Skip to content
2000
Volume 21, Issue 9
  • ISSN: 1573-4110
  • E-ISSN: 1875-6727

Abstract

Background

The problem of nuclear water pollution is becoming serious worldwide. Uranium, as a metal substance with long half-life radioactivity, is commonly treated by various methods. Adsorption is considered to be one of the most promising methods for treating uranium-containing wastewater.

Methods

Magnetic nanoparticles MnFeO were prepared the coprecipitation method, followed by modification of silica using the improved Stöber method. Subsequently, amino was functionalized and grafted onto graphene oxide to prepare a novel magnetic graphene oxide composite MnFeO@SiO-NH@GO.

Results

The highest adsorption rate of MnFeO@SiO-NH@GO for uranium can reach 97.27% in 1 mg·L-1 uranium solution, and the adsorption process conformed to the quasi-second-order kinetic model and Langmuir adsorption isotherm model, indicating that it was a monolayer adsorption dominated by chemisorption. The adsorption thermodynamic parameters demonstrated that the adsorption process was a spontaneous endothermic reaction.

Conclusion

MnFeO@SiO-NH@GO had excellent adsorption properties for uranium, which has great application potential in the treatment of low-concentration uranium-containing wastewater.

Loading

Article metrics loading...

/content/journals/cac/10.2174/0115734110307561240822094748
2024-09-04
2025-12-14
Loading full text...

Full text loading...

