Skip to content
2000
image of Predictive Analysis of Rosmarinus officinalis L. Quality Marker 
(Q-Marker) Based on Chemical Composition, Activity and Network Pharmacology

Abstract

L. is a long-honored medicinal and edible aromatic plant extensively employed in the food, pharmaceutical, and spice industries. It is rich in various bioactive compounds, including flavonoids, terpenes, phenylpropanoic acids, quinones, and steroids, which exhibit a range of effects such as antimicrobial, anti-inflammatory, antioxidant, antitumor, hypoglycemic, hypolipidemic, hepatoprotective, and nephroprotective properties. To further explore the application potential of , we predicted the quality marker (Q-Marker) based on the measurability of chemical constituents, traditional medicinal properties, and effectiveness. This approach was informed by research on the components, biological activities, and mechanisms of action, followed by network pharmacology analysis. Ultimately, 17 practical components were selected as potential biomarkers, including carnosic acid, carnosol, rosmanol, isorosmanol, epirosmanol, 7-methoxyrosmanol, 7-ethoxyrosmanol, rosmaridiphenol, rosmadial, rosmarinic acid, 1,8-cineole, rosmarinine, royleanone, horminone, homovanillic acid, ferruginol, and cryptotanshinone. Most of these compounds belong to the categories of terpenoids and organic acids. Through enrichment analysis, we identified the targets and pathways of these components in various diseases, such as microbial infection, cancer, apoptosis, oxidative stress, and abnormal glycolipid metabolism. This integrated approach that combines plant components, big data, and pharmacology for marker screening is more rational. The results provide a reference for the development, research, and quality evaluation of rosemary resources.

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Loading

Article metrics loading...

/content/journals/cac/10.2174/0115734110367575250418100500
2025-04-25
2025-09-04
Loading full text...

Full text loading...

/deliver/fulltext/cac/10.2174/0115734110367575250418100500/BMS-CAC-2024-HT57-6408-3.html?itemId=/content/journals/cac/10.2174/0115734110367575250418100500&mimeType=html&fmt=ahah

References

  1. Talib W.H. AlHur M.J. Al Naimat S. Ahmad R.E. Al-Yasari A.H. Al-Dalaeen A. Thiab S. Mahmod A.I. Anticancer effect of spices used in mediterranean diet: Preventive and therapeutic potentials. Front. Nutr. 2022 9 905658 10.3389/fnut.2022.905658 35774546
    [Google Scholar]
  2. Jiang T.A. Health benefits of culinary herbs and spices. J. AOAC Int. 2019 102 2 395 411 10.5740/jaoacint.18‑0418 30651162
    [Google Scholar]
  3. Ribeiro-Santos R. Carvalho-Costa D. Cavaleiro C. Costa H.S. Albuquerque T.G. Castilho M.C. Ramos F. Melo N.R. Sanches-Silva A. A novel insight on an ancient aromatic plant: The rosemary (Rosmarinus officinalis L.). Trends Food Sci. Technol. 2015 45 2 355 368 10.1016/j.tifs.2015.07.015
    [Google Scholar]
  4. European Medicines Agency (EMA): Community herbal monograph on Rosmarinus officinalis L. 2022 Available from: https://www.ema.europa.eu/en/medicines/herbal/rosmarini-aetheroleum
  5. Li S. The Grand Compendium of Materia Medica. Beijing, China Chinese Medical Book Press 1994 522
    [Google Scholar]
  6. Baldim I. Souza C.R.F. Durazzo A. Lucarini M. Santini A. Souto E.B. Oliveira W.P. Spray-dried structured lipid carriers for the loading of Rosmarinus officinalis: New nutraceutical and food preservative. Foods 2020 9 8 1110 10.3390/foods9081110 32823508
    [Google Scholar]
  7. Qiu K. Wang S. Duan F. Sang Z. Wei S. Liu H. Tan H. Rosemary: Unrevealing an old aromatic crop as a new source of promising functional food additive—A review. Compr. Rev. Food Sci. Food Saf. 2024 23 1 e13273 10.1111/1541‑4337.13273 38284599
    [Google Scholar]
  8. Sánchez-Camargo A.P. Herrero M. Rosemary ( Rosmarinus officinalis ) as a functional ingredient: Recent scientific evidence. Curr. Opin. Food Sci. 2017 14 13 19 10.1016/j.cofs.2016.12.003
    [Google Scholar]
