Skip to content
2000
image of Machine Learning Methods for Mango Classification Based on the Green Technology of Near-infrared Spectroscopy

Abstract

Introduction

Mango is a kind of popular fruit in consumer market, which is rich in nutrients, fiber, and vitamins. People have different taste preferences for different varieties of mango. Near-infrared (NIR) spectroscopy is a non-destructive, green, and economical technology that serves for rapid detection. Several machine learning methods are applied for deep mining from the detected NIR data. It is beneficial for consumers to give rapid recognition of the cultivar of mangos.

Methods

Partial least squares discrimination analysis (PLS-DA), support vector machine (SVM), back propagation neural network (BPNN), and convolutional neural network (CNN) are taken into consideration for model training. Grid search on parametric scaling is carried out for model optimization based on these methods. A special design of a dual-convolutional neural network (dCNN) is proposed and validated.

Results

For the comparison of different methods, the optimal SVM, PLS-DA, BPNN, and CNN methods observed the discrimination accuracy of 86.49%, 83.68%, 85.61%, and 88.60% for model training, respectively. The proposed dCNN method performs better in the model testing progress than all of the conventional methods, observing the highest accuracy of 89.34%.

Discussion

Results reveal that most of the machine learning methods are effective as the chemometric support to the NIR technology in the application of mango classification. They are prospectively applied to other analytes for data mining in the field.

Conclusion

The proposed dCNN architecture is validated as feasible to improve the model prediction effect, which is expected to help widen the application of the green and economical NIR technology.

Loading

Article metrics loading...

/content/journals/cac/10.2174/0115734110368280250415041920
2025-04-29
2025-10-30
Loading full text...

Full text loading...