References

  1. ChenD. SunM. ZhaoX. ShiM. FuX. HuW. ZhaoR. High-efficiency and economical uranium extraction from seawater with easily prepared supramolecular complexes.J. Colloid Interface Sci.202466834335110.1016/j.jcis.2024.04.171 38678889
    [Google Scholar]
  2. RathodA.M. VerpaeleS. KelvinM. SullivanK.V. LeybourneM.I. Uranium: An overview of physicochemical properties, exposure assessment methodologies, and health effects of environmental and occupational exposure.Environ. Geochem. Health20234551183120010.1007/s10653‑022‑01293‑x 35711076
    [Google Scholar]
  3. YanZ. PuY. ZhangM. DengR. ShiF. LiH. DuanT. ZhangY. Phosphorus functionalized tungsten trioxide nanosheets loaded on three-dimensional carbon felt for efficient electrochemical uranium extraction.Desalination202458111761710.1016/j.desal.2024.117617
    [Google Scholar]
  4. JangJ. KimT. ParkS. KimG.Y. KimS. LeeS. Evaporation behavior of lithium, potassium, uranium and rare earth chlorides in pyroprocessing.J. Nucl. Mater.2017497303610.1016/j.jnucmat.2017.10.047
    [Google Scholar]
  5. WangZ. HuH. HuangL. LinF. LiuS. WuT. AlharbiN.S. RabahS.O. LuY. WangX. Graphene aerogel capsulated precipitants for high efficiency and rapid elimination of uranium from water.Chem. Eng. J.202039612527210.1016/j.cej.2020.125272
    [Google Scholar]
  6. OrabiA.H. MohamedB.T. IsmaielD.A. ElyanS.S. Sequential separation and selective extraction of uranium and thorium from monazite sulfate leach liquor using dipropylamine extractant.Miner. Eng.202117210715110.1016/j.mineng.2021.107151
    [Google Scholar]
  7. LiuH. ChenS. LuJ. LiQ. LiJ. ZhangB. Pentavalent vanadium and hexavalent uranium removal from groundwater by woodchip-sulfur based mixotrophic biotechnology.Chem. Eng. J.202243713531310.1016/j.cej.2022.135313
    [Google Scholar]
  8. Ghasemi TorkabadM. KeshtkarA.R. SafdariS.J. Selective concentration of uranium from bioleach liquor of low-grade uranium ore by nanofiltration process.Hydrometallurgy201817810611510.1016/j.hydromet.2018.04.012
    [Google Scholar]
  9. BertoliA.C. QuintãoM.C. De AbreuH.A. LadeiraA.C.Q. DuarteH.A. Uranium separation from acid mine drainage using anionic resins – An experimental/theoretical investigation of its chemical speciation and the interaction mechanism.J. Environ. Chem. Eng.20197110279010.1016/j.jece.2018.11.035
    [Google Scholar]
  10. LeiH. SongS. PanN. ZouH. WangX. TuoX. Redox-active phytic acid-based self-assembled hybrid material for enhanced uranium adsorption from highly acidic solution.J. Hazard. Mater.202446513322710.1016/j.jhazmat.2023.133227 38091800
    [Google Scholar]
  11. FuT. LiuH. WangX. LiuY. Fine tuning of pore size in metal–organic frameworks for superior removal of U(vi) from aqueous solution.New J. Chem.202448146211622010.1039/D4NJ00368C
    [Google Scholar]
  12. BaiJ. ChuJ. YinX. WangJ. TianW. HuangQ. JiaZ. WuX. GuoH. QinZ. Synthesis of amidoximated polyacrylonitrile nanoparticle/graphene composite hydrogel for selective uranium sorption from saline lake brine.Chem. Eng. J.202039112355310.1016/j.cej.2019.123553
    [Google Scholar]
  13. LiuX. JiM. LinH. JinW. XueY. WangQ. MaF. Preparation of amidoxime polyacrylonitrile membrane with excellent mechanical strength for adsorption of uranium in simulated wastewater.Separ. Purif. Tech.202332712489010.1016/j.seppur.2023.124890
    [Google Scholar]
  14. ChenZ. LiuZ. LiuJ. XiaoX. Research progress in the detection of common foodborne hazardous substances based on functional nucleic acids biosensors.Biotechnol. Bioeng.2023120123501351710.1002/bit.28555 37723667
    [Google Scholar]
  15. WuL. Mendoza-GarciaA. LiQ. SunS. Organic phase syntheses of magnetic nanoparticles and their applications.Chem. Rev.201611618104731051210.1021/acs.chemrev.5b00687 27355413
    [Google Scholar]
  16. BaigM.M. YousufM.A. AgboolaP.O. KhanM.A. ShakirI. WarsiM.F. Optimization of different wet chemical routes and phase evolution studies of MnFe2O4 nanoparticles.Ceram. Int.20194510126821269010.1016/j.ceramint.2019.03.114
