Skip to content
2000
image of Carbon Dots for Anti-corrosion: A Review Describing in Detail the Application and Mechanism of Corrosion Inhibitors

Abstract

Corrosion is a spontaneous and unavoidable process that reduces the service life of materials. Most industries suffer from corrosion of manufacturing equipment. To effectively protect metals from corrosion, various strategies have been developed. Among these, the use of corrosion inhibitors is a widely adopted technique. Many commercial inorganic and organic substances have been proven to be effective inhibitors. However, most of them are toxic and pose environmental threats during their synthesis. In recent years, Carbon Dots (CDs) have gained widespread application as a green aqueous-phase corrosion inhibitor due to their eco-friendly properties and good water solubility. This article provides a comprehensive review on the research progress on CDs, systematically exploring the use of heteroatom-doped CDs as corrosion inhibitors for carbon steel, copper, and their alloys. The discussion includes synthesis methods, various morphologies and structures of CDs, corrosion resistance performance, kinetics, thermodynamics, quantum computational chemistry, and inhibition mechanisms. Additionally, the challenges, recommendations, and opportunities in this field are addressed. Through this review, readers will gain a deeper understanding of the potential of CDs as corrosion inhibitors, inspiring more scientists to make valuable contributions to this topic in the future.

Loading

Article metrics loading...

/content/journals/cac/10.2174/0115734110357940250324172618
2025-04-10
2025-09-06
Loading full text...

Full text loading...

References

  1. Umapathi R. Raju C.V. Safarkhani M. Haribabu J. Lee H.U. Rani G.M. Huh Y.S. Versatility of MXene based materials for the electrochemical detection of phenolic contaminants. Coord. Chem. Rev. 2025 525 216305 10.1016/j.ccr.2024.216305
    [Google Scholar]
  2. Venkateswara Raju C. Hwan Cho C. Mohana Rani G. Manju V. Umapathi R. Suk Huh Y. Pil Park J. Emerging insights into the use of carbon-based nanomaterials for the electrochemical detection of heavy metal ions. Coord. Chem. Rev. 2023 476 214920 10.1016/j.ccr.2022.214920
    [Google Scholar]
  3. Umapathi R. Venkateswara Raju C. Majid Ghoreishian S. Mohana Rani G. Kumar K. Oh M.H. Pil Park J. Suk Huh Y. Recent advances in the use of graphitic carbon nitride-based composites for the electrochemical detection of hazardous contaminants. Coord. Chem. Rev. 2022 470 214708 10.1016/j.ccr.2022.214708
    [Google Scholar]
  4. Cao S. Liu D. Wang T. Ma A. Liu C. Zhuang X. Ding H. Mamba B.B. Gui J. Nitrogen-doped carbon dots as high-effective inhibitors for carbon steel in acidic medium. Colloids Surf. A Physicochem. Eng. Asp. 2021 616 126280 10.1016/j.colsurfa.2021.126280
    [Google Scholar]
  5. Cui M. Li X. Nitrogen and sulfur Co-doped carbon dots as ecofriendly and effective corrosion inhibitors for Q235 carbon steel in 1 M HCl solution. RSC Advances 2021 11 35 21607 21621 10.1039/D1RA02775A 35478788
    [Google Scholar]
  6. Gao L.M. Cao J. Qiu J.Y. Chen L.J. Yang J.J. Li H.Z. Liao B.K. Guo X.P. Adsorption and desorption behaviors of sodium dodecyl sulfate on the self-corrosion and discharge performances of AZ31B as anode for Mg seawater battery. J. Power Sources 2024 617 235115 10.1016/j.jpowsour.2024.235115
    [Google Scholar]
  7. Luo Z.G. Zhang Y. Wang H. Wan S. Song L.F. Liao B.K. Guo X.P. Modified nano-lignin as a novel biomass-derived corrosion inhibitor for enhanced corrosion resistance of carbon steel. Corros. Sci. 2024 227 111705 10.1016/j.corsci.2023.111705
    [Google Scholar]
  8. Ma S.Q. Huang H.L. Wan S. Hao L. Liao B.K. Guo X.P. Experimental, theoretical and computational studies of oxalyl dihydrazide as a novel corrosion inhibitor for mild steel in neutral saline solution. Colloids Surf. A Physicochem. Eng. Asp. 2024 699 134717 10.1016/j.colsurfa.2024.134717
    [Google Scholar]
  9. Qiang Y. Zhang S. Zhao H. Tan B. Wang L. Enhanced anticorrosion performance of copper by novel N-doped carbon dots. Corros. Sci. 2019 161 108193 10.1016/j.corsci.2019.108193
    [Google Scholar]
  10. Zeng C. Zhou Z.Y. Mai W.J. Chen Q.H. He J.B. Liao B.K. Technology, exploration on the corrosion inhibition performance of Salvia miltiorrhiza extract as a green corrosion inhibitor for Q235 steel in HCl environment. J. Mater. Res. Technol. 2024 32 3857 3870 10.1016/j.jmrt.2024.09.003
    [Google Scholar]
  11. Liao B.K. Quan R.X. Feng P.X. Wang H. Wang W. Niu L. Carbon steel anticorrosion performance and mechanism of sodium lignosulfonate. Rare Met. 2024 43 1 356 365 10.1007/s12598‑023‑02404‑y
    [Google Scholar]
  12. Liu R. Han X. Tan B. Li W. Wang F. Wang X. Zhao J. Zhao X. In-depth research on azole corrosion inhibitors - Effect of N atoms position and quantity on copper corrosion inhibition performance in alkaline environments: Experimental evaluation and theoretical analysis. Colloids Surf. A Physicochem. Eng. Asp. 2024 698 134624 10.1016/j.colsurfa.2024.134624
    [Google Scholar]
  13. Ma X.Z. Cai G.Y. Cao X.K. Zhang X.X. Meng L.D. Dong Z.H. Synergistic inhibition of azoles compounds on chloride-induced atmospheric corrosion of copper: Experimental and theoretical characterization. Corros. Sci. 2023 218 111161 10.1016/j.corsci.2023.111161
    [Google Scholar]
  14. Min X. Ma S. Zhou Z. Wu D. Liao B. Ti 3 AlC 2 MXene nanosheets as a novel corrosion inhibitor for carbon steel in 0.5 M sulfuric acid solution. RSC Advances 2024 14 7 4335 4338 10.1039/D3RA07341F 38304563
    [Google Scholar]
  15. Shao Z. Yu D. Shao D. Du Y. Zheng D. Qiu Z. Wu B. A protective role of Cl− ion in corrosion of stainless steel. Corros. Sci. 2024 226 111631 10.1016/j.corsci.2023.111631
    [Google Scholar]
  16. Xu Z. Gan Y. Zeng J. Chen J. Fu A. Zheng X. Li W. Green synthesis of functionalized fluorescent carbon dots from biomass and their corrosion inhibition mechanism for copper in sulfuric acid environment. Chem. Eng. J. 2023 470 144425 10.1016/j.cej.2023.144425
    [Google Scholar]
  17. Aslam R. Mobin M. Zehra S. Aslam J. A comprehensive review of corrosion inhibitors employed to mitigate stainless steel corrosion in different environments. J. Mol. Liq. 2022 364 119992 10.1016/j.molliq.2022.119992
    [Google Scholar]
  18. Agarwal Abhishek Rathore Pradeep Kumar Dharmendr Nistala Harsha Multitask learning framework for screening of corrosion inhibitors for mild steel. Paper presented at the AMPP Annual Conference + Expo San Antonio, Texas, USA, March 2022.
