Skip to content
2000
Volume 21, Issue 9
  • ISSN: 1573-4110
  • E-ISSN: 1875-6727

Abstract

Background

Different C-3 substituted flavonoids have different biological activities and applications in food pharmacology, toxicology, and medicine. Thus, the rapid identification and classification of substitution patterns at C-3 of flavonoids can benefit the processing of flavonoid-related food and medicine.

Objective

This study aimed to classify flavonoids with different C3 substituents using Raman spectroscopy, providing a feasible approach for identifying flavonoids in plants.

Methods

Eighteen flavonoid samples were selected and dissolved in different solvents. The corresponding Raman spectra were collected by a portable Raman spectrograph. After preprocessing, feature reduction and machine learning were used for the accurate classification of three flavonoids based on 66 Raman spectra.

Results

The signals of flavone at 1002, 1245, 1590, and 1609 cm-1 were identified as the characteristic peaks. Peaks at 1298, 1586, and 1605 cm-1 were the special features observed of flavonol. The fingerprint features of isoflavone appeared at 894, 1227, 1321, and 1620 cm-1. All combinations achieved a good classification accuracy of 85%, and the accuracy of the neural network reached 93.3%.

Conclusion

The results have demonstrated machine learning to be applicable for the detection and classification of C-3 substituted flavonoids and that feature reduction can aid in the discrimination of Raman spectra variations among diverse C-3 substituted flavonoids, thereby facilitating their further application.

Loading

Article metrics loading...

/content/journals/cac/10.2174/0115734110301113240528102507
2024-08-12
2025-12-15
Loading full text...

Full text loading...