  9. Zhang T. Bai G. Han Y. Xu J. Gong S. Li Y. Zhang H. Liu C. The method of quality marker research and quality evaluation of traditional Chinese medicine based on drug properties and effect characteristics. Phytomedicine 2018 44 204 211 10.1016/j.phymed.2018.02.009 29551645
    [Google Scholar]
  10. del Baño M.J. Lorente J. Castillo J. Benavente-García O. del Río J.A. Ortuño A. Quirin K.W. Gerard D. Phenolic diterpenes, flavones, and rosmarinic acid distribution during the development of leaves, flowers, stems, and roots of Rosmarinus officinalis. antioxidant activity. J. Agric. Food Chem. 2003 51 15 4247 4253 10.1021/jf0300745 12848492
    [Google Scholar]
  11. Acunha T. García-Cañas V. Valdés A. Cifuentes A. Simó C. Metabolomics study of early metabolic changes in hepatic HepaRG cells in response to rosemary diterpenes exposure. Anal. Chim. Acta 2018 1037 140 151 10.1016/j.aca.2017.12.006 30292288
    [Google Scholar]
  12. Bellumori M. Innocenti M. Congiu F. Cencetti G. Raio A. Menicucci F. Mulinacci N. Michelozzi M. Within-plant variation in Rosmarinus officinalis L. terpenes and phenols and their antimicrobial activity against the rosemary phytopathogens Alternaria alternata and Pseudomonas viridiflava. Molecules 2021 26 11 3425 10.3390/molecules26113425 34198771
    [Google Scholar]
  13. Corbu V.M. Gheorghe-Barbu I. Marinas I.C. Avramescu S.M. Pecete I. Geanǎ E.I. Chifiriuc M.C. Eco-friendly solution based on Rosmarinus officinalis hydro-alcoholic extract to prevent biodeterioration of cultural heritage objects and buildings. Int. J. Mol. Sci. 2022 23 19 11463 10.3390/ijms231911463 36232763
    [Google Scholar]
  14. Begum A. Sandhya S. Shaffath Ali S. Vinod K.R. Reddy S. Banji D. An in-depth review on the medicinal flora Rosmarinus officinalis (Lamiaceae). Acta Sci. Pol. Technol. Aliment. 2013 12 1 61 73 24584866
    [Google Scholar]
  15. Kontogianni V.G. Tomic G. Nikolic I. Nerantzaki A.A. Sayyad N. Stosic-Grujicic S. Stojanovic I. Gerothanassis I.P. Tzakos A.G. Phytochemical profile of Rosmarinus officinalis and Salvia officinalis extracts and correlation to their antioxidant and anti-proliferative activity. Food Chem. 2013 136 1 120 129 10.1016/j.foodchem.2012.07.091 23017402
    [Google Scholar]
  16. Mena P. Cirlini M. Tassotti M. Herrlinger K. Dall’Asta C. Del Rio D. Phytochemical profiling of flavonoids, phenolic acids, terpenoids, and volatile fraction of a rosemary (Rosmarinus officinalis L.) extract. Molecules 2016 21 11 1576 10.3390/molecules21111576 27869784
    [Google Scholar]
  17. Miljanović A. Dent M. Grbin D. Pedisić S. Zorić Z. Marijanović Z. Jerković I. Bielen A. Sage, rosemary, and bay laurel hydrodistillation by-products as a source of bioactive compounds. Plants 2023 12 13 2394 10.3390/plants12132394 37446955
    [Google Scholar]
  18. Chen S. Zhou X. Liu X. Feng Y. Studies on the chemical constituents of Rosmarinus officinalis L. Fine. Chem. 2009 9 26 882 884
    [Google Scholar]
  19. Borrás-Linares I. Stojanović Z. Quirantes-Piné R. Arráez-Román D. Švarc-Gajić J. Fernández-Gutiérrez A. Segura-Carretero A. Rosmarinus officinalis leaves as a natural source of bioactive compounds. Int. J. Mol. Sci. 2014 15 11 20585 20606 10.3390/ijms151120585 25391044
    [Google Scholar]
  20. Nouska C. Irakli M. Georgiou M. Lytou A.E. Skendi A. Bouloumpasi E. Chatzopoulou P. Biliaderis C.G. Lazaridou A. Physicochemical characteristics, antioxidant properties, aroma profile, and sensory qualities of value-added wheat breads fortified with post-distillation solid wastes of aromatic plants. Foods 2023 12 21 4007 10.3390/foods12214007 37959126
    [Google Scholar]
  21. Christaki S. Bouloumpasi E. Lalidou E. Chatzopoulou P. Irakli M. Bioactive profile of distilled solid by-products of rosemary, greek sage and spearmint as affected by distillation methods. Molecules 2022 27 24 9058 10.3390/molecules27249058 36558189
    [Google Scholar]
  22. Wei Q. Progress in the study of chemical composition and biological function of rosemary. Front. Soci. Sci. Technol. 2022 4 3 10.25236/FSST.2022.040312
    [Google Scholar]