    [Google Scholar]
  19. Lu Y. Wang W. Zhang C. Zhao J. A novel imidazoline derivative used as an effective corrosion inhibitor for carbon steel in a CO2/H2S environment. Int. J. Electrochem. Sci. 2019 14 9 8579 8594 10.20964/2019.09.06
    [Google Scholar]
  20. Wang Q. Wang R. Zhang Q. Zhao C. Zhou X. Zheng H. Zhang R. Sun Y. Yan Z. Application of biomass corrosion inhibitors in metal corrosion control: A review. Molecules 2023 28 6 2832 10.3390/molecules28062832 36985804
    [Google Scholar]
  21. Cheng B. Cao L. Li C. Huo F.Y. Meng Q.F. Tong G. Wu X. Bu L.L. Rao L. Wang S. Fluorine-doped carbon quantum dots with deep-red emission for hypochlorite determination and cancer cell imaging. Chin. Chem. Lett. 2024 35 6 108969 10.1016/j.cclet.2023.108969
    [Google Scholar]
  22. Ferreira J.A. Name L.L. Lieb L.C. Tiba D.Y. da Silva M.M. Oliveira A.C. Canevari T.C. Carbon dots hybrid nanostructure-based electrochemical sensors: Applications in determining different species in a real sample. Curr. Nanosci. 2024 20 1 31 46 10.2174/1573413719666221221095901
    [Google Scholar]
  23. Gupta S. Tai N.H. Carbon nanomaterials and their composites for electrochemical glucose biosensors: A review on fabrication and sensing properties. J. Taiwan Inst. Chem. Eng. 2024 154 104957 10.1016/j.jtice.2023.104957
    [Google Scholar]
  24. Li W. Wang X. Lin J. Meng X. Wang L. Wang M. Jing Q. Song Y. Vomiero A. Zhao H. Controllable and large-scale synthesis of carbon quantum dots for efficient solid-state optical devices. Nano Energy 2024 122 109289 10.1016/j.nanoen.2024.109289
    [Google Scholar]
  25. Lin J. Wang L. Jing Q. Zhao H. Highly efficient and high color rendering index multilayer luminescent solar concentrators based on colloidal carbon quantum dots. Chem. Eng. J. 2024 481 148441 10.1016/j.cej.2023.148441
    [Google Scholar]
  26. Zhou J. Shan T. Zhang F. Boury B. Huang L. Yang Y. Liao G. Xiao H. Chen L. A novel dual-channel carbon nitride homojunction with nanofibrous carbon for significantly boosting photocatalytic hydrogen peroxide production. Advanced Fiber Materials 2024 6 2 387 400 10.1007/s42765‑023‑00354‑9
    [Google Scholar]
  27. Gao L.H. Xiao W.Y. Qi M.Y. Li J.Y. Tan C.L. Tang Z.R. Photoredox-catalyzed coupling of CO2 reduction and amines oxidation by Cu doped CdS quantum dots. Molecular Catalysis 2024 554
    [Google Scholar]
  28. Li J. Zhou H. Qiu H. Yan Y. Wang X. Gao Z. Wang Z. Phosphorescent carbon dots: Intermolecular interactions, properties, and applications. Coord. Chem. Rev. 2024 503 215642 10.1016/j.ccr.2023.215642
    [Google Scholar]
  29. Riahi Z. Khan A. Rhim J.W. Shin G.H. Kim J.T. Carrageenan-based active and intelligent packaging films integrated with anthocyanin and TiO2-doped carbon dots derived from sweet potato peels. Int. J. Biol. Macromol. 2024 259 129371 10.1016/j.ijbiomac.2024.129371
    [Google Scholar]
  30. Tang Z. Huang W. Liu L. Li H. Meng H. Zeng T. Ye X. Jiang Q. Ye Y.W. Liu Y. Study on structure and molecular scale protection mechanism of green Ce, N-CDs anti-bacterial and anti-corrosive inhibitor. J. Mater. Res. Technol. 2024 28 3865 3881
    [Google Scholar]
  31. Xu P. Liu X. Zhao Y. Lan D. Shin I. Study of graphdiyne biomimetic nanomaterials as fluorescent sensors of ciprofloxacin hydrochloride in water environment. Desalination Water Treat. 2023 302 129 137 10.5004/dwt.2023.29723
    [Google Scholar]
  32. Yadav N. Mudgal D. Mishra A. Shukla S. Malik T. Mishra V. Koppala S. Koppala S. Koppala S. Koppala S. Harnessing fluorescent carbon quantum dots from natural resource for advancing sweat latent fingerprint recognition with machine learning algorithms for enhanced human identification. PLoS One 2024 19 1 e0296270 10.1371/journal.pone.0296270 38175842
    [Google Scholar]
  33. He F. Lu Y. Jiang G. Zhang Y. Dong P. Liu X. Wang Y. Zhao C. Wang S. Duan X. Zhang J. Wang S. Unveiling the dual charge modulation of built-in electric field in metal-free photocatalysts for efficient photo-Fenton-like reaction. Appl. Catal. B 2024 341 123307 10.1016/j.apcatb.2023.123307
    [Google Scholar]
  34. Wang S.S. Feng D.Y. Zhang Z.M. Liu X. Ruan K.P. Guo Y.Q. Gu J.W. Highly thermally conductive polydimethylsiloxane composites with controllable 3D GO@f-CNTs networks via self-sacrificing template method. Chin. J. Polym. Sci. 2024 42 7 897 906 10.1007/s10118‑024‑3098‑4
    [Google Scholar]
  35. Zhu P. Liu Y. Tang Y. Zhu S. Liu X. Yin L. Liu Q. Yu Z. Xu Q. Luo D. Wang J. Bi-doped carbon quantum dots functionalized liposomes with fluorescence visualization imaging for tumor diagnosis and treatment. Chin. Chem. Lett. 2024 35 4 108689 10.1016/j.cclet.2023.108689
    [Google Scholar]
  36. Wang S. Wang J. Wang Z. Zhang L. Xu H. The effect of pyrrolic nitrogen on corrosion inhibition performance of N-doped carbon dots. Surf. Interfaces 2024 44 103740 10.1016/j.surfin.2023.103740
    [Google Scholar]