References

  1. Kawser HossainM. Abdal DayemA. HanJ. YinY. KimK. Kumar SahaS. YangG.M. ChoiH. ChoS.G. Molecular mechanisms of the anti-obesity and anti-diabetic properties of flavonoids.Int. J. Mol. Sci.201617456910.3390/ijms17040569 27092490
    [Google Scholar]
  2. DiasM.C. PintoD.C.G.A. SilvaA.M.S. Plant flavonoids: Chemical characteristics and biological activity.Molecules20212617537710.3390/molecules26175377 34500810
    [Google Scholar]
  3. Perez-VizcainoF. DuarteJ. Santos-BuelgaC. The flavonoid paradox: Conjugation and deconjugation as key steps for the biological activity of flavonoids.J. Sci. Food Agric.20129291822182510.1002/jsfa.5697 22555950
    [Google Scholar]
  4. WangT. LiQ. BiK. Bioactive flavonoids in medicinal plants: Structure, activity and biological fate.Asian J. Pharm. Sci.2018131122310.1016/j.ajps.2017.08.004 32104374
    [Google Scholar]
  5. LiuW. FengY. YuS. FanZ. LiX. LiJ. YinH. The flavonoid biosynthesis network in plants.Int. J. Mol. Sci.202122231282410.3390/ijms222312824 34884627
    [Google Scholar]
  6. LaouéJ. FernandezC. OrmeñoE. Plant flavonoids in mediterranean species: A focus on flavonols as protective metabolites under climate stress.Plants2022112
    [Google Scholar]
  7. SasakiN. NakayamaT. Achievements and perspectives in biochemistry concerning anthocyanin modification for blue flower coloration.Plant Cell Physiol.2015561284010.1093/pcp/pcu097 25015943
    [Google Scholar]
  8. Winkel-ShirleyB. Flavonoid biosynthesis. A colorful model for genetics, biochemistry, cell biology, and biotechnology.Plant Physiol.2001126248549310.1104/pp.126.2.485 11402179
    [Google Scholar]
  9. DurazzoA. LucariniM. SoutoE.B. CicalaC. CaiazzoE. IzzoA.A. NovellinoE. SantiniA. Polyphenols: A concise overview on the chemistry, occurrence, and human health.Phytother. Res.20193392221224310.1002/ptr.6419 31359516
    [Google Scholar]
  10. MierziakJ. KostynK. KulmaA. Flavonoids as important molecules of plant interactions with the environment.Molecules20141910162401626510.3390/molecules191016240 25310150
    [Google Scholar]
  11. YangT. HuY. YanY. ZhouW. ChenG. ZengX. CaoY. Characterization and evaluation of antioxidant and anti-inflammatory activities of flavonoids from the fruits of Lycium barbarum.Foods202211330610.3390/foods11030306 35159457
    [Google Scholar]
  12. DanihelováM. ViskupičováJ. ŠturdíkE. Lipophilization of flavonoids for their food, therapeutic and cosmetic applications.Acta Chim. Slov.201251596910.2478/v10188‑012‑0010‑6 24061173
    [Google Scholar]
  13. JinH. LeeW.S. YunJ.W. JungJ.H. YiS.M. KimH.J. ChoiY.H. KimG. JungJ.M. RyuC.H. ShinS.C. HongS.C. Flavonoids from Citrus unshiu Marc. inhibit cancer cell adhesion to endothelial cells by selective inhibition of VCAM-1.Oncol. Rep.20133052336234210.3892/or.2013.2711 24002113
    [Google Scholar]
  14. KopustinskieneD.M. JakstasV. SavickasA. BernatonieneJ. Flavonoids as anticancer agents.Nutrients202012245710.3390/nu12020457 32059369
    [Google Scholar]
  15. ZouaouiS. FarmanM. SemmarN. Review on structural trends and chemotaxonomical aspects of pharmacologically evaluated flavonoids.Curr. Top. Med. Chem.202121762864810.2174/1568026621666210113165007 33441067
    [Google Scholar]
  16. AL-IshaqR.K. AbotalebM. KubatkaP. Kajo, K.; Büsselberg, D. Flavonoids and their anti-diabetic effects: cellular mechanisms and effects to improve blood sugar levels.Biomolecules20199943010.3390/biom9090430 31480505
    [Google Scholar]
  17. BondonnoN.P. LiuY.L. ZhengY. IveyK. WillettW.C. StampferM.J. RimmE.B. CassidyA. Change in habitual intakes of flavonoid-rich foods and mortality in US males and females.BMC Med.202321118110.1186/s12916‑023‑02873‑z 37173745
    [Google Scholar]
  18. HollandT.M. AgarwalP. WangY. DhanaK. LeurgansS.E. SheaK. BoothS.L. RajanK.B. SchneiderJ.A. BarnesL.L. Association of dietary intake of flavonols with changes in global cognition and several cognitive abilities.Neurology20231007e694e70210.1212/WNL.0000000000201541 36414424
    [Google Scholar]
  19. BurdaS. OleszekW. Antioxidant and antiradical activities of flavonoids.J. Agric. Food Chem.20014962774277910.1021/jf001413m 11409965
    [Google Scholar]
  20. AdamczakA. OżarowskiM. KarpińskiT.M. Antibacterial activity of some flavonoids and organic acids widely distributed in plants.J. Clin. Med.20199110910.3390/jcm9010109 31906141
    [Google Scholar]
  21. LesjakM. BearaI. SiminN. PintaćD. MajkićT. BekvalacK. OrčićD. Mimica-DukićN. Antioxidant and anti-inflammatory activities of quercetin and its derivatives.J. Funct. Foods201840687510.1016/j.jff.2017.10.047
    [Google Scholar]
  22. JnawaliH.N. JeonD. JeongM.C. LeeE. JinB. RyooS. YooJ. JungI.D. LeeS.J. ParkY.M. KimY. Antituberculosis activity of a naturally occurring flavonoid, isorhamnetin.J. Nat. Prod.201679496196910.1021/acs.jnatprod.5b01033 26974691
    [Google Scholar]
  23. CongL. XieX. LiuS. XiangL. FuX. Genistein promotes M1 macrophage apoptosis and reduces inflammatory response by disrupting miR-21/TIPE2 pathway.Saudi Pharm. J.202230793494510.1016/j.jsps.2022.05.009 35903524
    [Google Scholar]
  24. SahuA.K. MishraA.K. Photophysical behavior of plant flavonols galangin, kaempferol, quercetin, and myricetin in homogeneous media and the DMPC model membrane: Unveiling the influence of the B-ring hydroxylation of flavonols.J. Phys. Chem. B2022126152863287510.1021/acs.jpcb.2c00929 35404618
    [Google Scholar]
