Skip to content
2000
image of RSM-rCCD Optimizing for Paclitaxel Extraction from Taxus chinensis by Natural Deep Eutectic Solvents and Studying Antioxidant Activity

Abstract

Introduction

Paclitaxel from contains medicinal properties to treat various cancer diseases. Thus, extracting paclitaxel from had aroused a wide of research interests.

Methods

Ultrasonic-assisted extraction (UAE) has high extraction efficiency, and natural deep eutectic solvents (NADESs) have the advantages of being green, natural, and non-toxic. As a result, the UAE-NADES were introduced to extract paclitaxel from . The ideal NADES composed of choline chloride and malic acid was achieved at a molar ratio of 1:1, with the optimal extraction parameters identified through single-factor experiments. Response Surface Methodology of rotatable Central Composite Design (RSM-rCCD) was applied to further optimize the extraction conditions.

Results

The ultimate optimum circumstances of ultrasonic power is 240 W, extraction time is 49 min, solid/liquid ratio is 1:18, extraction temperature is 38°C, and the maximum extraction yield reached 5.94 mg/g. Their IC values of paclitaxel extract for free radicals of DPPH (2,2-diphenyl-1- picrylhydrazyl), ABTS (2,2’-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)) and OH (Hydroxyl) were 20.53, 40.79 and 270.98 mg/L, respectively.

Discussion

Compared with traditional solvents, NADES has higher extraction efficiency and yield for paclitaxel from .

Conclusion

This article demonstrates the increased extraction yield of paclitaxel, which has strong antioxidant activity.

Loading

Article metrics loading...

/content/journals/cac/10.2174/0115734110367450250323104325
2025-04-09
2025-09-05
Loading full text...

Full text loading...

