Skip to content
2000
Volume 21, Issue 8
  • ISSN: 1573-4110
  • E-ISSN: 1875-6727

Abstract

Background

Caffeine (CAF) is a widely used chemical in foods and pharmaceuticals that is consumed by a lot of people every day. Overconsumption of caffeine can lead to some undesirable symptoms. However, CAF is considered a crucial nervous system stimulant.

Aims

This study aimed to find an accurate and effective route for determining CAF using voltammetric techniques.

Objective

In this work, for the first time, a glycine (Gly) modified pencil graphite electrode (Gly/PGE) was used for the determination of CAF by square wave adsorptive stripping voltammetry (SWAdSV) technique.

Methods

The modification procedure of PGE by Gly in 100 mM sulfuric acid (HSO) was accomplished by performing the cyclic voltammetry (CV) technique for 10 cycles at a potential range of 0.8 to 1.8 V. Moreover, the characterization of Gly/PGE was done by applying the CV technique in aqueous and non-aqueous media and electrochemical impedance spectroscopy (EIS) in addition to scanning electron microscopy (SEM) technique. The movement type of CAF toward Gly/PGE was proven to be a diffusion-controlled process by conducting some measurements at different scan rates. The supporting electrolyte for the determination of CAF was studied, where 100 mM of HSO provided the best result. Optimization of accumulation time, pulse size, and wave frequency were implemented and found to be 60 s accumulation time, 50 mV pulse size, and 25 Hz wave frequency. The stability of Gly/PGE was studied in different mediums, such as air, ultrapure water, and acetonitrile (CHCN).

Results

The determination of CAF under optimum conditions was within the linear concentration range of 0.1–75 µM, with a correlation coefficient of = 0.9990. The limit of detection (LOD) and limit of quantification (LOQ) were 0.070 and 0.231 µM, respectively.

Conclusion

An effective voltammetric methodology was suggested to determine CAF. This methodology has great promise to be applied in different matrices to determine CAF.

Loading

Article metrics loading...

/content/journals/cac/10.2174/0115734110324545240725114425
2024-07-29
2025-12-14
Loading full text...

Full text loading...