  37. Leitao J.S.O. Lima F.M. Girao D.D.C. Fechine L.M.U.D. Carneiro S. V. Oliveira R.S. Freire F.N.A. de Amorim A.F.V. Fechine P.B.A. Araujo W.S. Rocha J.S. Effect of photoluminescence of nanomaterials to verify corrosion in carbon steel. Mater. Res. - Ibero-Am. J. Mater. 2024 27
    [Google Scholar]
  38. Wang Y. Sun Y. Zhao Y. Liu D. Zhang B. Kuvarega A.T. Mamba B.B. Gui J. Microwave-assisted fast preparation of functionalized carbon dots: The impact of ionic liquid precursor on corrosion inhibition. Colloids Surf. A Physicochem. Eng. Asp. 2024 694 134130 10.1016/j.colsurfa.2024.134130
    [Google Scholar]
  39. Wu X. Li J. Lv J. Deng C. Yang L. Novel carbon dots for corrosion inhibition of N80 carbon steel in 3% saturated CO2 saline solution, russian. Journal of Applied Chemistry 2021 94 1111 1121
    [Google Scholar]
  40. He H. e S. Ai L. Wang X. Yao J. He C. Cheng B. Exploiting machine learning for controlled synthesis of carbon dots-based corrosion inhibitors. J. Clean. Prod. 2023 419 138210 10.1016/j.jclepro.2023.138210
    [Google Scholar]
  41. Li S. Yan R. Cai M. Jiang W. Zhang M. Li X. Enhanced antibiotic degradation performance of Cd0.5Zn0.5S/Bi2MoO6 S-scheme photocatalyst by carbon dot modification. J. Mater. Sci. Technol. 2023 164 59 67 10.1016/j.jmst.2023.05.009
    [Google Scholar]
  42. Song T.B. Huang Z.H. Zhang X.R. Ni J.W. Xiong H.M. Nitrogen-doped and sulfonated carbon dots as a multifunctional additive to realize highly reversible aqueous zinc-ion batteries. Small 2023 19 31 2205558 10.1002/smll.202205558 36650986
    [Google Scholar]
  43. Ye Y. Yang D. Chen H. Guo S. Yang Q. Chen L. Zhao H. Wang L. A high-efficiency corrosion inhibitor of N-doped citric acid-based carbon dots for mild steel in hydrochloric acid environment. J. Hazard. Mater. 2020 381 121019 10.1016/j.jhazmat.2019.121019 31442687
    [Google Scholar]
  44. Zeng Y. Kang L. Wu Y. Wan S. Liao B. Li N. Guo X. Melamine modified carbon dots as high effective corrosion inhibitor for Q235 carbon steel in neutral 3.5 wt% NaCl solution. J. Mol. Liq. 2022 349 118108 10.1016/j.molliq.2021.118108
    [Google Scholar]
  45. Cen H. He S. Gong X. Wu C. Chen Z. Effect of external parallel electric field on corrosion inhibition of carbon dots for carbon steel in 1 M HCl solution. J. Mater. Sci. 2023 58 2 927 945 10.1007/s10853‑022‑08133‑4
    [Google Scholar]
  46. Ni X. Li C. Lei Y. Shao Y. Zhu Y. You B. Design of a smart self-healing coating with multiple-responsive superhydrophobicity and its application in antibiofouling and antibacterial abilities. ACS Appl. Mater. Interfaces 2021 13 48 57864 57879 10.1021/acsami.1c15239 34807561
    [Google Scholar]
  47. Pan C. He J. Zhu J. Li S. Li W. Yang W. Li W. Corrosion control by carbon-based nanomaterials: A review. ACS Appl. Nano Mater. 2024 7 3 2515 2528 10.1021/acsanm.3c05547
    [Google Scholar]
  48. Tan B. Liu Y. Ren H. Gong Z. Li X. Li W. Guo L. Chen R. Wei J. Dai Q. AlObaid A.A. N, S-carbon quantum dots as inhibitor in pickling process of heat exchangers for enhanced performance in multi-stage flash seawater desalination. Desalination 2024 589 117969 10.1016/j.desal.2024.117969
    [Google Scholar]
  49. Tian Z. Li S. Chen Y. Li L. An Z. Zhang Y. Tong A. Zhang H. Liu Z. An B. Self-healing coating with a controllable release of corrosion inhibitors by using multifunctional zinc oxide quantum dots as valves. ACS Appl. Mater. Interfaces 2022 14 41 47188 47197 10.1021/acsami.2c16151 36217257
    [Google Scholar]
  50. Xiang T. Wang J. Liang Y. Daoudi W. Dong W. Li R. Chen X. Liu S. Zheng S. Zhang K. Carbon dots for anti-corrosion. Adv. Funct. Mater. 2024 34 2411456 10.1002/adfm.202411456
    [Google Scholar]
  51. Chen C. Dong Z. Theoretically screening of carbon dots as corrosion inhibitor: Effect of size and shape, functional group, and nitrogen doping. Russ. J. Phys. Chem. A. Focus Chem. 2022 96 11 2451 2458 10.1134/S0036024422110061
    [Google Scholar]
  52. Feng J. Zhang D. Li J. Bi S. Ma Y. Graphitic carbon nitride nanodots: Electronic structure and its influence factors. J. Mater. Sci. 2020 55 13 5488 5498 10.1007/s10853‑020‑04396‑x
    [Google Scholar]
  53. Anila, P.; Muhammed, A.; Athira, A.; Abraham, J. Fossicking Pueraria phaseoloides Leaf-Derived N-Doped Carbon Dot Nanofillers Engrafted Anticorrosive Epoxy Coatings for Mild Steel in Saline Environments. Surfaces Interfaces 2025 58 105784 10.1016/j.surfin.2025.105784
    [Google Scholar]
  54. Pudza M.Y. Abidin Z.Z. Abdul-Rashid S. Yassin F.M. Noor A.S.M. Abdullah M. Synthesis and characterization of fluorescent carbon dots from tapioca. ChemistrySelect 2019 4 14 4140 4146 10.1002/slct.201900836
    [Google Scholar]
  55. Li Y. Han Y. Li H. Niu X. Zhang D. Wang K. Antimicrobial hydrogels: Potential materials for medical application. Small 2024 20 5 2304047 10.1002/smll.202304047 37752779
    [Google Scholar]
  56. Liu X. Wang J. Wang Z. Chen Z. Yan D. Zhang M. Wang Y. Song D. Zhang T. Wang J. Durable self-healing coating system based on pH-responsive core-shell nanostructures. Prog. Org. Coat. 2023 183 107724 10.1016/j.porgcoat.2023.107724
    [Google Scholar]