References

  1. Patel S.D. Patel N.J. Sakure A.A. Kumar S. Dhruv J.J. Detection of the potential of seed kernel for food industries through biochemical evaluation of diverse mango cultivars. Erwerbs Obstbau 2022 65 14 1 10 10.1007/s10341‑022‑00759‑7
    [Google Scholar]
  2. Dzigbor A. Chimphango A. An integrated strategy targeting drying and cooling unit operations to improve economic viability and reduce environmental impacts in a mango processing plant. Clean Technol. Environ. Policy 2019 21 1 139 153 10.1007/s10098‑018‑1623‑2
    [Google Scholar]
  3. Fernández-Ochoa Á. Cázares-Camacho R. Borrás-Linares I. Domínguez-Avila J.A. Segura-Carretero A. González-Aguilar G.A. Evaluation of metabolic changes in liver and serum of streptozotocin-induced diabetic rats after Mango diet supplementation. J. Funct. Foods 2020 64 103695 10.1016/j.jff.2019.103695
    [Google Scholar]
  4. Akin-Idowu P.E. Adebo U.G. Egbekunle K.O. Olagunju Y.O. Aderonmu O.I. Aduloju A.O. Diversity of mango ( Mangifera indica l.) cultivars based on physicochemical, nutritional, antioxidant, and phytochemical traits in south west nigeria. Int. J. Fruit Sci. 2020 20 sup2 S352 S376 10.1080/15538362.2020.1735601
    [Google Scholar]
  5. Pradhan D.I. Dutta M. Choudhury K. De B. Metabolic diversity and in vitro pancreatic lipase inhibition activity of some varieties of Mangifera indica L. fruits. Int. J. Food Prop. 2017 20 sup3 S3212 S3223 10.1080/10942912.2017.1357041
    [Google Scholar]
  6. Lima D.G.G. Ruiz H.Z. Matos M. Helm C.V. Liz D.M.V. Magalhães W.L.E. Prediction of yerba mate caffeine content using near infrared spectroscopy. Spectrosc. Lett. 2019 52 5 282 287 10.1080/00387010.2019.1622567
    [Google Scholar]
  7. Ozaki Y. Near-infrared spectroscopy--its versatility in analytical chemistry. Anal. Sci. 2012 28 6 545 563 10.2116/analsci.28.545 22729040
    [Google Scholar]
  8. Whittier W.A. Hodge G.R. Lopez J. Saravitz C. Acosta J.J. The use of near infrared spectroscopy to predict foliar nutrient levels of hydroponically grown teak seedlings. J. Near Infr. Spectrosc. 2021 29 5 301 310 10.1177/09670335211025649
    [Google Scholar]
  9. Cai K. Fang Q. Lin Q. Xiao G. Hou Z. Yue H. Chen H. Fast discrimination of female and male pigeon eggs using internet of things in combined with Vis-NIR spectroscopy and chemometrics. Microchem. J. 2024 203 March 110883 10.1016/j.microc.2024.110883
    [Google Scholar]
  10. Johnson J.B. Wang Y. Rapid discrimination of eucalypt species using a handheld near-infrared instrument. Vib. Spectrosc. 2022 123 103458 10.1016/j.vibspec.2022.103458
    [Google Scholar]
  11. Li C. Li L. Wu Y. Lu M. Yang Y. Li L. Apple variety identification using near-infrared spectroscopy. J. Spectrosc. 2018 2018 1 7 10.1155/2018/6935197
    [Google Scholar]
  12. Tripathi M.K. Reddy P.K. Neelakantappa M. Andhare C.V. Shivendra S. Identification of mango variety using near infrared spectroscopy. Indones. J. Electr. Eng. Comput. Sci. 2023 31 3 1776 1783 10.11591/ijeecs.v31.i3.pp1776‑1783
    [Google Scholar]
  13. Mishra P. Woltering E. Semi-supervised robust models for predicting dry matter in mango fruit with near-infrared spectroscopy. Postharvest Biol. Technol. 2023 200 112335 10.1016/j.postharvbio.2023.112335
    [Google Scholar]
  14. Pomerantsev A.L. Rodionova O.Y. Multiclass partial least squares discriminant analysis: Taking the right way—A critical tutorial. J. Chemometr. 2018 32 8 e3030 10.1002/cem.3030
    [Google Scholar]
  15. Yang Q. Zhang H. Xia J. Zhang X. Evaluation of magnetic resonance image segmentation in brain low-grade gliomas using support vector machine and convolutional neural network. Quant. Imaging Med. Surg. 2021 11 1 300 316 10.21037/qims‑20‑783 33392030
    [Google Scholar]
  16. Chen H. Liu Z. Gu J. Ai W. Wen J. Cai K. Quantitative analysis of soil nutrition based on FT-NIR spectroscopy integrated with BP neural deep learning. Anal. Methods 2018 10 41 5004 5013 10.1039/C8AY01076E
    [Google Scholar]
  17. Lin B. Zheng J. Xue C. Fu L. Li Y. Shen Q. Motion-aware correlation filter-based object tracking in satellite videos. IEEE Trans. Geosci. Remote Sens. 2024 62 1 13 10.1109/TGRS.2024.3350988
    [Google Scholar]
  18. Saad A. Azam M.M. Amer B.M.A. Quality analysis prediction and discriminating strawberry maturity with a hand-held Vis–NIR spectrometer. Food Anal. Methods 2022 15 3 689 699 10.1007/s12161‑021‑02166‑2
    [Google Scholar]
  19. Mountzouris K. Perikos I. Hatzilygeroudis I. Corchado J.M. Iglesias C.A. Kim B.G. Speech emotion recognition using convolutional neural networks with attention mechanism. Electronics 2023 12 20 4376 10.3390/electronics12204376
    [Google Scholar]