  23. Micić D. Đurović S. Riabov P. Tomić A. Šovljanski O. Filip S. Tosti T. Dojčinović B. Božović R. Jovanović D. Blagojević S. Rosemary essential oils as a promising source of bioactive compounds: Chemical composition, thermal properties, biological activity, and gastronomical perspectives. Foods 2021 10 11 2734 10.3390/foods10112734 34829014
    [Google Scholar]
  24. Abdollahi M. Rezaei M. Farzi G. A novel active bionanocomposite film incorporating rosemary essential oil and nanoclay into chitosan. J. Food Eng. 2012 111 2 343 350 10.1016/j.jfoodeng.2012.02.012
    [Google Scholar]
  25. Bashir O. Amin T. Hussain S.Z. Naik H.R. Goksen G. Wani A.W. Manzoor S. Malik A.R. Wani F.J. Proestos C. Development, characterization and use of rosemary essential oil loaded water-chestnut starch based nanoemulsion coatings for enhancing post-harvest quality of apples var. Golden delicious. Current Research in Food Science 2023 7 100570 10.1016/j.crfs.2023.100570 37701633
    [Google Scholar]
  26. Ben Arfa A. Gouja H. Hannachi H. Isoda H. Neffati M. Najjaa H. Seasonal changes in rosemary species: A chemotaxonomic assessment of two varieties based on essential oil compounds, antioxidant and antibacterial activities. PLoS One 2022 17 8 e0273367 10.1371/journal.pone.0273367 36037220
    [Google Scholar]
  27. He M. Cao W. Zeng G. Chen Z. Zhou Y. Phenolic acids of Rosmarinus officinalis. Chin. Tradit. Herbal Drugs 2021 13 52 3798 3803
    [Google Scholar]
  28. Yuan R. Zhuoma D. Wei Y. Hhuang R. Yu J. Cai Y. Two new abietane diterpenes from Rosmarinus officinalis. Chin. Tradit. Herbal Drugs 2019 20 50 4853 4858
    [Google Scholar]
  29. Santomauro F. Sacco C. Donato R. Bellumori M. Innocenti M. Mulinacci N. The antimicrobial effects of three phenolic extracts from Rosmarinus officinalis L., Vitis vinifera L. and Polygonum cuspidatum L. on food pathogens. Nat. Prod. Res. 2018 32 22 2639 2645 10.1080/14786419.2017.1375920 28914098
    [Google Scholar]
  30. de Oliveira J.R. de Jesus D. Figueira L.W. de Oliveira F.E. Pacheco Soares C. Camargo S.E.A. Jorge A.O.C. de Oliveira L.D. Biological activities of Rosmarinus officinalis L. (rosemary) extract as analyzed in microorganisms and cells. Exp. Biol. Med. (Maywood) 2017 242 6 625 634 10.1177/1535370216688571 28093936
    [Google Scholar]
  31. Adibian F. Ghaderi R.S. Sabouri Z. Davoodi J. Kazemi M. Ghazvini K. Youssefi M. Soleimanpour S. Darroudi M. Green synthesis of selenium nanoparticles using Rosmarinus officinalis and investigated their antimicrobial activity. Biometals 2022 35 1 147 158 10.1007/s10534‑021‑00356‑3 35018556
    [Google Scholar]
  32. Borges R.S. Ortiz B.L.S. Pereira A.C.M. Keita H. Carvalho J.C.T. Rosmarinus officinalis essential oil: A review of its phytochemistry, anti-inflammatory activity, and mechanisms of action involved. J. Ethnopharmacol. 2019 229 29 45 10.1016/j.jep.2018.09.038 30287195
    [Google Scholar]
  33. Pauli A. Schilcher H. In vitro antimicrobial activities of essential oils monographed in the european pharmacopoeia. Handbook of Essential Oils 6th Ed. Boca Raton, FL CRC Press 2009 353 547 10.1201/9781420063165‑c12
    [Google Scholar]
  34. Becer E. Altundağ E.M. Güran M. Seda Vatansever H. Ustürk S. Hanoğlu D.Y. Hüsnü Can Başer K. Composition and antibacterial, anti-inflammatory, antioxidant, and anticancer activities of Rosmarinus officinalis L. essential oil. S. Afr. J. Bot. 2023 160 437 445 10.1016/j.sajb.2023.07.028
    [Google Scholar]
  35. Karadağ A.E. Demirci B. Çaşkurlu A. Demirci F. Okur M.E. Orak D. Sipahi H. Başer K.H.C. In vitro antibacterial, antioxidant, anti-inflammatory and analgesic evaluation of Rosmarinus officinalis L. flower extract fractions. S. Afr. J. Bot. 2019 125 214 220 10.1016/j.sajb.2019.07.039
    [Google Scholar]
  36. Ivanov M. Kostić M. Stojković D. Soković M. Rosmarinic acid–Modes of antimicrobial and antibiofilm activities of a common plant polyphenol. S. Afr. J. Bot. 2022 146 521 527 10.1016/j.sajb.2021.11.050
    [Google Scholar]
  37. Zhang J. Cui X. Zhang M. Bai B. Yang Y. Fan S. The antibacterial mechanism of perilla rosmarinic acid. Biotechnol. Appl. Biochem. 2022 69 4 1757 1764 10.1002/bab.2248 34490944