    [Google Scholar]
  17. HouL. QinG. QuY. YangC. RaoX. GaoY. ZhuX. Fabrication of recoverable magnetic composite material based on graphene oxide for fast removal of lead and cadmium ions from aqueous solution.J. Chem. Technol. Biotechnol.20219651345135710.1002/jctb.6655
    [Google Scholar]
  18. FarjadianF. AbbaspourS. SadatluM.A.A. MirkianiS. GhasemiA. Hoseini-GhahfarokhiM. MozaffariN. KarimiM. HamblinM.R. Recent developments in graphene and graphene oxide: Properties, synthesis, and modifications: A review.ChemistrySelect2020533102001021910.1002/slct.202002501
    [Google Scholar]
  19. ThyL.T.M. ThuongN.H. TuT.H. MyN.H.T. TuongH.H.P. NamH.M. PhongM.T. HieuN.H. Fabrication and adsorption properties of magnetic graphene oxide nanocomposites for removal of arsenic (V) from water.Adsorpt. Sci. Technol.2020387-824025310.1177/0263617420942710
    [Google Scholar]
  20. ZhuB. LiL. DaiZ. TangS. ZhenD. SunL. ChenL. TuoC. TangZ. Synthesis of amidoximated polyacrylonitrile/sodium alginate composite hydrogel beed and its use in selective and recyclable removal of U(VI).J. Radioanal. Nucl. Chem.202233141669168210.1007/s10967‑022‑08233‑0
    [Google Scholar]
  21. SherlalaA.I.A. RamanA.A.A. BelloM.M. Synthesis and characterization of magnetic graphene oxide for arsenic removal from aqueous solution.Environ. Technol.201940121508151610.1080/09593330.2018.1424259 29300679
    [Google Scholar]
  22. ChowdhuryI.R. MazumderM.A.J. ChowdhuryS. QasemM.A.A. AzizM.A. Model-based application for adsorption of lead (II) from aqueous solution using low-cost jute stick derived activated carbon.Curr. Anal. Chem.202118340341210.2174/1573411016999201002093403
    [Google Scholar]
  23. WangJ. GuoX. Adsorption isotherm models: Classification, physical meaning, application and solving method.Chemosphere202025812727910.1016/j.chemosphere.2020.127279 32947678
    [Google Scholar]
  24. LiuY. YuanY. NiS. LiuJ. XieS. LiuY. Construction of g-C3N4/Ag/TiO2 Z-scheme photocatalyst and Its improved photocatalytic U(VI) reduction application in water.Water Sci. Technol.20228592639265110.2166/wst.2022.139 35576258
    [Google Scholar]
  25. LiuW. WangQ. WangH. XinQ. HouW. HuE. LeiZ. Adsorption of uranium by chitosan/Chlorella pyrenoidosa composite adsorbent bearing phosphate ligand.Chemosphere2022287Pt 213219310.1016/j.chemosphere.2021.132193 34826906
    [Google Scholar]
  26. HuB. WangH. LiuR. QiuM. Highly efficient U(VI) capture by amidoxime/carbon nitride composites: Evidence of EXAFS and modeling.Chemosphere202127412974310.1016/j.chemosphere.2021.129743 33540307
    [Google Scholar]
  27. XieG. ChenH. MaoP. FengG. Equilibrium, kinetics and thermodynamics of biosorption of U(VI) by Jonesia quinghaiensis strain ZFSY-01 isolated from the wastewater of a uranium mine.J. Water Health20232181086109710.2166/wh.2023.108 37632383
    [Google Scholar]
  28. YangJ. LeiZ. DaiY. LuoY. XieS. WangJ. ZhouS. WeiB. LiC. HuS. Preparation of aluminum sludge composite gel spheres and adsorption of U(IV) from aqueous solution.Environ. Sci. Pollut. Res. Int.20202721268352684410.1007/s11356‑020‑09032‑4 32382912
    [Google Scholar]
  29. HassanA.M. Wan IbrahimW.A. BakarM.B. SanagiM.M. SutirmanZ.A. NodehH.R. MokhterM.A. New effective 3-aminopropyltrimethoxysilane functionalized magnetic sporopollenin-based silica coated graphene oxide adsorbent for removal of Pb(II) from aqueous environment.J. Environ. Manage.202025310965810.1016/j.jenvman.2019.109658 31666209
    [Google Scholar]
  30. LiT. XuY. WangF. XiaL. Effective separation of U(VI) in acidic uranium-containing wastewater by potassium manganese ferrocyanide and carbon nanotube encapsulated calcium alginate beads.J. Environ. Chem. Eng.202311511113310.1016/j.jece.2023.111133
    [Google Scholar]