  20. Ng W. Minasny B. Montazerolghaem M. Padarian J. Ferguson R. Bailey S. McBratney A.B. Convolutional neural network for simultaneous prediction of several soil properties using visible/near-infrared, mid-infrared, and their combined spectra. Geoderma 2019 352 5 251 267 10.1016/j.geoderma.2019.06.016
    [Google Scholar]
  21. Yuan W. Jiang H. Sun M. Zhou Y. Zhang C. Zhou H. Geographical origin identification of chinese tomatoes using long-wave fourier-transform near-infrared spectroscopy combined with deep learning methods. Food Anal. Methods 2023 16 4 664 676 10.1007/s12161‑023‑02444‑1
    [Google Scholar]
  22. Osako Y. Yamane H. Lin S.Y. Chen P.A. Tao R. Cultivar discrimination of litchi fruit images using deep learning. Sci. Hortic. 2020 269 109360 10.1016/j.scienta.2020.109360
    [Google Scholar]
  23. Guo T. Xu F. Ma J. Ge F. Component prediction of antai pills based on one-dimensional convolutional neural network and near-infrared spectroscopy. J. Spectrosc. 2022 2022 1 10 10.1155/2022/6875022
    [Google Scholar]
  24. Dong Z. Wang J. Sun P. Ran W. Li Y. Mango variety classification based on convolutional neural network with attention mechanism and near-infrared spectroscopy. J. Food Meas. Charact. 2024 18 3 2237 2247 10.1007/s11694‑023‑02320‑w
    [Google Scholar]
  25. Chen H. Chen A. Xu L. Xie H. Qiao H. Lin Q. Cai K. A deep learning CNN architecture applied in smart near-infrared analysis of water pollution for agricultural irrigation resources. Agric. Water Manage. 2020 240 April 106303 10.1016/j.agwat.2020.106303
    [Google Scholar]
  26. Cai K. Chen H. Ai W. Miao X. Lin Q. Feng Q. Feedback convolutional network for intelligent data fusion based on near-infrared collaborative IoT technology. IEEE Trans. Industr. Inform. 2022 18 2 1200 1209 10.1109/TII.2021.3076513
    [Google Scholar]
  27. Zhang X. Xu J. Yang J. Chen L. Zhou H. Liu X. Li H. Lin T. Ying Y. Understanding the learning mechanism of convolutional neural networks in spectral analysis. Anal. Chim. Acta 2020 1119 41 51 10.1016/j.aca.2020.03.055 32439053
    [Google Scholar]
  28. Wang F. Alkhalifah T.A. Learnable gabor kernels in convolutional neural networks for seismic interpretation tasks. IEEE Trans. Geosci. Remote Sens. 2024 62 1 9 10.1109/TGRS.2024.3365910
    [Google Scholar]
  29. Anderson N. Walsh K. Subedi P. Mango DMC and spectra “Anderson et al. 2020 Mend. Data 2 1 9 10.17632/46htwnp833.2
    [Google Scholar]
  30. Robert G. Gosselin R. Evaluating the impact of NIR pre-processing methods via multiblock partial least-squares. Anal. Chim. Acta 2022 1189 339255 10.1016/j.aca.2021.339255 34815038
    [Google Scholar]
  31. Dhanoa M.S. López S. Sanderson R. Lister S.J. Barnes R.J. Ellis J.L. France J. Methodology adjusting for least squares regression slope in the application of multiplicative scatter correction to near‐infrared spectra of forage feed samples. J. Chemometr. 2023 37 11 e3511 10.1002/cem.3511
    [Google Scholar]
  32. Chen H. Liu X. Chen A. Cai K. Lin B. Parametric-scaling optimization of pretreatment methods for the determination of trace/quasi-trace elements based on near infrared spectroscopy. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2020 229 117959 10.1016/j.saa.2019.117959 31884401
    [Google Scholar]
  33. Huang H. Wang Y. Zong H. Support vector machine classification over encrypted data. Appl. Intell. 2022 52 6 5938 5948 10.1007/s10489‑021‑02727‑2
    [Google Scholar]
  34. Jain S. Rastogi R. Parametric non-parallel support vector machines for pattern classification. Mach. Learn. 2024 113 4 1567 1594 10.1007/s10994‑022‑06238‑0
    [Google Scholar]
  35. Luo W. Huan S. Fu H. Wen G. Cheng H. Zhou J. Wu H. Shen G. Yu R. Preliminary study on the application of near infrared spectroscopy and pattern recognition methods to classify different types of apple samples. Food Chem. 2011 128 2 555 561 10.1016/j.foodchem.2011.03.065 25212169
    [Google Scholar]
  36. Wang Y. Guo W.G. Yue X. Tensor decomposition to compress convolutional layers in deep learning. IISE Trans. 2021 54 5 1 60 10.1080/24725854.2021.1894514
    [Google Scholar]
  37. Krizhevsky A. Sutskever I. Hinton G.E. ImageNet classification with deep convolutional neural networks. Commun. ACM 2017 60 6 84 90 10.1145/3065386
    [Google Scholar]
  38. Bera S. Shrivastava V.K. Effect of pooling strategy on convolutional neural network for classification of hyperspectral remote sensing images. IET Image Process. 2020 14 3 480 486 10.1049/iet‑ipr.2019.0561
    [Google Scholar]
/content/journals/cac/10.2174/0115734110368280250415041920
Loading
/content/journals/cac/10.2174/0115734110368280250415041920
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test