    [Google Scholar]
  38. Zhang W. Cheng C. Sha Z. Chen C. Yu C. Lv N. Ji P. Wu X. Ma T. Cheng H. Shi L. Rosmarinic acid prevents refractory bacterial pneumonia through regulating Keap1/Nrf2-mediated autophagic pathway and mitochondrial oxidative stress. Free Radic. Biol. Med. 2021 168 247 257 10.1016/j.freeradbiomed.2021.03.038 33812997
    [Google Scholar]
  39. Nakagawa S. Hillebrand G.G. Nunez G. Rosmarinus officinalis L. (Rosemary) extracts containing carnosic acid and carnosol are potent quorum sensing inhibitors of Staphylococcus aureus virulence. Antibiotics (Basel) 2020 9 4 149 10.3390/antibiotics9040149 32244277
    [Google Scholar]
  40. Yilmaz A. Uckaya F. Bayindir N. Guler E.M. Toprak A. Kocyigit A. Esrefoglu M. Topcu G. Comparing healing effect against ulcerative colitis and toxicological effects of Rosmarinus officinalis : A comprehensive in vivo study of an edible plant in rats. J. Food Biochem. 2022 46 11 e14299 10.1111/jfbc.14299 35778816
    [Google Scholar]
  41. Rajizadeh M.A. Bejeshk M.A. Aminizadeh A. Yari A. Rostamabadi F. Bagheri F. Najafipour H. Nematollahi M.H. Amirkhosravi A. Mehrabani M. Mehrabani M. Inhalation of spray-dried extract of Salvia rosmarinus Spenn alleviates lung inflammatory, oxidative, and remodeling changes in asthmatic rats. Pharmacology 2024 109 1 10 21 10.1159/000534392 37918369
    [Google Scholar]
  42. Habtemariam S. Anti-inflammatory therapeutic mechanisms of natural products: Insight from rosemary diterpenes, carnosic acid and carnosol. Biomedicines 2023 11 2 545 10.3390/biomedicines11020545 36831081
    [Google Scholar]
  43. Kim J.Y. Hong H.L. Kim G.M. Leem J. Kwon H.H. Protective effects of carnosic acid on lipopolysaccharide-induced acute kidney injury in mice. Molecules 2021 26 24 7589 10.3390/molecules26247589 34946671
    [Google Scholar]
  44. Li Y. Geng Y. Yu H. Sun M. Zhang L. Zhang R. Hu W. Study on the protective effect of carnosic acid on MPTP-induced dopamine neuron damage. Nat Prod Res Dev 2021 33 07 1172 1177
    [Google Scholar]
  45. Shi W. Xu G. Zhan X. Gao Y. Wang Z. Fu S. Qin N. Hou X. Ai Y. Wang C. He T. Liu H. Chen Y. Liu Y. Wang J. Niu M. Guo Y. Xiao X. Bai Z. Carnosol inhibits inflammasome activation by directly targeting HSP90 to treat inflammasome-mediated diseases. Cell Death Dis. 2020 11 4 252 10.1038/s41419‑020‑2460‑x 32312957
    [Google Scholar]
  46. Wei Y. Chen J. Cai G.E. Lu W. Xu W. Wang R. Lin Y. Yang C. Rosmarinic acid regulates microglial M1/M2 polarization via the PDPK1/Akt/HIF pathway under conditions of neuroinflammation. Inflammation 2021 44 1 129 147 10.1007/s10753‑020‑01314‑w 32940818
    [Google Scholar]
  47. Greiner J.F.W. Müller J. Zeuner M.T. Hauser S. Seidel T. Klenke C. Grunwald L.M. Schomann T. Widera D. Sudhoff H. Kaltschmidt B. Kaltschmidt C. 1,8-Cineol inhibits nuclear translocation of NF-κB p65 and NF-κB-dependent transcriptional activity. Biochim. Biophys. Acta Mol. Cell Res. 2013 1833 12 2866 2878 10.1016/j.bbamcr.2013.07.001 23872422
    [Google Scholar]
  48. Venkataraman B. Almarzooqi S. Raj V. Bhongade B.A. Patil R.B. Subramanian V.S. Attoub S. Rizvi T.A. Adrian T.E. Subramanya S.B. Molecular docking identifies 1,8-cineole (Eucalyptol) as a novel PPARγ agonist that alleviates colon inflammation. Int. J. Mol. Sci. 2023 24 7 6160 10.3390/ijms24076160 37047133
    [Google Scholar]
  49. Juergens U. Anti-inflammatory properties of the monoterpene 1.8-cineole: Current evidence for co-medication in inflammatory airway diseases. Drug Res. (Stuttg.) 2014 64 12 638 646 10.1055/s‑0034‑1372609 24831245
    [Google Scholar]
  50. Rufino A.T. Ribeiro M. Judas F. Salgueiro L. Lopes M.C. Cavaleiro C. Mendes A.F. Anti-inflammatory and chondroprotective activity of (+)-α-pinene: Structural and enantiomeric selectivity. J. Nat. Prod. 2014 77 2 264 269 10.1021/np400828x 24455984
    [Google Scholar]
  51. Kim D.S. Lee H.J. Jeon Y.D. Han Y.H. Kee J.Y. Kim H.J. Shin H.J. Kang J. Lee B.S. Kim S.H. Kim S.J. Park S.H. Choi B.M. Park S.J. Um J.Y. Hong S.H. Alpha-pinene exhibits anti-inflammatory activity through the suppression of MAPKs and the NF-κB pathway in mouse peritoneal macrophages. Am. J. Chin. Med. 2015 43 4 731 742 10.1142/S0192415X15500457 26119957