  57. Majidi R. Ramezanzadeh M. Ramezanzadeh B. Developing a dual-functional self-healing nanocomposite utilizing oxidized-multiwall carbon nanotube/highly-porous metal-organic framework (OCNT/ZIF-8) nano-hybrid. Appl. Mater. Today 2023 32 101830 10.1016/j.apmt.2023.101830
    [Google Scholar]
  58. Yoo J.D. Ogle K. Volovitch P. The effect of synthetic zinc corrosion products on corrosion of electrogalvanized steel: I. Cathodic reactivity under zinc corrosion products. Corros. Sci. 2014 81 11 20 10.1016/j.corsci.2013.11.045
    [Google Scholar]
  59. Zhao L. Wang J. Chen K. Yang J. Guo X. Qian H. Ma L. Zhang D. Functionalized carbon dots for corrosion protection: Recent advances and future perspectives. Int. J. Miner. Metall. Mater. 2023 30 11 2112 2133 10.1007/s12613‑023‑2675‑9
    [Google Scholar]
  60. Abd-El-Nabey B.A. Mahmoud M.E. El-Housseiny S. Novel Damsissa carbon quantum dots (DCQDs) to improve the protection efficiency of permanganate phosphate conversion coats (PPC) on steel. Surf. Interfaces 2024 52 104922 10.1016/j.surfin.2024.104922
    [Google Scholar]
  61. Yang Q. Huang C. Lian Y. Chen Z. Synthesis and multifunctional application of two novel carbon quantum dots as corrosion inhibitors. Colloids Surf. A Physicochem. Eng. Asp. 2024 702 135165 10.1016/j.colsurfa.2024.135165
    [Google Scholar]
  62. Alkahtani S.A. Mahmoud A.M. Ali R. El-Wekil M.M. Sonochemical synthesis of lanthanum ferrite nanoparticle-decorated carbon nanotubes for simultaneous electrochemical determination of acetaminophen and dopamine. Microchim. Acta 2024 191
    [Google Scholar]
  63. Zhang Y. Lu S. Lasing of carbon dots: Chemical design, mechanisms, and bright future. Chem 2024 10 1 134 171 10.1016/j.chempr.2023.09.020
    [Google Scholar]
  64. Nesakumar N. Srinivasan S. Alwarappan S. Graphene quantum dots: Synthesis, properties, and applications to the development of optical and electrochemical sensors for chemical sensing. Mikrochim. Acta 2022 189 7 258 10.1007/s00604‑022‑05353‑y 35701638
    [Google Scholar]
  65. Li R. Yan X. Liu M. Zhao Q. Du J. Tan X. Ba J. Zeng R. Luo W. Xu J. Cathodic corrosion as a facile and universal method for scalable preparation of powdery single atom electrocatalysts. Nano Res. 2024 17 6 4943 4950 10.1007/s12274‑024‑6497‑5
    [Google Scholar]
  66. Saputra A.M.A. Piliang A.F.R. Synthesis, properties, and utilization of carbon quantum dots as photocatalysts on degradation of organic dyes: A mini review. Catal. Commun. 2024 187 106914 10.1016/j.catcom.2024.106914
    [Google Scholar]
  67. Wang X. Zhao Q. Song Q. Bu H. Gao J. Li L. Yu X. Yang X. Lu Z. Zhang X. Chemical synthesis of carbon dots with blue, green and red emission for dopamine reversible switching probes. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2024 310 123952 10.1016/j.saa.2024.123952 38295594
    [Google Scholar]
  68. Zhou S. Fu Y. Liu N. Ma C. Tian Y. Xu H. Synthesis of graphene quantum dots inside a nanoreactor for fluorescence detection of dopamine. Fuller. Nanotub. Carbon Nanostruct. 2024 32 8 764 773 10.1080/1536383X.2024.2328235
    [Google Scholar]
  69. Hu S.L. Niu K.Y. Sun J. Yang J. Zhao N.Q. Du X.W. One-step synthesis of fluorescent carbon nanoparticles by laser irradiation. J. Mater. Chem. 2009 19 4 484 488 10.1039/B812943F
    [Google Scholar]
  70. Padron-Ramirez I. Torres-Figueredo N. Corcho-Valdes A.L. de Leon-Cabrera J.P. Chao-Mujica F.J. Cruz K.V. Antuch M. Deschamps J. Reguera E. Desdin-Garcia L.F. Methane and carbon dioxide adsorption on carbon nano-onions synthesized by the submerged arc-discharge method. Adsorption 2024 30 1 25 38 10.1007/s10450‑023‑00432‑9
    [Google Scholar]
  71. Ahirwar S. Mallick S. Bahadur D. Electrochemical method to prepare graphene quantum dots and graphene oxide quantum dots. ACS Omega 2017 2 11 8343 8353 10.1021/acsomega.7b01539 31457373
    [Google Scholar]
  72. Khobrekar P.P. Gawade V.K. Jadhav R.W. Bugde S.T. Bhosale S.V. Porphyrin-based carbon dots as fluorescence probe for sensing of Fe 3+ ion and S 2- anion in aqueous solution. J. Dispers. Sci. Technol. 2024 1 11 10.1080/01932691.2024.2392171
    [Google Scholar]
  73. Li Y. Chen L. Yang S. Wei G. Ren X. Xu A. Wang H. He P. Dong H. Wang G. Ye C. Ding G. Symmetry-triggered tunable phosphorescence lifetime of graphene quantum dots in a solid state. Adv. Mater. 2024 36 21 2313639 10.1002/adma.202313639 38353607
    [Google Scholar]
  74. Singaravelu C.M. Deschanels X. Rey C. Causse J. Investigation on fluorescence origin and spectral heterogeneity in carbon dots: A dynamic perspective. ChemPhotoChem 2024 8 8 e202400044 10.1002/cptc.202400044
    [Google Scholar]
  75. Xia C. Zhong J. Han X. Zhu S. Li Y. Liu H. Yang B. The formation mechanism of carbonized polymer dots: Crosslinking-induced nucleation and carbonization. Angew. Chem. Int. Ed. 2024 e202410519
    [Google Scholar]
  76. Dong L. Ma Y. Jin X. Feng L. Zhu H. Hu Z. Ma X. High-efficiency corrosion inhibitor of biomass-derived high-yield carbon quantum dots for Q235 carbon steel in 1 M HCl solution. ACS Omega 2023 8 49 46934 46945 10.1021/acsomega.3c06702 38107954