References

  1. Meng A. Li J. Pu S. Chemical constituents of leaves of Taxus chinensis. Chem. Nat. Compd. 2018 54 5 841 845 10.1007/s10600‑018‑2495‑8
    [Google Scholar]
  2. Thakur A. Kanwal K.S. Assessing the global distribution and conservation status of the Taxus genus: An overview. Trees For. People 2024 15 100501 10.1016/j.tfp.2024.100501
    [Google Scholar]
  3. Liu W.C. Gong T. Zhu P. Advances in exploring alternative Taxol sources. RSC Advances 2016 6 54 48800 48809 10.1039/C6RA06640B
    [Google Scholar]
  4. Wani M.C. Taylor H.L. Wall M.E. Coggon P. McPhail A.T. Plant antitumor agents. VI. Isolation and structure of taxol, a novel antileukemic and antitumor agent from Taxus brevifolia. J. Am. Chem. Soc. 1971 93 9 2325 2327 10.1021/ja00738a045 5553076
    [Google Scholar]
  5. Wall M.E. Camptothecin E. taxol. Chronicles of Drug Discovery. Washington, DC American Chemical Society 1993 327 348
    [Google Scholar]
  6. Chen Q. Xu S. Liu S. Wang Y. Liu G. Emerging nanomedicines of paclitaxel for cancer treatment. J. Control. Release 2022 342 280 294 10.1016/j.jconrel.2022.01.010 35016919
    [Google Scholar]
  7. Płotka-Wasylka J. de la Guardia M. Andruch V. Vilková M. Deep eutectic solvents vs ionic liquids: Similarities and differences. Microchem. J. 2020 159 105539 10.1016/j.microc.2020.105539
    [Google Scholar]
  8. Li S. Fu Y. Zu Y. Sun R. Wang Y. Zhang L. Luo H. Gu C. Efferth T. Determination of paclitaxel and other six taxoids in Taxus species by high-performance liquid chromatography–tandem mass spectrometry. J. Pharm. Biomed. Anal. 2009 49 1 81 89 10.1016/j.jpba.2008.10.006 19036549
    [Google Scholar]
  9. Yin Y. Yu R. Yang W. Yuan F. Yan C. Song L. Structural characterization and anti-tumor activity of a novel heteropolysaccharide isolated from Taxus yunnanensis. Carbohydr. Polym. 2010 82 3 543 548 10.1016/j.carbpol.2010.04.038
    [Google Scholar]
  10. Ruan X. Yan L.Y. Li X.X. Liu B. Zhang H. Wang Q. Optimization of process parameters of extraction of amentoflavone, quercetin and ginkgetin from Taxus chinensis using supercritical CO2 plus co-solvent. Molecules 2014 19 11 17682 17696 10.3390/molecules191117682 25365294
    [Google Scholar]
  11. Thirugnanasambandham K. Sivakumar V. Maran J.P. Microwave-assisted extraction of polysaccharides from mulberry leaves. Int. J. Biol. Macromol. 2015 72 1 5 10.1016/j.ijbiomac.2014.07.031 25064558
    [Google Scholar]
  12. Rodriguez-Jasso R.M. Mussatto S.I. Pastrana L. Aguilar C.N. Teixeira J.A. Microwave-assisted extraction of sulfated polysaccharides (fucoidan) from brown seaweed. Carbohydr. Polym. 2011 86 3 1137 1144 10.1016/j.carbpol.2011.06.006
    [Google Scholar]
  13. Chen R. Li Y. Dong H. Liu Z. Li S. Yang S. Li X. Optimization of ultrasonic extraction process of polysaccharides from Ornithogalum caudatum Ait and evaluation of its biological activities. Ultrason. Sonochem. 2012 19 6 1160 1168 10.1016/j.ultsonch.2012.03.008 22525319
    [Google Scholar]
  14. Wang C.C. Sheu S.R. Yau H.T. Jang M.J. Effect of coffee reduction on constituent concentration in an energy-efficient process of ultrasonic extraction. Therm. Sci. 2015 19 4 1373 1377 10.2298/TSCI1504373W
    [Google Scholar]
  15. Grigorakis S. Halahlah A. Makris D.P. Hydroglycerolic solvent and ultrasonication pretreatment: A green blend for high-efficiency extraction of Salvia fruticosa polyphenols. Sustainability 2020 12 12 4840 10.3390/su12124840
    [Google Scholar]
  16. Zhang R. Grimi N. Marchal L. Lebovka N. Vorobiev E. Effect of ultrasonication, high pressure homogenization and their combination on efficiency of extraction of bio-molecules from microalgae Parachlorella kessleri. Algal Res. 2019 40 101524 10.1016/j.algal.2019.101524
    [Google Scholar]