    [Google Scholar]
  52. Jaglanian A. Termini D. Tsiani E. Rosemary (Rosmarinus officinalis L.) extract inhibits prostate cancer cell proliferation and survival by targeting Akt and mTOR. Biomed. Pharmacother. 2020 131 110717 10.1016/j.biopha.2020.110717 33152908
    [Google Scholar]
  53. Fahimirad S. Ajalloueian F. Ghorbanpour M. Synthesis and therapeutic potential of silver nanomaterials derived from plant extracts. Ecotoxicol. Environ. Saf. 2019 168 260 278 10.1016/j.ecoenv.2018.10.017
    [Google Scholar]
  54. Daghestani M. Al Rashed S.A. Bukhari W. Al-Ojayan B. Ibrahim E.M. Al-Qahtani A.M. Merghani N.M. Ramadan R. Bhat R.S. Bactericidal and cytotoxic properties of green synthesized nanosilver using Rosmarinus officinalis leaves. Green Process. Synthe. 2020 9 1 230 236 10.1515/gps‑2020‑0025
    [Google Scholar]
  55. Bouzas A. Gómez de Cedrón M. Colmenarejo G. Laparra-Llopis J.M. Moreno-Rubio J. Montoya J.J. Reglero G. Casado E. Tabares B. Sereno M. Ramírez de Molina A. Phenolic diterpenes from Rosemary supercritical extract inhibit non-small cell lung cancer lipid metabolism and synergise with therapeutic drugs in the clinic. Front. Oncol. 2022 12 1046369 10.3389/fonc.2022.1046369 36439419
    [Google Scholar]
  56. Zhou X. Wang W. Li Z. Chen L. Wen C. Ruan Q. Xu Z. Liu R. Xu J. Bai Y. Deng J. Rosmarinic acid decreases the malignancy of pancreatic cancer through inhibiting gli1 signaling. Phytomedicine 2022 95 153861 10.1016/j.phymed.2021.153861 34864627
    [Google Scholar]
  57. Lu S. Li Y. Shen Q. Zhang W. Gu X. Ma M. Li Y. Zhang L. Liu X. Zhang X. Carnosol and its analogues attenuate muscle atrophy and fat lipolysis induced by cancer cachexia. J. Cachexia Sarcop. Musc. 2021 12 3 779 795 10.1002/jcsm.12710 33951335
    [Google Scholar]
  58. Hasei S. Yamamotoya T. Nakatsu Y. Ohata Y. Itoga S. Nonaka Y. Matsunaga Y. Sakoda H. Fujishiro M. Kushiyama A. Asano T. Carnosic acid and carnosol activate AMPK, suppress expressions of gluconeogenic and lipogenic genes, and inhibit proliferation of HepG2 cells. Int. J. Mol. Sci. 2021 22 8 4040 10.3390/ijms22084040 33919842
    [Google Scholar]
  59. Tong X. Ma Y. Quan D. Zhang L. Yan M. Fan X. Rosemary extracts upregulate Nrf2, Sestrin2, and MRP2 protein level in human hepatoma HepG2 cells. Evid. Based Complement. Alternat. Med. 2017 2017 1 7359806 10.1155/2017/7359806 28286534
    [Google Scholar]
  60. Shamshoum H. Vlavcheski F. MacPherson R.E.K. Tsiani E. Rosemary extract activates AMPK, Inhibits mTOR and attenuates the high glucose and high insulin-induced muscle cell insulin resistance. Appl. Physiol. Nutr. Me. 2021 20 1 9 10.1139/apnm‑2020‑0592
    [Google Scholar]
  61. Xie Z. Zhong L. Wu Y. Wan X. Yang H. Xu X. Li P. Carnosic acid improves diabetic nephropathy by activating Nrf2/ARE and inhibition of NF-κB pathway. Phytomedicine 2018 47 161 173 10.1016/j.phymed.2018.04.031 30166101
    [Google Scholar]
  62. Nyandwi J.B. Ko Y.S. Jin H. Yun S.P. Park S.W. Kim H.J. Rosmarinic acid exhibits a lipid-lowering effect by modulating the expression of reverse cholesterol transporters and lipid metabolism in high-fat diet-fed mice. Biomolecules 2021 11 10 1470 10.3390/biom11101470 34680102
    [Google Scholar]
  63. Alrashdi J. Albasher G. Alanazi M.M. Al-Qahtani W.S. Alanezi A.A. Alasmari F. Effects of Rosmarinus officinalis L. extract on neurobehavioral and neurobiological changes in male rats with pentylenetetrazol-induced epilepsy. Toxics 2023 11 10 826 10.3390/toxics11100826 37888677
    [Google Scholar]
  64. Yi-Bin W. Xiang L. Bing Y. Qi Z. Fei-Tong J. Minghong W. Xiangxiang Z. Le K. Yan L. Ping S. Yufei G. Ye X. Chun-Yan W. Inhibition of the CEBPβ-NFκB interaction by nanocarrier-packaged Carnosic acid ameliorates glia-mediated neuroinflammation and improves cognitive function in an Alzheimer’s disease model. Cell Death Dis. 2022 13 4 318 10.1038/s41419‑022‑04765‑1
    [Google Scholar]