References

  1. ŐszB.E. JîtcăG. ȘtefănescuR.E. PușcașA. Tero-VescanA. VariC.E. Caffeine and its antioxidant properties—It is all about dose and source.Int. J. Mol. Sci.202223211307410.3390/ijms232113074 36361861
    [Google Scholar]
  2. HeckmanM.A. WeilJ. De MejiaE.G. Caffeine (1, 3, 7-trimethylxanthine) in foods: a comprehensive review on consumption, functionality, safety, and regulatory matters.J. Food Sci.2010753R77R8710.1111/j.1750‑3841.2010.01561.x 20492310
    [Google Scholar]
  3. TempleJ.L. BernardC. LipshultzS.E. CzachorJ.D. WestphalJ.A. MestreM.A. The safety of ingested caffeine: A comprehensive review.Front. Psychiatry201788010.3389/fpsyt.2017.00080 28603504
    [Google Scholar]
  4. FaudoneG. ArifiS. MerkD. The medicinal chemistry of caffeine.J. Med. Chem.202164117156717810.1021/acs.jmedchem.1c00261 34019396
    [Google Scholar]
  5. PereiraF.J. Rodríguez-CorderoA. LópezR. RoblesL.C. AllerA.J. Development and validation of an rp-hplc-pda method for determination of paracetamol, caffeine and tramadol hydrochloride in pharmaceutical formulations.Pharmaceuticals202114546610.3390/ph14050466 34063393
    [Google Scholar]
  6. TanakaT. KimuraK. KanK. ShindoT. SasamotoT. Determination of caffeine, theobromine, and theophylline in chocolate using LC-MS.Shokuhin Eiseigaku Zasshi202162411912410.3358/shokueishi.62.119 34470940
    [Google Scholar]
  7. PengX. BrownM. BowdlerP. HoneychurchK.C. Extraction-free, direct determination of caffeine in microliter volumes of beverages by thermal desorption-gas chromatography mass spectrometry.Int. J. Anal. Chem.202020201710.1155/2020/5405184 32308685
    [Google Scholar]
  8. Al-BrattyM. AlhazmiH.A. RehmanZ. JavedS.A. AhsanW. NajmiA. KhuwajaG. MakeenH.A. KhalidA. Determination of caffeine content in commercial energy beverages available in saudi arabian market by gas chromatography-mass spectrometric analysis.J. Spectrosc.202020201910.1155/2020/3716343
    [Google Scholar]
  9. Legas MuhammedB. Hussen SeidM. HabteA.T. Determination of caffeine and hydrogen peroxide antioxidant activity of raw and roasted coffee beans around habru woreda, ethiopia using uv-vis spectroscopy.Clin. Pharmacol.20211310111310.2147/CPAA.S311032 34079391
    [Google Scholar]
  10. AyuP.C. BudiastraI.W. RindangA. NIR spectroscopy application for determination caffeine content of Arabica green bean coffee.IOP Conf. Ser. Earth Environ. Sci.2020454101204910.1088/1755‑1315/454/1/012049
    [Google Scholar]
  11. GetoA. BrettC.M.A. Electrochemical sensor for caffeine in coffee and beverages using a naphthalene sulfonic acid polymer film–based modified electrode.Food Anal. Methods202114112386239410.1007/s12161‑021‑02078‑1
    [Google Scholar]
  12. KumarR. QadirG. RajarK. BalouchA. IbupotoZ.H. ParkashA. Voltammetric detection of caffeine content in different tea stuffs by using Co3O4/GCE-Nafion electrode.J. Indian Chem. Soc.202118370170810.1007/s13738‑020‑02059‑x
    [Google Scholar]
  13. Hernandez-AldaveS. TaratA. McGettrickJ.D. BertoncelloP. Voltammetric detection of caffeine in beverages at nafion/graphite nanoplatelets layer-by-layer films.Nanomaterials20199222110.3390/nano9020221 30736450
    [Google Scholar]
  14. AschemacherN.A. GegenschatzS.A. TegliaC.M. SianoÁ.S. GutierrezF.A. GoicoecheaH.C. Highly sensitive and selective electrochemical sensor for simultaneous determination of gallic acid, theophylline and caffeine using poly(l-proline) decorated carbon nanotubes in biological and food samples.Talanta202426712524610.1016/j.talanta.2023.125246 37774452
    [Google Scholar]
  15. SarabanM. NumnuamA. NontipichetN. KangkamanoT. ThavarungkulP. KanatharanaP. KhumngernS. A disposable electrochemical caffeine sensor based on a screen-printed electrode modified with a copper-metal organic framework and functionalized multi-walled carbon nanotube nanocomposite.New J. Chem.20244883638364510.1039/D3NJ05570A
    [Google Scholar]
  16. MariE. DuraisamyM. EswaranM. SellappanS. WonK. ChandraP. TsaiP.C. HuangP.C. ChenY.H. LinY.C. PonnusamyV.K. Highly electrochemically active Ti3C2Tx MXene/MWCNT nanocomposite for the simultaneous sensing of paracetamol, theophylline, and caffeine in human blood samples.Mikrochim. Acta2024191421210.1007/s00604‑024‑06273‑9 38509344
    [Google Scholar]
  17. ManjunathaJ.G. ManjunathaJ. Cyclic voltammetric investigation of caffeine at methyl orange modified carbon paste electrode.Biomed. J. Sci. Tech. Res.20189310.26717/BJSTR.2018.09.001804
    [Google Scholar]
  18. TadesseY. TadeseA. SainiR.C. PalR. Cyclic voltammetric investigation of caffeine at anthraquinone modified carbon paste electrode.Int. J. Electrochem.201320131710.1155/2013/849327
    [Google Scholar]
  19. AliM.F.B. Abdel-aalF.A.M. In situ polymerization and FT-IR characterization of poly-glycine on pencil graphite electrode for sensitive determination of anti-emetic drug, granisetron in injections and human plasma.RSC Advances2019984325433510.1039/C9RA00179D 35520180
    [Google Scholar]
  20. LyS.Y. JungY.S. KimM.H. HanI. JungW.W. KimH.S. Determination of caffeine using a simple graphite pencil electrode with square-wave anodic stripping voltammetry.Mikrochim. Acta20041463-420721310.1007/s00604‑004‑0209‑3
    [Google Scholar]
  21. Tyszczuk-RotkoK. PietrzakK. SasalA. Adsorptive stripping voltammetric method for the determination of caffeine at integrated three-electrode screen-printed sensor with carbon/carbon nanofibers working electrode.Adsorption201925491392110.1007/s10450‑019‑00116‑3
    [Google Scholar]
  22. ÖrenT. AnıkÜ. Voltammetric determination of caffeine by using gold nanoparticle-glassy carbon paste composite electrode.Measurement2017106263010.1016/j.measurement.2017.04.031
    [Google Scholar]
  23. StoytchevaM. ZlatevR. VelkovaZ. GochevV. MezaC. ValdezB. KirovaG. HristovaY. Toscano-PalomarL. The validity of using bare graphite electrode for the voltammetric determination of paracetamol and caffeine.Int. J. Electrochem. Sci.202318510012010.1016/j.ijoes.2023.100120
    [Google Scholar]
  24. MonteiroM.K.S. SantosE.C.M.M. SilvaD.R. Martínez-HuitleC.A. dos SantosE.V. Simultaneous determination of paracetamol and caffeine in pharmaceutical formulations and synthetic urine using cork-modified graphite electrodes.J. Solid State Electrochem.20202481789180010.1007/s10008‑020‑04722‑y
    [Google Scholar]
  25. YaiT. Addisu KitteS. Yenealem AyitegebD. Yai FeyisaT. YenealemD. GebretsadikG. Simultaneous electrochemical determination of paracetamol and caffeine by using activated glassy carbon electrode simultaneous electrochemical determination of paracetamol and caffeine using activated glassy carbon electrode.Ana. Bio. Elec.202012193
    [Google Scholar]
  26. FurtadoL.A. GonçalvesM.C.O. InocêncioC.V.M. PintoE.M. MartinsD.L. SemaanF.S. Electrodeposition of 4-benzenesulfonic acid onto a graphite-epoxy composite electrode for the enhanced voltammetric determination of caffeine in beverages.J. Anal. Methods Chem.2019201911110.1155/2019/8596484 30809415
    [Google Scholar]
  27. MonteiroM.K.S. PaivaS.S.M. da SilvaD.R. VilarV.J.P. Martínez-HuitleC.A. dos SantosE.V. Novel cork-graphite electrochemical sensor for voltammetric determination of caffeine.J. Electroanal. Chem.201983928328910.1016/j.jelechem.2019.03.030
    [Google Scholar]
/content/journals/cac/10.2174/0115734110324545240725114425
Loading
/content/journals/cac/10.2174/0115734110324545240725114425
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test