    [Google Scholar]
  77. Dechsri K. Suwanchawalit C. Chitropas P. Ngawhirunpat T. Rojanarata T. Opanasopit P. Pengnam S. Rapid microwave-assisted synthesis of pH-sensitive carbon-based nanoparticles for the controlled release of doxorubicin to cancer cells. AAPS PharmSciTech 2023 24 5 135 10.1208/s12249‑023‑02593‑w 37308690
    [Google Scholar]
  78. Abd-El-Nabey B.A. Mahmoud M.E. Abdelrahman A. Abd-El-Fatah M.A. Effective performance of derived sustainable lupine carbon quantum dots as a superior inhibitor material for carbon steel corrosion in a hydrochloric acidic environment (1.0 molar). Ind. Eng. Chem. Res. 2024 63 7 2901 2915 10.1021/acs.iecr.3c03090
    [Google Scholar]
  79. Chernyak S. Podgornova A. Dorofeev S. Maksimov S. Maslakov K. Savilov S. Lunin V. Synthesis and modification of pristine and nitrogen-doped carbon dots by combining template pyrolysis and oxidation. Appl. Surf. Sci. 2020 507 145027 10.1016/j.apsusc.2019.145027
    [Google Scholar]
  80. Ajmal Z. Tu X. Abbas W. Ibrahim E.H. Ali H. Hussain I. Al-Muhana M.K. Khered M. Iqbal A. Rahaman S. Wang S. Akkinepally B. Alshammari A. Qadeer A. Recent advances in Carbon-nitride based advance materials: Synthesis, characterization and Photo-electrochemical Energy Application: Key Challenges and Prospects. Fuel 2024 378 132903 10.1016/j.fuel.2024.132903
    [Google Scholar]
  81. Yang Y. Wu D. Han S. Hu P. Liu R. Bottom-up fabrication of photoluminescent carbon dots with uniform morphology via a soft–hard template approach. Chem. Commun. 2013 49 43 4920 4922 10.1039/c3cc38815h 23598552
    [Google Scholar]
  82. Li M. Liu C. Qi L. Liu H. Nitrogen-doped graphene quantum dots anchored on hollow zeolitic imidazolate framework-8 colloidosomes for fluorescence detection of glucose. ACS Appl. Nano Mater. 2022 5 4 5425 5438 10.1021/acsanm.2c00430
    [Google Scholar]
  83. Gupta D. Boora A. Thakur A. Gupta T.K. Green and sustainable synthesis of nanomaterials: Recent advancements and limitations. Environ. Res. 2023 231 Pt 3 116316 10.1016/j.envres.2023.116316 37270084
    [Google Scholar]
  84. Lan Z.A. Wu M. Fang Z. Zhang Y. Chen X. Zhang G. Wang X. Ionothermal synthesis of covalent triazine frameworks in a NaCl-KCl-ZnCl2 eutectic salt for the hydrogen evolution reaction. Angew. Chem. Int. Ed. 2022 61,e202201482 10.1002/anie.202201482
    [Google Scholar]
  85. Lu L. Zheng H. Li Y. Zhou Y. Fang B. Ligand-free synthesis of noble metal nanocatalysts for electrocatalysis. Chem. Eng. J. 2023 451 138668 10.1016/j.cej.2022.138668
    [Google Scholar]
  86. Yin Y. Liu Q. Zhao Y. Chen T. Wang J. Gui L. Lu C. Recent progress and future directions of biomass-derived hierarchical porous carbon: Designing, preparation, and supercapacitor applications. Energy Fuels 2023 37 5 3523 3554 10.1021/acs.energyfuels.2c04093
    [Google Scholar]
  87. Chu J.C.K. Rovis T. Amide-directed photoredox-catalysed C–C bond formation at unactivated sp3 C–H bonds. Nature 2016 539 7628 272 275 10.1038/nature19810 27732580
    [Google Scholar]
  88. Yan B. Zheng J. Feng L. Zhang Q. Zhang C. Ding Y. Han J. Jiang S. He S. Pore engineering: Structure-capacitance correlations for biomass-derived porous carbon materials. Mater. Des. 2023 229 111904 10.1016/j.matdes.2023.111904
    [Google Scholar]
  89. Georgakilas V. Perman J.A. Tucek J. Zboril R. Broad family of carbon nanoallotropes: Classification, chemistry, and applications of fullerenes, carbon dots, nanotubes, graphene, nanodiamonds, and combined superstructures. Chem. Rev. 2015 115 11 4744 4822 10.1021/cr500304f 26012488
    [Google Scholar]
  90. Han M. Zhu S. Lu S. Song Y. Feng T. Tao S. Liu J. Yang B. Recent progress on the photocatalysis of carbon dots: Classification, mechanism and applications. Nano Today 2018 19 201 218 10.1016/j.nantod.2018.02.008
    [Google Scholar]
  91. Xia C. Zhu S. Feng T. Yang M. Yang B. Evolution and synthesis of carbon dots: From carbon dots to carbonized polymer dots. Adv. Sci. 2019 6 23 1901316 10.1002/advs.201901316 31832313
    [Google Scholar]
  92. Yang Z. Xu T. Li H. She M. Chen J. Wang Z. Zhang S. Li J. Zero-dimensional carbon nanomaterials for fluorescent sensing and imaging. Chem. Rev. 2023 123 18 11047 11136 10.1021/acs.chemrev.3c00186 37677071
    [Google Scholar]
  93. Wang L. Li W. Wu B. Li Z. Wang S. Liu Y. Pan D. Wu M. Facile synthesis of fluorescent graphene quantum dots from coffee grounds for bioimaging and sensing. Chem. Eng. J. 2016 300 75 82 10.1016/j.cej.2016.04.123
    [Google Scholar]
  94. Zheng P. Wu N. Fluorescence and sensing applications of graphene oxide and graphene quantum dots: A review. Chem. Asian J. 2017 12 18 2343 2353 10.1002/asia.201700814 28742956
    [Google Scholar]
  95. Zheng X.T. Ananthanarayanan A. Luo K.Q. Chen P. Glowing graphene quantum dots and carbon dots: Properties, syntheses, and biological applications. Small 2015 11 14 1620 1636 10.1002/smll.201402648 25521301
    [Google Scholar]