  65. Mirza F.J. Zahid S. Ursolic acid and rosmarinic acid ameliorate alterations in hippocampal neurogenesis and social memory induced by amyloid beta in mouse model of Alzheimer’s disease. Front. Pharmacol. 2022 13 1058358 10.3389/fphar.2022.1058358 36618920
    [Google Scholar]
  66. Chen Y. Qin Q. Zhao W. Luo D. Huang Y. Liu G. Kuang Y. Cao Y. Chen Y. Carnosol reduced pathogenic protein aggregation and cognitive impairment in neurodegenerative diseases models via improving proteostasis and ameliorating mitochondrial disorders. J. Agric. Food Chem. 2022 70 34 10490 10505 10.1021/acs.jafc.2c02665 35973126
    [Google Scholar]
  67. Ielciu I. Sevastre B. Olah N.K. Turdean A. Chișe E. Marica R. Oniga I. Uifălean A. Sevastre-Berghian A.C. Niculae M. Benedec D. Hanganu D. Evaluation of hepatoprotective activity and oxidative stress reduction of Rosmarinus officinalis L. shoots tincture in rats with experimentally induced hepatotoxicity. Molecules 2021 26 6 1737 10.3390/molecules26061737 33804618
    [Google Scholar]
  68. Pascual-Mathey L.I. Briones-Concha J.A. Jiménez M. Beristain C.I. Pascual-Pineda L.A. Elaboration of essential oil nanoemulsions of Rosemary (Rosmarinus officinalis L.) and its effect on liver injury prevention. Food Bioprod. Process. 2022 134 46 55 10.1016/j.fbp.2022.04.006
    [Google Scholar]
  69. El-Naggar S.A. Abdel-Farid I.B. Germoush M.O. Elgebaly H.A. Alm-Eldeen A.A. Efficacy of Rosmarinus officinalis leaves extract against cyclophosphamide-induced hepatotoxicity. Pharm. Biol. 2016 54 10 2007 2016 10.3109/13880209.2015.1137954 26828825
    [Google Scholar]
  70. Yao Y. Li R. Liu D. Long L. He N. Rosmarinic acid alleviates acetaminophen-induced hepatotoxicity by targeting Nrf2 and NEK7-NLRP3 signaling pathway. Ecotoxicol. Environ. Saf. 2022 241 113773 10.1016/j.ecoenv.2022.113773 35753269
    [Google Scholar]
  71. Li Z. Feng H. Wang Y. Shen B. Tian Y. Wu L. Zhang Q. Jin M. Liu G. Rosmarinic acid protects mice from lipopolysaccharide/d-galactosamine-induced acute liver injury by inhibiting MAPKs/NF-κB and activating Nrf2/HO-1 signaling pathways. Int. Immunopharmacol. 2019 67 465 472 10.1016/j.intimp.2018.12.052 30597292
    [Google Scholar]
  72. El-Demerdash F.M. El-Sayed R.A. Abdel-Daim M.M. Rosmarinus officinalis essential oil modulates renal toxicity and oxidative stress induced by potassium dichromate in rats. J. Trace Elem. Med. Biol. 2021 67 126791 10.1016/j.jtemb.2021.126791 34022565
    [Google Scholar]
  73. Saker H. Boussekine S. Gasmi S. Benkhedir A. Benali Y. Bensouici C. Protective effect of Rosmarinus officinalis extract on the nephrotoxicity caused by nickel chloride in wistar rats. J. Microbiol. Biotechnol. Food Sci. 2023 12 6 1 5 10.55251/jmbfs.9764
    [Google Scholar]
  74. Das S. Dewanjee S. Dua T.K. Joardar S. Chakraborty P. Bhowmick S. Saha A. Bhattacharjee S. De Feo V. Carnosic acid attenuates cadmium induced nephrotoxicity by inhibiting oxidative stress, promoting Nrf2/HO-1 signalling and impairing TGF-β1/Smad/Collagen IV signalling. Molecules 2019 24 22 4176 10.3390/molecules24224176 31752142
    [Google Scholar]
  75. Li J. Duan Q. Wei X. Wu J. Yang Q. Kidney‐targeted nanoparticles loaded with the natural antioxidant rosmarinic acid for acute kidney injury treatment. Small 2022 18 48 2204388 10.1002/smll.202204388 36253133
    [Google Scholar]
  76. Jung S.W. Park G.H. Kim E. Yoo K.M. Kim H.W. Lee J.S. Chang M.Y. Shin K.O. Park K. Choi E.H. Rosmarinic acid, as an NHE1 activator, decreases skin surface ph and improves the skin barrier function. Int. J. Mol. Sci. 2022 23 7 3910 10.3390/ijms23073910 35409270
    [Google Scholar]
  77. Ho T.Y. Lo H.Y. Liu I.C. Huang S.L. Hsiang C.Y. Rosmarinic acid ameliorated psoriatic skin inflammation in mice through the novel inhibition of the interleukin-17A/interleukin-17A receptor interaction. Food Funct. 2022 13 12 6802 6812 10.1039/D2FO00417H 35674182
    [Google Scholar]
  78. Yeo I.J. Park J.H. Jang J.S. Lee D.Y. Park J.E. Choi Y.E. Joo J.H. Song J.K. Jeon H.O. Hong J.T. Inhibitory effect of Carnosol on UVB-induced inflammation via inhibition of STAT3. Arch. Pharm. Res. 2019 42 3 274 283 10.1007/s12272‑018‑1088‑1 30430364