  17. Zu Y. Wang Y. Fu Y. Li S. Sun R. Liu W. Luo H. Enzyme-assisted extraction of paclitaxel and related taxanes from needles of Taxus chinensis. Separ. Purif. Tech. 2009 68 2 238 243 10.1016/j.seppur.2009.05.009
    [Google Scholar]
  18. Kim J.H. Prepurification of paclitaxel by micelle and precipitation. Process Biochem. 2004 39 11 1567 1571 10.1016/j.procbio.2003.06.001
    [Google Scholar]
  19. Benvenutti L. Zielinski A.A.F. Ferreira S.R.S. Which is the best food emerging solvent: IL, DES or NADES? Trends Food Sci. Technol. 2019 90 133 146 10.1016/j.tifs.2019.06.003
    [Google Scholar]
  20. Xu K. Wang Y. Huang Y. Li N. Wen Q. A green deep eutectic solvent-based aqueous two-phase system for protein extracting. Anal. Chim. Acta 2015 864 9 20 10.1016/j.aca.2015.01.026 25732422
    [Google Scholar]
  21. Shen H.L. Guo C.S. Gao X.Y. Study on extraction of flavonoids from mistletoe leaves with low eutectic solvent. Modern Chemical Industry 2021 41 160 164
    [Google Scholar]
  22. Fu X. Wang D. Belwal T. Xu Y. Li L. Luo Z. Sonication-synergistic natural deep eutectic solvent as a green and efficient approach for extraction of phenolic compounds from peels of Carya cathayensis Sarg. Food Chem. 2021 355 129577 10.1016/j.foodchem.2021.129577 33799236
    [Google Scholar]
  23. Alrugaibah M. Yagiz Y. Gu L. Use natural deep eutectic solvents as efficient green reagents to extract procyanidins and anthocyanins from cranberry pomace and predictive modeling by RSM and artificial neural networking. Separ. Purif. Tech. 2021 255 117720 10.1016/j.seppur.2020.117720
    [Google Scholar]
  24. Conde-Hernández L.A. Botello-Ojeda A.G. Alonso-Calderón A.A. Osorio-Lama M.A. Bernabé-Loranca M.B. Chavez-Bravo E. Optimization of extraction of essential oils using response surface methodology: A review. J. Essent. Oil-Bear. Plants 2021 24 5 937 982 10.1080/0972060X.2021.1976286
    [Google Scholar]
  25. Wang D. Chen S. Li Y. Han Z. Dai Y. Huang Y. Direct extraction of Eucommia ulmoides rubber by high-power ultrasound and optimization with response surface methodology. Green Chem. Lett. Rev. 2022 15 3 749 756 10.1080/17518253.2022.2132837
    [Google Scholar]
  26. Zhang Y. Zhao Z. Li W. Tang Y. Meng H. Wang S. Purification of two taxanes from Taxus cuspidata by preparative high-performance liquid chromatography. Separations 2022 9 12 446 10.3390/separations9120446
    [Google Scholar]
  27. Quan J. Nie G. Xue H. Luo L. Zhang R. Li H. Macroscopic chiral recognition by Calix[4]arene‐based host–guest interactions. Chemistry 2018 24 58 15502 15506 10.1002/chem.201803564 30073691
    [Google Scholar]
  28. Quan J. Yan H. Periyasami G. Li H. A visible‐light regulated ATP transport in retinal‐modified pillar[6]arene layer‐by‐layer self‐assembled sub‐nanochannel. Chemistry 2024 30 37 e202401045 10.1002/chem.202401045 38693094
    [Google Scholar]
  29. Li W. Li G. Xu W. Li Z. Qu H. Ma C. Zhang H. Cai M. Bahojb Noruzi E. Quan J. Periyasami G. Li H. Visible light‐gating responsive nanochannel for controlled release of the fungicide. Small 2024 20 36 2401503 10.1002/smll.202401503 38705860
    [Google Scholar]
  30. Douard L. Belgacem M.N. Bras J. Extraction of carboxylated nanocellulose by combining mechanochemistry and NADES. ACS Sustain. Chem.& Eng. 2022 10 39 13017 13025 10.1021/acssuschemeng.2c02783
    [Google Scholar]
  31. Fu J.J. Sun C. Xu X.B. Zhou D.Y. Song L. Zhu B.W. Improving the functional properties of bovine serum albumin-glucose conjugates in natural deep eutectic solvents. Food Chem. 2020 328 127122 10.1016/j.foodchem.2020.127122 32480260
    [Google Scholar]
  32. Liu W. Zhang K. Chen J. Yu J. Ascorbic acid and choline chloride: A new natural deep eutectic solvent for extracting tert-butylhydroquinone antioxidant. J. Mol. Liq. 2018 260 173 179 10.1016/j.molliq.2018.03.092
    [Google Scholar]