  96. Fernando K.A.S. Sahu S. Liu Y. Lewis W.K. Guliants E.A. Jafariyan A. Wang P. Bunker C.E. Sun Y.P. Carbon quantum dots and applications in photocatalytic energy conversion. ACS Appl. Mater. Interfaces 2015 7 16 8363 8376 10.1021/acsami.5b00448 25845394
    [Google Scholar]
  97. Luo P.G. Yang F. Yang S.T. Sonkar S.K. Yang L. Broglie J.J. Liu Y. Sun Y.P. Carbon-based quantum dots for fluorescence imaging of cells and tissues. RSC Advances 2014 4 21 10791 10807 10.1039/c3ra47683a
    [Google Scholar]
  98. Namdari P. Negahdari B. Eatemadi A. Synthesis, properties and biomedical applications of carbon-based quantum dots: An updated review. Biomed. Pharmacother. 2017 87 209 222 10.1016/j.biopha.2016.12.108 28061404
    [Google Scholar]
  99. Cayuela A. Soriano M.L. Carrillo-Carrión C. Valcárcel M. Semiconductor and carbon-based fluorescent nanodots: The need for consistency. Chem. Commun. 2016 52 7 1311 1326 10.1039/C5CC07754K 26671042
    [Google Scholar]
  100. Yang L. Hong W. Tian Y. Zou G. Hou H. Sun W. Ji X. Heteroatom-doped carbon inlaid with Sb2X3 (X = S, Se) nanodots for high-performance potassium-ion batteries. Chem. Eng. J. 2020 385 123838 10.1016/j.cej.2019.123838
    [Google Scholar]
  101. Ru Y. Sui L. Song H. Liu X. Tang Z. Zang S.Q. Yang B. Lu S. Rational design of multicolor-emitting chiral carbonized polymer dots for full-color and white circularly polarized luminescence. Angew. Chem. Int. Ed. 2021 60 25 14091 14099 10.1002/anie.202103336 33830583
    [Google Scholar]
  102. Tao S. Feng T. Zheng C. Zhu S. Yang B. Carbonized polymer dots: A brand new perspective to recognize luminescent carbon-based nanomaterials. J. Phys. Chem. Lett. 2019 10 17 5182 5188 10.1021/acs.jpclett.9b01384 31424936
    [Google Scholar]
  103. Liao B. Long P. He B. Yi S. Ou B. Shen S. Chen J. Reversible fluorescence modulation of spiropyran-functionalized carbon nanoparticles. J. Mater. Chem. C Mater. Opt. Electron. Devices 2013 1 23 3716 3721 10.1039/c3tc00906h
    [Google Scholar]
  104. Miao S. Liang K. Zhu J. Yang B. Zhao D. Kong B. Hetero-atom-doped carbon dots: Doping strategies, properties and applications. Nano Today 2020 33 100879 10.1016/j.nantod.2020.100879
    [Google Scholar]
  105. Fu Y. Zeng G. Lai C. Huang D. Qin L. Yi H. Liu X. Zhang M. Li B. Liu S. Li L. Li M. Wang W. Zhang Y. Pi Z. Hybrid architectures based on noble metals and carbon-based dots nanomaterials: A review of recent progress in synthesis and applications. Chem. Eng. J. 2020 399 125743 10.1016/j.cej.2020.125743
    [Google Scholar]
  106. Si Q.S. Guo W.Q. Wang H.Z. Liu B.H. Ren N.Q. Carbon quantum dots-based semiconductor preparation methods, applications and mechanisms in environmental contamination. Chin. Chem. Lett. 2020 31 10 2556 2566 10.1016/j.cclet.2020.08.036
    [Google Scholar]
  107. Bo C. Tang X. Li Y. Li Y. Zhao W. Guo S. Preparation and chromatographic evaluation of hydrophilic polymer brushes grafted-silica with post modification of silicon/carbon dots as a green liquid chromatography stationary phase. Microchim. Acta 2024 191 8 495
    [Google Scholar]
  108. Sushma S. Sharma S. Ghosh K.S. Applications of functionalized carbon-based quantum dots in fluorescence sensing of iron(III). J. Fluoresc. 2025 35 1255 1272 10.1007/s10895‑024‑03611‑1
    [Google Scholar]
  109. Wang C. Fang Y. Zhou D. Wu C. Zhu H. Song Q. Surface oxidation of carbon dots enables highly selective and sensitive chemiluminescence detection of hydroxyl radical. Nano Res. 2024 17 11 9275 9283 10.1007/s12274‑024‑6928‑3
    [Google Scholar]
  110. Liu J. Wang N. Yu Y. Yan Y. Zhang H. Li J. Yu J. Carbon dots in zeolites: A new class of thermally activated delayed fluorescence materials with ultralong lifetimes. Sci. Adv. 2017 3 5 e1603171 10.1126/sciadv.1603171 28560347
    [Google Scholar]
  111. Dong Y. Cai J. Fang Q. You X. Chi Y. Dual-emission of lanthanide metal-organic frameworks encapsulating carbon-based dots for ratiometric detection of water in organic solvents. Anal. Chem. 2016 88 3 1748 1752 10.1021/acs.analchem.5b03974 26744080
    [Google Scholar]
  112. Rao J. Lv Z. Chen G. Peng F. Hemicellulose: Structure, chemical modification, and application. Prog. Polym. Sci. 2023 14, 101675. 10.1016/j.progpolymsci.2023.101675
    [Google Scholar]
  113. Sobhanan J. Rival J.V. Anas A. Sidharth Shibu E. Takano Y. Biju V. Luminescent quantum dots: Synthesis, optical properties, bioimaging and toxicity. Adv. Drug Deliv. Rev. 2023 197 114830 10.1016/j.addr.2023.114830 37086917
    [Google Scholar]
  114. Tang J. Huang C. Liu Y. Wang T. Yu M. Hao H. Zeng W. Huang W. Wang J. Wu M. Metal-organic framework nanoshell structures: Preparation and biomedical applications. Coord. Chem. Rev. 2023 490 215211 10.1016/j.ccr.2023.215211
    [Google Scholar]
  115. Liu H. Zhong X. Pan Q. Zhang Y. Deng W. Zou G. Hou H. Ji X. A review of carbon dots in synthesis strategy. Coord. Chem. Rev. 2024 498 215468 10.1016/j.ccr.2023.215468
    [Google Scholar]
  116. Zhang J. Bifulco A. Amato P. Imparato C. Qi K. Copper indium sulfide quantum dots in photocatalysis. J. Colloid Interface Sci. 2023 638 193 219 10.1016/j.jcis.2023.01.107 36738544