    [Google Scholar]
  79. Kallimanis P. Chinou I. Panagiotopoulou A. Soshilov A.A. He G. Denison M.S. Magiatis P. Rosmarinus officinalis L. leaf extracts and their metabolites inhibit the aryl hydrocarbon receptor (AhR) activation in vitro and in human keratinocytes: Potential impact on inflammatory skin diseases and skin cancer. Molecules 2022 27 8 2499 10.3390/molecules27082499 35458697
    [Google Scholar]
  80. Zhou T. Li S. Zhu J. Zeng G. Lv Z. Zhang M. Yao K. Han H. Rosmarinic acid-grafted gelatin nanogels for efficient diquafosol delivery in dry eye disease therapy. J. Control. Release 2024 373 306 318 10.1016/j.jconrel.2024.07.026 39004103
    [Google Scholar]
  81. Li T. Liao J. HPLC fingerprint analysis of Rosmarinus officinalis. Yaowu Fenxi Zazhi 2014 34 12 2181 2184
    [Google Scholar]
  82. Li P. Liu A. Li Y. Yuan B. Xiao W. Liu Z. Zhang S. Lin H. Development and validation of an analytical method based on HPLC-ELSD for the simultaneous determination of rosmarinic acid, carnosol, carnosic acid, oleanolic acid and ursolic acid in rosemary. Molecules 2019 24 2 323 10.3390/molecules24020323 30658397
    [Google Scholar]
  83. Sharma Y. Velamuri R. Fagan J. Schaefer J. Full-spectrum analysis of bioactive compounds in rosemary (Rosmarinus officinalis L.) as influenced by different extraction methods. Molecules 2020 25 20 4599 10.3390/molecules25204599 33050282
    [Google Scholar]
  84. Outaleb T. Hazzit M. Ferhat Z. Baaliouamer A. Yekkour A. Zitouni A. Sabaou N. Composition, antioxidant and antimicrobial activities of algerian Rosmarinus officinalis L. extracts. J. Essent. Oil-Bear. Plants 2015 18 3 654 665S 10.1080/0972060X.2014.960276
    [Google Scholar]
  85. Elshorbagy M.I. Elsbaey M. Baraka H.N. Lahloub M.F. Chemo-typing of three egyptian rosemary oil for their chemical composition and anti-oxidant activity. J. Pharm. Res. Int. 2020 32 33 9 14 10.9734/jpri/2020/v32i330409
    [Google Scholar]
  86. Hudaib M.M. Abu Hajal A.F. Sakkal M.M. Chemical composition of the volatile oil from aerial parts of Rosmarinus officinalis L. growing in UAE. J. Essent. Oil-Bear. Plants 2022 25 2 282 289 10.1080/0972060X.2022.2072177
    [Google Scholar]
  87. Wu J. Cao K. Qian J. Zhang J. Wu D. Study on the differences of chemical components of rosemary from different orgins. China Food. Addit. 2022 33 03 1 8
    [Google Scholar]
  88. Wang L. Wang D. Li S. Deng W. Biological function of rosemary and its application in animal production. Chin Feed 2022 21 8 13
    [Google Scholar]
  89. Cao W. Ji S. Liu F. Zeng G. Zhou Y. Stability of carnosic acid in simulated body fluid. Nat. Prod. Res. Dev. 2017 29 03 444 448
    [Google Scholar]
  90. Mo C.J. Xu Y.Q. Feng Y. Chen A.J. Yang C.W. Ni H. Simultaneous preparation of water- and lipid-soluble antioxidant and antibacterial activity of purified carnosic acid from Rosmarinus offoccnalis L. Ind. Crops Prod. 2022 187 115448 10.1016/j.indcrop.2022.115448
    [Google Scholar]
  91. Wang H. Wei W. Liu J. Zhang S. Zhao Y. Yu Z. The characterization of traditional Chinese medicine natures and flavors using network pharmacology integrated strategy. J. Tradit. Complement. Med. 2024 14 3 343 349 10.1016/j.jtcme.2023.12.004 38707921
    [Google Scholar]
  92. Sadeh D. Nitzan N. Chaimovitsh D. Shachter A. Ghanim M. Dudai N. Interactive effects of genotype, seasonality and extraction method on chemical compositions and yield of essential oil from rosemary (Rosmarinus officinalis L.). Ind. Crops Prod. 2019 138 111419 10.1016/j.indcrop.2019.05.068
    [Google Scholar]
  93. El Mrabet A. El Orche A. Diane A. Johnson J.B. Ait Haj Said A. Bouatia M. Sbai-Elotmani I. Rapid analysis of eucalyptus oil adulteration in Moroccan rosemary essential oil via GC-FID and mid-infrared spectroscopy. Vib. Spectrosc. 2024 132 103674 10.1016/j.vibspec.2024.103674
    [Google Scholar]
  94. Wei Q. Wang Y. Guo J. Wang B. Zhang C. Analysis of aroma compounds in large leaf and small leaf Rosmarinus officinalis by gas chromatography-mass spectrometry. Shipin Anquan Zhiliang Jiance Xuebao 2022 13 22 7323 7330