  31. DaiZ. SunY. ZhangH. DingD. LiL. Highly efficient removal of uranium(VI) from wastewater by polyamidoxime/polyethyleneimine magnetic graphene oxide.J. Chem. Eng. Data201964125797580510.1021/acs.jced.9b00759
    [Google Scholar]
  32. XieS. XiaoX. TanW. LvJ. DengQ. FangQ. Influence of Leifsonia sp. on U(VI) removal efficiency and the Fe–U precipitates by zero-valent iron.Environ. Sci. Pollut. Res. Int.20202755584559410.1007/s11356‑019‑07306‑0 31853852
    [Google Scholar]
  33. LuW. LiL. DingD. DaiZ. TangS. CaoC. LiuL. ChenT. Selective adsorption of uranium (VI) by calix[6]arene-modified magnetic graphene oxide.J. Nanosci. Nanotechnol.201818128160816810.1166/jnn.2018.16408 30189933
    [Google Scholar]
  34. TanN. YeQ. LiuY. YangY. DingZ. LiuL. WangD. ZengC. A fungal-modified material with high uranium (VI) adsorption capacity and strong anti-interference ability.Environ. Sci. Pollut. Res. Int.20223010267522676310.1007/s11356‑022‑24092‑4 36369446
    [Google Scholar]
  35. WangJ. GuoX. Rethinking of the intraparticle diffusion adsorption kinetics model: Interpretation, solving methods and applications.Chemosphere2022309Pt 213673210.1016/j.chemosphere.2022.136732 36223824
    [Google Scholar]
  36. HuQ. MaS. HeZ. LiuH. PeiX. A revisit on intraparticle diffusion models with analytical solutions: Underlying assumption, application scope and solving method.J. Water Process Eng.20246010524110.1016/j.jwpe.2024.105241
    [Google Scholar]
  37. SuneeshA.S. ManojkumarP.A. Robert SelvanB. GhoshC. MythiliR. ChandraS. RamanathanN. Unique magnetic graphene oxide with enhanced carboxylate functional groups for uranium separation by solid phase extraction.Mater. Sci. Eng. B202329511660910.1016/j.mseb.2023.116609
    [Google Scholar]
  38. WeeB.S. MaliganM.F. ChinS.F. EliasM.S. ShiraiN. Adsorption of U(VI) ions using functionalized sago hampas: Kinetics, isotherms, and thermodynamics studies.J. Radioanal. Nucl. Chem.202433362679268910.1007/s10967‑024‑09489‑4
    [Google Scholar]
  39. HouL. YangC. RaoX. HuL. BaoY. GaoY. ZhuX. Fabrication of recoverable magnetic surface ion-imprinted polymer based on graphene oxide for fast and selective removal of lead ions from aqueous solution.Colloids Surf. A Physicochem. Eng. Asp.202162512694910.1016/j.colsurfa.2021.126949
    [Google Scholar]
  40. GaoQ. HuJ. LiR. XingZ. XuL. WangM. GuoX. WuG. Radiation synthesis of a new amidoximated UHMWPE fibrous adsorbent with high adsorption selectivity for uranium over vanadium in simulated seawater.Radiat. Phys. Chem.20161221810.1016/j.radphyschem.2015.12.023
    [Google Scholar]
  41. ZhangB. GuoX. XieS. LiuX. LingC. MaH. YuM. LiJ. Synergistic nanofibrous adsorbent for uranium extraction from seawater.RSC Advances2016685819958200510.1039/C6RA18785D
    [Google Scholar]
  42. RuleP. K, B.; Gonte, R.R. Uranium(VI) remediation from aqueous environment using impregnated cellulose beads.J. Environ. Radioact.2014136222910.1016/j.jenvrad.2014.05.004 24865891
    [Google Scholar]
  43. YuanY. YuQ. YangS. WenJ. GuoZ. WangX. WangN. Ultrafast recovery of uranium from seawater by Bacillus velezensis strain UUS‐1 with innate anti‐biofouling activity.Adv. Sci. (Weinh.)2019618190096110.1002/advs.201900961 31559134
    [Google Scholar]
  44. MahmoudM.A. Kinetics studies of uranium sorption by powdered corn cob in batch and fixed bed system.J. Adv. Res.201671798710.1016/j.jare.2015.02.004 26843973
    [Google Scholar]
  45. ZhangS. RenZ. ChenF. ZhangK. FuX. XiaoF. PengG. Fabrication of UiO-66-(OH)2 amine oxime derivatives and their highly efficient and selective adsorption of uranium (VI).J. Radioanal. Nucl. Chem.202233141521152910.1007/s10967‑022‑08201‑8
    [Google Scholar]
/content/journals/cac/10.2174/0115734110307561240822094748
Loading
/content/journals/cac/10.2174/0115734110307561240822094748
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): adsorption; graphene oxide; Magnetic nanoparticles; MnFe2O4; treatment; uranium ions
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test