  33. Dai Y. Witkamp G.J. Verpoorte R. Choi Y.H. Natural deep eutectic solvents as a new extraction media for phenolic metabolites in Carthamus tinctorius L. Anal. Chem. 2013 85 13 6272 6278 10.1021/ac400432p 23710664
    [Google Scholar]
  34. Duan L. Dou L.L. Guo L. Li P. Liu E-H. Comprehensive evaluation of deep eutectic solvents in extraction of bioactive natural products. ACS Sustain. Chem.& Eng. 2016 4 4 2405 2411 10.1021/acssuschemeng.6b00091
    [Google Scholar]
  35. Mansur A.R. Song N.E. Jang H.W. Lim T.G. Yoo M. Nam T.G. Optimizing the ultrasound-assisted deep eutectic solvent extraction of flavonoids in common buckwheat sprouts. Food Chem. 2019 293 438 445 10.1016/j.foodchem.2019.05.003 31151632
    [Google Scholar]
  36. Rashid R. Mohd Wani S. Manzoor S. Masoodi F.A. Masarat Dar M. Green extraction of bioactive compounds from apple pomace by ultrasound assisted natural deep eutectic solvent extraction: Optimisation, comparison and bioactivity. Food Chem. 2023 398 133871 10.1016/j.foodchem.2022.133871 35964562
    [Google Scholar]
  37. Mushtaq M. Sultana B. Bhatti H.N. Asghar M. RSM based optimized enzyme-assisted extraction of antioxidant phenolics from underutilized watermelon (Citrullus lanatus Thunb.) rind. J. Food Sci. Technol. 2015 52 8 5048 5056 10.1007/s13197‑014‑1562‑9 26243925
    [Google Scholar]
  38. Bezerra M.A. Santelli R.E. Oliveira E.P. Villar L.S. Escaleira L.A. Response surface methodology (RSM) as a tool for optimization in analytical chemistry. Talanta 2008 76 5 965 977 10.1016/j.talanta.2008.05.019 18761143
    [Google Scholar]
  39. Zhang L. Jiang Y. Pang X. Hua P. Gao X. Li Q. Li Z. Simultaneous optimization of ultrasound-assisted extraction for flavonoids and antioxidant activity of angelica keiskei using response surface methodology (RSM). Molecules 2019 24 19 3461 10.3390/molecules24193461 31554203
    [Google Scholar]
  40. Marano S. Minnelli C. Ripani L. Marcaccio M. Laudadio E. Mobbili G. Amici A. Armeni T. Stipa P. Insights into the antioxidant mechanism of newly synthesized benzoxazinic nitrones: In vitro and in silico studies with dpph model radical. Antioxidants 2021 10 8 1224 10.3390/antiox10081224 34439472
    [Google Scholar]
  41. Ionita P. The chemistry of DPPH· free radical and congeners. Int. J. Mol. Sci. 2021 22 4 1545 10.3390/ijms22041545 33546504
    [Google Scholar]
  42. Gulcin İ. Alwasel S.H. DPPH radical scavenging assay. Processes (Basel) 2023 11 8 2248 10.3390/pr11082248
    [Google Scholar]
  43. Wei Q. Zhong X. Haruna M.H. Liu S. Zhou F. Chen M. Evaluation of different agricultural wastes for the production of polysaccharides from Oudemansiella raphanipes and its antioxidant properties. Food Sci. Nutr. 2022 10 10 3444 3452 10.1002/fsn3.2945 36249961
    [Google Scholar]
  44. Cai H. Liu X. Zou J. Xiao J. Yuan B. Li F. Cheng Q. Multi-wavelength spectrophotometric determination of hydrogen peroxide in water with peroxidase-catalyzed oxidation of ABTS. Chemosphere 2018 193 833 839 10.1016/j.chemosphere.2017.11.091 29874756
    [Google Scholar]
  45. Wang M. Wang D. Qiu S. Xiao J. Cai H. Zou J. Multi-wavelength spectrophotometric determination of hydrogen peroxide in water by oxidative coloration of ABTS via Fenton reaction. Environ. Sci. Pollut. Res. Int. 2019 26 26 27063 27072 10.1007/s11356‑019‑05884‑7 31313234
    [Google Scholar]
  46. Deng Q. Wang W. Zhang Q. Chen J. Zhou H. Meng W. Li J. Extraction optimization of polysaccharides from Gougunao tea and assessment of the antioxidant and hypoglycemic activities of its fractions in vitro. Bioactive Carbohydr. Diet. Fibre 2021 26 100287 10.1016/j.bcdf.2021.100287
    [Google Scholar]
  47. Tian Y. Li X. Xie H. Wang X. Xie Y. Chen C. Chen D. Protective mechanism of the antioxidant baicalein toward hydroxyl radical-treated bone marrow-derived mesenchymal stem cells. Molecules 2018 23 1 223 10.3390/molecules23010223 29361712
