. Shan A. Importance of tryptophan in transforming an amphipathic peptide into a Pseudomonas aeruginosa-targeted antimicrobial peptide. PLoS One 2014 9 12 e114605 10.1371/journal.pone.0114605 25494332
    [Google Scholar]
  58. Chen L. Song L. Li T. Zhu J. Xu J. Zheng Q. Yu R. A new antiproliferative and antioxidant peptide isolated from Arca subcrenata. Mar. Drugs 2013 11 6 1800 1814 10.3390/md11061800 23708186
    [Google Scholar]
  59. Ranathunga S. Rajapakse N. Kim S.K. Purification and characterization of antioxidative peptide derived from muscle of conger eel (Conger myriaster). Eur. Food Res. Technol. 2006 222 3-4 310 315 10.1007/s00217‑005‑0079‑x
    [Google Scholar]
  60. Yang C.S. Landau J.M. Huang M.T. Newmark H.L. Inhibition of carcinogenesis by dietary polyphenolic compounds. Annu. Rev. Nutr. 2001 21 1 381 406 10.1146/annurev.nutr.21.1.381 11375442
    [Google Scholar]
  61. Yao T. Li H. Ren Y. Feng M. Hu Y. Yan H. Peng L. Extraction and recovery of phenolic compounds from aqueous solution by thermo-separating magnetic ionic liquid aqueous two-phase system. Separ. Purif. Tech. 2022 282 120034 10.1016/j.seppur.2021.120034
    [Google Scholar]
  62. Yao T. Song J. Yan H. Chen S. Functionalized aqueous biphasic system coupled with HPLC for highly sensitive detection of quinolones in milk. Lebensm. Wiss. Technol. 2023 173 114398 10.1016/j.lwt.2022.114398
    [Google Scholar]
  63. Yao T. Feng C. Shi X. Song J. Temperature-sensitive homogeneous magnetic fluid based aqueous two-phase system for the purification of polyphenols from crude extract of green tea leaves. Separ. Purif. Tech. 2025 360 1 131001 10.1016/j.seppur.2024.131001
    [Google Scholar]
  64. Núñez M. Borrull F. Fontanals N. Pocurull E. Determination of pharmaceuticals in bivalves using QuEChERS extraction and liquid chromatography-tandem mass spectrometry. Anal. Bioanal. Chem. 2015 407 13 3841 3849 10.1007/s00216‑015‑8617‑2 25778794
    [Google Scholar]
  65. Chen D.W. Su J. Liu X.L. Yan D.M. Lin Y. Jiang W.M. Chen X.H. Amino acid profiles of bivalve mollusks from Beibu Gulf, China. J. Aquat. Food Prod. Technol. 2012 21 4 369 379 10.1080/10498850.2011.604820
    [Google Scholar]
  66. Tabakaeva O.V. Tabakaev A.V. Piekoszewski W. Nutritional composition and total collagen content of two commercially important edible bivalve molluscs from the Sea of Japan coast. J. Food Sci. Technol. 2018 55 12 4877 4886 10.1007/s13197‑018‑3422‑5 30482983
    [Google Scholar]
  67. Lebuhn M. Heilmann B. Hartmann A. Effects of drying/rewetting stress on microbial auxin production and L-tryptophan catabolism in soils. Biol. Fertil. Soils 1994 18 4 302 310 10.1007/BF00570633
    [Google Scholar]
  68. Arkhipchenko I.A. Shaposhnikov A.I. Kravchenko L.V. Tryptophan concentration of animal wastes and organic fertilizers. Appl. Soil Ecol. 2006 34 1 62 64 10.1016/j.apsoil.2005.12.008
    [Google Scholar]
  69. Baten A. Ngangbam A. Waters D. Benkendorff K. Transcriptome of the Australian mollusc Dicathais orbita provides insights into the biosynthesis of indoles and choline esters. Mar. Drugs 2016 14 7 135 10.3390/md14070135 27447649
    [Google Scholar]
  70. Geddo F. Antoniotti S. Gallo M.P. Querio G. Indole-3- propionic acid, a gut microbiota-derived tryptophan metabolite, promotes endothelial dysfunction impairing purinergic-induced nitric oxide release in endothelial cells. Int. J. Mol. Sci. 2024 25 6 3389 10.3390/ijms25063389 38542360
    [Google Scholar]
  71. Tanabe T. Yuan Y. Nakamura S. Itoh N. Takahashi K.G. Osada M. The role in spawning of a putative serotonin receptor isolated from the germ and ciliary cells of the gonoduct in the gonad of the Japanese scallop, Patinopecten yessoensis. Gen. Comp. Endocrinol. 2010 166 3 620 627 10.1016/j.ygcen.2010.01.014 20100484
    [Google Scholar]
  72. Jia Y. Yang B. Dong W. Liu Z. Lv Z. Jia Z. Qiu L. Wang L. Song L. A serotonin receptor (Cg5-HTR-1) mediating immune response in oyster Crassostrea gigas. Dev. Comp. Immunol. 2018 82 83 93 10.1016/j.dci.2017.12.029 29305167
    [Google Scholar]
  73. Pani A.K. Croll R.P. Distribution of catecholamines, indoleamines, and their precursors and metabolites in the scallop, Placopecten magellanicus (Bivalvia, Pectinidae). Cell. Mol. Neurobiol. 1995 15 3 371 386 10.1007/BF02089947 7553736
    [Google Scholar]
  74. Goudou F. Petit P. Moriou C. Gros O. Al-Mourabit A. Orbicularisine: A spiro-indolothiazine isolated from gills of the tropical bivalve Codakia orbicularis. J. Nat. Prod. 2017 80 5 1693 1696 10.1021/acs.jnatprod.7b00149 28421754
    [Google Scholar]
  75. Haider F. Falfushynska H.I. Timm S. Sokolova I.M. Effects of hypoxia and reoxygenation on intermediary metabolite homeostasis of marine bivalves Mytilus edulis and Crassostrea gigas. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 2020 242 110657 10.1016/j.cbpa.2020.110657 31931108
    [Google Scholar]
  76. Hoseini S.M. Pérez-Jiménez A. Costas B. Azeredo R. Gesto M. Physiological roles of tryptophan in teleosts: Current knowledge and perspectives for future studies. Rev. Aquacult. 2019 11 1 3 24 10.1111/raq.12223
    [Google Scholar]
/content/journals/cac/10.2174/0115734110371199250413030326
Loading
/content/journals/cac/10.2174/0115734110371199250413030326
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.


  • Article Type:
    Research Article
Keywords: Marcia hiantina ; UHPLC- MSE ; bioactive compound ; LC-MS ; tryptophan ; HPLC ; Bivalves
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test