    [Google Scholar]
  117. Hassan A. Numin M.S. Jumbri K. Kee K.E. Borhan N. Review on the recent development of fatty hydrazide as corrosion inhibitor in acidic medium: Experimental and theoretical approaches. Metals 2022 12 7 1058 10.3390/met12071058
    [Google Scholar]
  118. Baari M.J. Pratiwi R.Y. Application of carbon dots as corrosion inhibitor: A systematic literature review. Indones J Chem. 2022 22 5 1427 1453 10.22146/ijc.72327
    [Google Scholar]
  119. Ganesan K. Hayagreevan C. Jeevagan A.J. Adinaveen T. Sophie P.L. Amalraj M. Bhuvaneshwari D.S. Candle soot derived carbon dots as potential corrosion inhibitor for stainless steel in HCl medium. J. Appl. Electrochem. 2024 54 1 89 102 10.1007/s10800‑023‑01941‑9
    [Google Scholar]
  120. Ye Y. Zou Y. Jiang Z. Yang Q. Chen L. Guo S. Chen H. An effective corrosion inhibitor of N doped carbon dots for Q235 steel in 1 M HCl solution. J. Alloys Compd. 2020 815 152338 10.1016/j.jallcom.2019.152338
    [Google Scholar]
  121. Cui M. Ren S. Xue Q. Zhao H. Wang L. Carbon dots as new eco-friendly and effective corrosion inhibitor. J. Alloys Compd. 2017 726 680 692 10.1016/j.jallcom.2017.08.027
    [Google Scholar]
  122. Cen H. Chen Z. Guo X. N, S co-doped carbon dots as effective corrosion inhibitor for carbon steel in CO2-saturated 3.5% NaCl solution. J. Taiwan Inst. Chem. Eng. 2019 99 224 238 10.1016/j.jtice.2019.02.036
    [Google Scholar]
  123. Zhu M. He Z. Guo L. Zhang R. Anadebe V.C. Obot I.B. Zheng X. Corrosion inhibition of eco-friendly nitrogen-doped carbon dots for carbon steel in acidic media: Performance and mechanism investigation. J. Mol. Liq. 2021 342 117583 10.1016/j.molliq.2021.117583
    [Google Scholar]
  124. Zeng S. Zhang F. Liu Y. Ouyang S. Ye Y.W. Chen H. Synthesis of Ce, N co–doped carbon dots as green and effective corrosion inhibitor for copper in acid environment. J. Taiwan Inst. Chem. Eng. 2022 141 104608 10.1016/j.jtice.2022.104608
    [Google Scholar]
  125. Zhang Y. Tan B. Zhang X. Guo L. Zhang S. Synthesized carbon dots with high N and S content as excellent corrosion inhibitors for copper in sulfuric acid solution. J. Mol. Liq. 2021 338 116702 10.1016/j.molliq.2021.116702
    [Google Scholar]
  126. Liu Z. Ye Y.W. Chen H. Corrosion inhibition behavior and mechanism of N-doped carbon dots for metal in acid environment. J. Clean. Prod. 2020 270 122458 10.1016/j.jclepro.2020.122458
    [Google Scholar]
  127. Xu Q. Ge K. Zhang S. Tan B. Understanding the adsorption and inhibitive properties of Nitrogen-Doped Carbon Dots for copper in 0.5 M H2SO4 solution. J. Taiwan Inst. Chem. Eng. 2021 125 23 34 10.1016/j.jtice.2021.05.050
    [Google Scholar]
  128. Anindita F. Darmawan N. Mas’ud Z.A. Fluorescence carbon dots from durian as an eco-friendly inhibitor for copper corrosion. AIP Conf. Proc. 2018 2014 020008 10.1063/1.5054412
    [Google Scholar]
  129. Zhang H.D. Chen A.Y. Gan B. Jiang H. Gu L.J. Corrosion protection investigations of carbon dots and polydopamine composite coating on magnesium alloy. J Magnes Alloys 2022 10 5 1358 1367 10.1016/j.jma.2020.11.021
    [Google Scholar]
  130. Dong L. Wang J. Ma Y. Ruan Y. Hu Z. Ma X. Na-CDs as an eco-friendly and efficient corrosion inhibitor for Q235 in 1 M HCl. Arab. J. Chem. 2024 17 4 105660 10.1016/j.arabjc.2024.105660
    [Google Scholar]
  131. Yin H. Wei C. Ye Y. Wang Z. Zhou S. Synergistic lanthanum /nitrogen co-modified carbon dots as steel corrosion inhibitor. Mater. Today Commun. 2025 42 111106 10.1016/j.mtcomm.2024.111106
    [Google Scholar]
  132. Sun Y. Wang Y. Liu D. Wang T. Pan S. Ma A. Kuvarega A.T. Mamba B.B. Gui J. Novel carboxylic functionalized ionic liquid grafted on carbonized polymer dots as highly efficient corrosion inhibitors. J. Mol. Struct. 2025 1321 140011 10.1016/j.molstruc.2024.140011
    [Google Scholar]
  133. Dehghani A. Bahlakeh G. Ramezanzadeh B. Beta-cyclodextrin-zinc acetylacetonate (β-CD@ZnA) inclusion complex formation as a sustainable/smart nanocarrier of corrosion inhibitors for a water-based siliconized composite film: Integrated experimental analysis and fundamental computational electronic/atomic-scale simulation. Compos., Part B Eng. 2020 197 108152 10.1016/j.compositesb.2020.108152
    [Google Scholar]
  134. Ye Y. Yang D. Chen H. A green and effective corrosion inhibitor of functionalized carbon dots. J. Mater. Sci. Technol. 2019 35 10 2243 2253 10.1016/j.jmst.2019.05.045
    [Google Scholar]
  135. Ye Y. Jiang Z. Zou Y. Chen H. Guo S. Yang Q. Chen L. Evaluation of the inhibition behavior of carbon dots on carbon steel in HCl and NaCl solutions. J. Mater. Sci. Technol. 2020 43 144 153 10.1016/j.jmst.2020.01.025
    [Google Scholar]
  136. Ye Y. Zhang D. Zou Y. Zhao H. Chen H. A feasible method to improve the protection ability of metal by functionalized carbon dots as environment-friendly corrosion inhibitor. J. Clean. Prod. 2020 264 121682 10.1016/j.jclepro.2020.121682
    [Google Scholar]