    [Google Scholar]
  48. Quy Huong D. Dinh Tu Tai P. Quang Trung N. Thong N.M. Tam N.M. Hai Phong N. Nam P.C. Investigation of the free radical scavenging ability of L -tryptophan and its derivatives using experimental methods and quantum chemical calculations. RSC Advances 2024 14 51 38059 38069 10.1039/D4RA06729K 39619804
    [Google Scholar]
  49. Srinivasan B. Lloyd M.D. Dose–response curves and the determination of IC 50 and EC 50 values. J. Med. Chem. 2024 67 20 17931 17934 10.1021/acs.jmedchem.4c02052 39356832
    [Google Scholar]
  50. Taweekayujan S. Somngam S. Pinnarat T. Optimization and kinetics modeling of phenolics extraction from coffee silverskin in deep eutectic solvent using ultrasound-assisted extraction. Heliyon 2023 9 7 e17942 10.1016/j.heliyon.2023.e17942 37449125
    [Google Scholar]
  51. Gabriele F. Chiarini M. Germani R. Tiecco M. Spreti N. Effect of water addition on choline chloride/glycol deep eutectic solvents: Characterization of their structural and physicochemical properties. J. Mol. Liq. 2019 291 111301 10.1016/j.molliq.2019.111301
    [Google Scholar]
  52. Ozturk B. Parkinson C. Gonzalez-Miquel M. Extraction of polyphenolic antioxidants from orange peel waste using deep eutectic solvents. Separ. Purif. Tech. 2018 206 1 13 10.1016/j.seppur.2018.05.052
    [Google Scholar]
  53. Cao J. Yang M. Cao F. Wang J. Su E. Tailor-made hydrophobic deep eutectic solvents for cleaner extraction of polyprenyl acetates from Ginkgo biloba leaves. J. Clean. Prod. 2017 152 399 405 10.1016/j.jclepro.2017.03.140
    [Google Scholar]
  54. Alam M.A. Muhammad G. Khan M.N. Mofijur M. Lv Y. Xiong W. Xu J. Choline chloride-based deep eutectic solvents as green extractants for the isolation of phenolic compounds from biomass. J. Clean. Prod. 2021 309 127445 10.1016/j.jclepro.2021.127445
    [Google Scholar]
  55. Thornburg C.K. Walter T. Walker K.D. Biocatalysis of a paclitaxel analogue: Conversion of baccatin III to N-debenzoyl-N-(2-furoyl)paclitaxel and characterization of an amino phenylpropanoyl CoA transferase. Biochemistry 2017 56 44 5920 5930 10.1021/acs.biochem.7b00912 29068219
    [Google Scholar]
  56. Wani M.C. Horwitz S.B. Nature as a remarkable chemist. Anticancer Drugs 2014 25 5 482 487 10.1097/CAD.0000000000000063 24413390
    [Google Scholar]
  57. Li Y. Li S. Lin S.J. Zhang J.J. Zhao C.N. Li H.B. Microwave-assisted extraction of natural antioxidants from the exotic Gordonia axillaris fruit: Optimization and identification of phenolic compounds. Molecules 2017 22 9 1481 10.3390/molecules22091481 28878178
    [Google Scholar]
  58. Xi H. Liu Y. Guo L. Hu R. Effect of ultrasonic power on drying process and quality properties of far-infrared radiation drying on potato slices. Food Sci. Biotechnol. 2020 29 1 93 101 10.1007/s10068‑019‑00645‑1 31976131
    [Google Scholar]
  59. Usui H. Ishibashi T. Matsuo H. Watanabe K. Ando K. Visualization of acoustic waves and cavitation in ultrasonic water flow. Diffus. Defect Data Solid State Data Pt. B Solid State Phenom. 2021 314 186 191 10.4028/www.scientific.net/SSP.314.186
    [Google Scholar]
  60. Chew K.K. Khoo M.Z. Ng S.Y. Effect of ethanol concentration, extraction time and extraction temperature on the recovery of phenolic compounds and antioxidant capacity of orthosiphon stamineus extracts. Int. Food Res. J. 2011 18 1427
    [Google Scholar]
  61. Sun Q. Du B. Wang C. Xu W. Fu Z. Yan Y. Li S. Wang Z. Zhang H. Ultrasound-assisted ionic liquid solid–liquid extraction coupled with aqueous two-phase extraction of naphthoquinone pigments in Arnebia euchroma (Royle) Johnst. Chromatographia 2019 82 12 1777 1789 10.1007/s10337‑019‑03804‑y
    [Google Scholar]
  62. Cai Z. Han M. Zhang X. Gao X. Wang F. Pang M. Extraction of anthraquinone compounds from chinese chestnut by using ultrasonic-assisted technology. Sci. Publ. Group 2019 7 43 47