    [Google Scholar]
  95. Xiong J. Xie G. Dai X. Xu M. Mu Z. Tian Y. Xiong Y. GC-MS analysis of rosemary volatile oils before and after drying. Food Eng. 2020 04 47 51
    [Google Scholar]
  96. Mohammed H.A. Al-Omar M.S. Mohammed S.A.A. Aly M.S.A. Alsuqub A.N.A. Khan R.A. Drying Induced Impact on Composition and Oil Quality of Rosemary Herb, Rosmarinus Officinalis Linn. Molecules 2020 25 12 2830 10.3390/molecules25122830 32575415
    [Google Scholar]
  97. Khademi Doozakhdarreh S.F. Khorshidi J. Morshedloo M.R. Essential oil content and components, antioxidant activity and total phenol content of rosemary (Rosmarinus officinalis L.) as affected by harvesting time and drying method. Bull. Natl. Res. Cent. 2022 46 1 199 10.1186/s42269‑022‑00902‑0
    [Google Scholar]
  98. Carocho M. Morales P. Ferreira I.C.F.R. Antioxidants: Reviewing the chemistry, food applications, legislation and role as preservatives. Trends Food Sci. Technol. 2018 71 107 120 10.1016/j.tifs.2017.11.008
    [Google Scholar]
  99. Andrade J.M. Faustino C. Garcia C. Ladeiras D. Reis C.P. Rijo P. Rosmarinus officinalis L.: An update review of its phytochemistry and biological activity. Future Sci. OA 2018 4 4 FSO283 10.4155/fsoa‑2017‑0124 29682318
    [Google Scholar]
  100. Fernández-Ochoa Á. Borrás-Linares I. Pérez-Sánchez A. Barrajón-Catalán E. González-Álvarez I. Arráez-Román D. Micol V. Segura-Carretero A. Phenolic compounds in rosemary as potential source of bioactive compounds against colorectal cancer: In situ absorption and metabolism study. J. Funct. Foods 2017 33 202 210 10.1016/j.jff.2017.03.046
    [Google Scholar]
  101. Sueishi Y. Sue M. Masamoto H. Seasonal variations of oxygen radical scavenging ability in rosemary leaf extract. Food Chem. 2018 245 270 274 10.1016/j.foodchem.2017.10.085 29287370
    [Google Scholar]
  102. Mahmoudi S. Dehkordi M.M. Asgarshamsi M.H. Density functional theory studies of the antioxidants—a review. J. Mol. Model. 2021 27 9 271 10.1007/s00894‑021‑04891‑1 34463834
    [Google Scholar]
  103. Fang S. Dong L. Liu L. Guo J. Zhao L. Zhang J. Bu D. Liu X. Huo P. Cao W. Dong Q. Wu J. Zeng X. Wu Y. Zhao Y. HERB: A high-throughput experiment- and reference-guided database of traditional Chinese medicine. Nucleic Acids Res. 2021 49 D1 D1197 D1206 10.1093/nar/gkaa1063 33264402
    [Google Scholar]
  104. Liu Z. Guo F. Wang Y. Li C. Zhang X. Li H. Diao L. Gu J. Wang W. Li D. He F. BATMAN-TCM: A bioinformatics analysis tool for molecular mechanism of traditional chinese medicine. Sci. Rep. 2016 6 1 21146 10.1038/srep21146 26879404
    [Google Scholar]
  105. Ru J. Li P. Wang J. Zhou W. Li B. Huang C. Li P. Guo Z. Tao W. Yang Y. Xu X. Li Y. Wang Y. Yang L. TCMSP: A database of systems pharmacology for drug discovery from herbal medicines. J. Cheminform. 2014 6 1 13 10.1186/1758‑2946‑6‑13 24735618
    [Google Scholar]
  106. Daina A. Michielin O. Zoete V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep. 2017 7 1 42717 10.1038/srep42717 28256516
    [Google Scholar]
  107. Temerdashev Z. Milevskaya V. Shpigun O. Prasad S. Vinitskaya E. Ryaboko L. Stability of some biologically active substances in extracts and preparations based on st. john’s wort (Hypericum perforatum l.) and sage (Salvia officinalis l.). Ind. Crops Prod. 2020 156 112879 10.1016/j.indcrop.2020.112879
    [Google Scholar]
  108. Mira-Sánchez M.D. Castillo-Sánchez J. Morillas-Ruiz J.M. Comparative study of rosemary extracts and several synthetic and natural food antioxidants. Relevance of carnosic acid/carnosol ratio. Food Chem. 2020 309 125688 10.1016/j.foodchem.2019.125688 31732249
    [Google Scholar]
  109. Daina A. Michielin O. Zoete V. SwissTargetPrediction: Updated data and new features for efficient prediction of protein targets of small molecules. Nucleic Acids Res. 2019 47 W1 W357 W364 10.1093/nar/gkz382 31106366
    [Google Scholar]
/content/journals/cac/10.2174/0115734110367575250418100500
Loading
/content/journals/cac/10.2174/0115734110367575250418100500
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test