  137. Zhu M. Guo L. He Z. Marzouki R. Zhang R. Berdimurodov E. Insights into the newly synthesized N-doped carbon dots for Q235 steel corrosion retardation in acidizing media: A detailed multidimensional study. J. Colloid Interface Sci. 2022 608 Pt 2 2039 2049 10.1016/j.jcis.2021.10.160 34749151
    [Google Scholar]
  138. Liu Z. Hao X. Li Y. Zhang X. Novel Ce@N-CDs as green corrosion inhibitor for metal in acidic environment. J. Mol. Liq. 2022 349 118155 10.1016/j.molliq.2021.118155
    [Google Scholar]
  139. Wan S. Chen H. Liao B. Guo X. Adsorption and anticorrosion mechanism of glucose-based functionalized carbon dots for copper in neutral solution. J. Taiwan Inst. Chem. Eng. 2021 129 289 298 10.1016/j.jtice.2021.10.001
    [Google Scholar]
  140. Zhang Y. Zhang S. Tan B. Guo L. Li H. Solvothermal synthesis of functionalized carbon dots from amino acid as an eco-friendly corrosion inhibitor for copper in sulfuric acid solution. J. Colloid Interface Sci. 2021 604 1 14 10.1016/j.jcis.2021.07.034 34261015
    [Google Scholar]
  141. Matter E.A. El-Naggar G.A. Nasr F. Ahmed G.H.G. Facile synthesis of N-doped carbon dots (N-CDs) for effective corrosion inhibition of mild steel in 1 M HCl solution. J. Appl. Electrochem. 2023 53 10 2057 2075 10.1007/s10800‑023‑01895‑y
    [Google Scholar]
  142. Cui M. Ren S. Zhao H. Wang L. Xue Q. Novel nitrogen doped carbon dots for corrosion inhibition of carbon steel in 1 M HCl solution. Appl. Surf. Sci. 2018 443 145 156 10.1016/j.apsusc.2018.02.255
    [Google Scholar]
  143. Ahmed G.H.G. El-Naggar G.A. Nasr F. Matter E.A. N-doped and N, Si-doped carbon dots for enhanced corrosion inhibition of mild steel in acidic environment. Diamond Related Materials 2023 136 109979 10.1016/j.diamond.2023.109979
    [Google Scholar]
  144. Lv J. Fu L. Zeng B. Tang M. Li J. Synthesis and acidizing corrosion inhibition performance of N-doped carbon quantum dots. Russ. J. Appl. Chem. 2019 92 6 848 856 10.1134/S1070427219060168
    [Google Scholar]
  145. Li J. Lv J. Fu L. Tang M. Wu X. New ecofriendly nitrogen-doped carbon quantum dots as effective corrosion inhibitor for saturated CO2 3% NaCl solution. Russ. J. Appl. Chem. 2020 93 3 380 392 10.1134/S10704272200300106
    [Google Scholar]
  146. Cui M. Qiang Y. Wang W. Zhao H. Ren S. Microwave synthesis of eco-friendly nitrogen doped carbon dots for the corrosion inhibition of Q235 carbon steel in 0.1 M HCl. Int. J. Electrochem. Sci. 2021 16 1 151019 10.20964/2021.01.47
    [Google Scholar]
  147. Luo J. Cheng X. Zhong C. Chen X. Ye Y.W. Zhao H. Chen H. Effect of reaction parameters on the corrosion inhibition behavior of N-doped carbon dots for metal in 1 M HCl solution. J. Mol. Liq. 2021 338 116783 10.1016/j.molliq.2021.116783
    [Google Scholar]
  148. Luo J. Cheng X. Chen X. Zhong C.F. Xie H. Ye Y.W. Zhao H.C. Li Y. Chen H. The effect of N and S ratios in N, S co-doped carbon dot inhibitor on metal protection in 1 M HCl solution. J. Taiwan Inst. Chem. Eng. 2021 127 387 398 10.1016/j.jtice.2021.08.023
    [Google Scholar]
  149. Pan L. Li G. Wang Z. Liu D. Zhu W. Tong C. Zhu R. Hu S. Carbon dots as environment-friendly and efficient corrosion inhibitors for Q235 steel in 1 m HCl. Langmuir 2021 37 49 14336 14344 10.1021/acs.langmuir.1c02182 34856797
    [Google Scholar]
  150. Saraswat V. Kumari R. Yadav M. Novel carbon dots as efficient green corrosion inhibitor for mild steel in HCl solution: Electrochemical, gravimetric and XPS studies. J. Phys. Chem. Solids 2022 160 110341 10.1016/j.jpcs.2021.110341
    [Google Scholar]
  151. Liao J. Chu Q. Zhao S. Liu Z. Zhang X.J. Recent advances in carbon dots as powerful eco-friendly corrosion inhibitors for copper and its alloy. Mater. Today Sustain. 2024 26 100706
    [Google Scholar]
  152. Guo L. Zhu L. Kaya S. Sun R. Ritacca A.G. Wang K. Chang J. Electrochemical and surface investigations of N, S codoped carbon dots as effective corrosion inhibitor for mild steel in acidic solution. Colloids Surf. A Physicochem. Eng. Asp. 2024 702 135062 10.1016/j.colsurfa.2024.135062
    [Google Scholar]
  153. Ma L. Xu D. Wu S. Guo X. Liu T. Wei M. Wang J. Chen Z. Zhang D. Polyurethane coatings with corrosion inhibition and color-fluorescence damage reporting properties based on APhen-grafted carbon dots. Corros. Sci. 2024 232 112038 10.1016/j.corsci.2024.112038
    [Google Scholar]
  154. Wu S. Wang J. Liu T. Guo X. Ma L. Sulfosalicylic acid modified carbon dots as effective corrosion inhibitor and fluorescent corrosion indicator for carbon steel in HCl solution. Colloids Surf. A Physicochem. Eng. Asp. 2023 661 130951 10.1016/j.colsurfa.2023.130951
    [Google Scholar]
  155. Long W.J. Li X.Q. Zheng S.Y. He C. A novel effective carbon dots-based inhibitor for carbon steel against chloride corrosion: From inhibition behavior to mechanism. Carbon 2024 218 118708 10.1016/j.carbon.2023.118708
    [Google Scholar]
/content/journals/cac/10.2174/0115734110357940250324172618
Loading
/content/journals/cac/10.2174/0115734110357940250324172618
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test