    [Google Scholar]
  63. Yue T. Shao D. Yuan Y. Wang Z. Qiang C. Ultrasound‐assisted extraction, HPLC analysis, and antioxidant activity of polyphenols from unripe apple. J. Sep. Sci. 2012 35 16 2138 2145 10.1002/jssc.201200295 22815261
    [Google Scholar]
  64. Şahin S. Şamlı R. Optimization of olive leaf extract obtained by ultrasound-assisted extraction with response surface methodology. Ultrason. Sonochem. 2013 20 1 595 602 10.1016/j.ultsonch.2012.07.029 22964032
    [Google Scholar]
  65. Cvjetko Bubalo M. Ćurko N. Tomašević M. Kovačević Ganić K. Radojčić Redovniković I. Green extraction of grape skin phenolics by using deep eutectic solvents. Food Chem. 2016 200 159 166 10.1016/j.foodchem.2016.01.040 26830574
    [Google Scholar]
  66. Zhou J. Zhang L. Li Q. Jin W. Chen W. Han J. Zhang Y. Simultaneous optimization for ultrasound-assisted extraction and antioxidant activity of flavonoids from Sophora flavescens using response surface methodology. Molecules 2018 24 1 112 10.3390/molecules24010112 30597974
    [Google Scholar]
  67. Pandey S. Kumar S. Reactive extraction of gallic acid from aqueous solution with Tri-n-octylamine in oleyl alcohol: Equilibrium, thermodynamics and optimization using RSM-rCCD. Separ. Purif. Tech. 2020 231 115904 10.1016/j.seppur.2019.115904
    [Google Scholar]
  68. Zhang Y.J. Zhao Z.R. Meng H.W. Ultrasonic extraction and separation of Taxanes from Taxus cuspidata optimized by response surface. Separations 2022 9 193 10.3390/separations9080193
    [Google Scholar]
  69. Jovanović M. Mudrić J. Drinić Z. Matejić J. Kitić D. Bigović D. Šavikin K. Optimization of ultrasound-assisted extraction of bitter compounds and polyphenols from willow gentian underground parts. Separ. Purif. Tech. 2022 281 119868 10.1016/j.seppur.2021.119868
    [Google Scholar]
  70. Fan J.P. Cao J. Zhang X.H. Huang J.Z. Kong T. Tong S. Tian Z.Y. Xie Y.L. Xu R. Zhu J.H. Optimization of ionic liquid based ultrasonic assisted extraction of puerarin from Radix Puerariae Lobatae by response surface methodology. Food Chem. 2012 135 4 2299 2306 10.1016/j.foodchem.2012.07.038 22980805
    [Google Scholar]
  71. Fan X.H. Wang L.T. Chang Y.H. An J.Y. Zhu Y.W. Yang Q. Meng D. Fu Y. Application of green and recyclable menthol-based hydrophobic deep eutectic solvents aqueous for the extraction of main taxanes from Taxus chinensis needles. J. Mol. Liq. 2021 326 114970 10.1016/j.molliq.2020.114970
    [Google Scholar]
  72. Li L. Chen Y. Ma Y. Wang Z. Wang T. Xie Y. Optimization of taxol extraction process using response surface methodology and investigation of temporal and spatial distribution of taxol in Taxus mairei. Molecules 2021 26 18 5485 10.3390/molecules26185485 34576955
    [Google Scholar]
  73. Yamauchi M. Kitamura Y. Nagano H. Kawatsu J. Gotoh H. DPPH measurements and structure—activity relationship studies on the antioxidant capacity of phenols. Antioxidants 2024 13 3 309 10.3390/antiox13030309 38539842
    [Google Scholar]
  74. Abramoviˇc H. Relevance and standardization of in vitro antioxidant assays: ABTS, DPPH, and folin–ciocalteu. J. Chem. 2018 2018 4608405
    [Google Scholar]
  75. Ilyasov I.R. Beloborodov V.L. Selivanova I.A. Terekhov R.P. ABTS/PP decolorization assay of antioxidant capacity reaction pathways. Int. J. Mol. Sci. 2020 21 3 1131 10.3390/ijms21031131 32046308
    [Google Scholar]
  76. Bag A. Ghorai P.K. Development of quantum chemical method to calculate half maximal inhibitory concentration (IC50). Mol. Inform. 2016 35 5 199 206 10.1002/minf.201501004 27492086
    [Google Scholar]
/content/journals/cac/10.2174/0115734110367450250323104325
Loading
/content/journals/cac/10.2174/0115734110367450250323104325
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test