  25. Sachin FegadeB. Synthesis, molecular docking, and anticancer activity of N-heteroaryl substituted flavon derivatives.Lett. Drug Des. Discov.2023201220552069
    [Google Scholar]
  26. WolfeK.L. LiuR.H. Structure-activity relationships of flavonoids in the cellular antioxidant activity assay.J. Agric. Food Chem.200856188404841110.1021/jf8013074 18702468
    [Google Scholar]
  27. LoosG. Van SchepdaelA. CabooterD. Quantitative mass spectrometry methods for pharmaceutical analysis.Philos. Trans. A Math. Phys. Eng. Sci.2016374207910.1098/rsta.2015.0366
    [Google Scholar]
  28. YanL. LiuC. QuH. LiuW. ZhangY. YangJ. ZhengL. Discrimination and measurements of three flavonols with similar structure using terahertz spectroscopy and chemometrics.J. Infrared Millim. Terahertz Waves201839549250410.1007/s10762‑018‑0474‑6
    [Google Scholar]
  29. ChenJ. PisoneroJ. ChenS. WangX. FanQ. DuanY. Convolutional neural network as a novel classification approach for laser-induced breakdown spectroscopy applications in lithological recognition.Spectrochim. Acta B At. Spectrosc.202016610580110.1016/j.sab.2020.105801
    [Google Scholar]
  30. GeraldesC.F.G.C. Introduction to infrared and raman-based biomedical molecular imaging and comparison with other modalities.Molecules20202523554710.3390/molecules25235547 33256052
    [Google Scholar]
  31. PaudelA. RaijadaD. RantanenJ. Raman spectroscopy in pharmaceutical product design.Adv. Drug Deliv. Rev.20158932010.1016/j.addr.2015.04.003 25868453
    [Google Scholar]
  32. JonesR.R. HooperD.C. ZhangL. WolversonD. ValevV.K. Raman techniques: Fundamentals and frontiers.Nanoscale Res. Lett.201914123110.1186/s11671‑019‑3039‑2 31300945
    [Google Scholar]
  33. WangN. RenF. LiL. WangH. WangL. ZengQ. SongY. ZengT. ZhuS. ChenX. Quantitative chemical sensing of drugs in scattering media with Bessel beam Raman spectroscopy.Biomed. Opt. Express20221342488250210.1364/BOE.455666 35519250
    [Google Scholar]
  34. PenaA.P. AlmeidaR.G. CamposJ.L. Dos SantosH.F. da Silva JúniorE.N. JorioA. Raman spectra-based structural classification analysis of quinoidal and derived molecular systems.Phys. Chem. Chem. Phys.20222421183119010.1039/D1CP04261K 34931633
    [Google Scholar]
  35. TaniguchiM. LaRoccaC.A. BernatJ.D. LindseyJ.S. Digital database of absorption spectra of diverse flavonoids enables structural comparisons and quantitative evaluations.J. Nat. Prod.20238641087111910.1021/acs.jnatprod.2c00720 36848595
    [Google Scholar]
  36. AllanD.R. Accessing new polymorphs and solvates through solvothermal recrystallization.IUCrJ20219Pt 167 35059203
    [Google Scholar]
  37. NaserN.A. KahdimK.H. TahaD.N. Synthesis and characterization of an organic reagent 4-(6-bromo-2-benzothiazolylazo) pyrogallol and its analytical application.J. Oleo Sci.201261738739210.5650/jos.61.387 22790169
    [Google Scholar]
  38. LiN. ZhuangZ.F. GuoZ.Y. XiongK. ChenS.J. LiS.X. LiY. Raman spectroscopy technology and the application in chinese medicine identification.Chin. J. Med. Phys.20122914
    [Google Scholar]
  39. DongJ.J. GeY.R. QiX.Y. Analysis of Curcuma longa by laser raman spectra.Strait Pharm J.201628124
    [Google Scholar]
  40. KononenkoI. ŠimecE. Robnik-ŠikonjaM. Overcoming the myopia of inductive learning algorithms with RELIEFF.Appl. Intell.199771395510.1023/A:1008280620621
    [Google Scholar]
  41. Robles-VelascoA. CortesP. MunuzuriJ OnievaL. Prediction of pipe failures in water supply networks using logistic regression and support vector classification.Reliab Eng Syst Safe202019610.1016/j.ress.2019.106754
    [Google Scholar]
  42. BoulesteixA.L. JanitzaS. KruppaJ. KönigI.R. Overview of random forest methodology and practical guidance with emphasis on computational biology and bioinformatics.Wiley Interdiscip. Rev. Data Min. Knowl. Discov.20122649350710.1002/widm.1072
    [Google Scholar]
  43. BreimanL. Random forests.Mach. Learn.200145153210.1023/A:1010933404324
    [Google Scholar]
  44. HopfieldJ.J. Neural networks and physical systems with emergent collective computational abilities.Proc. Natl. Acad. Sci. USA19827982554255810.1073/pnas.79.8.2554 6953413
    [Google Scholar]
  45. CorredorC. TeslovaT. CañamaresM.V. ChenZ. ZhangJ. LombardiJ.R. LeonaM. Raman and surface-enhanced Raman spectra of chrysin, apigenin and luteolin.Vib. Spectrosc.200949219019510.1016/j.vibspec.2008.07.012
    [Google Scholar]
  46. PengH. ZhangX. XuJ. Apigenin-7-O-β-d-glycoside isolation from the highly copper-tolerant plant Elsholtzia splendens.J. Zhejiang Univ. Sci. B201617644745410.1631/jzus.B1500242 27256678
    [Google Scholar]
  47. PaczkowskaM. LewandowskaK. BednarskiW. MizeraM. PodborskaA. KrauseA. Cielecka-PiontekJ. Application of spectroscopic methods for identification (FT-IR, Raman spectroscopy) and determination (UV, EPR) of quercetin-3-O-rutinoside. Experimental and DFT based approach.Spectrochim. Acta A Mol. Biomol. Spectrosc.201514013213910.1016/j.saa.2014.12.050 25589394
    [Google Scholar]
  48. HanuzaJ. GodlewskaP. KucharskaE. PtakM. KopaczM. MączkaM. HermanowiczK. MacalikL. Molecular structure and vibrational spectra of quercetin and quercetin-5′-sulfonic acid.Vib. Spectrosc.2017889410510.1016/j.vibspec.2016.11.007
    [Google Scholar]
  49. SinghH. SinghS. SrivastavaA. TandonP. BhartiP. KumarS. MauryaR. Conformational analysis and vibrational study of daidzein by using FT-IR and FT-Raman spectroscopies and DFT calculations.Spectrochim. Acta A Mol. Biomol. Spectrosc.201412040541510.1016/j.saa.2013.10.045 24211623
    [Google Scholar]
  50. WangC.H. HuangC.C. ChenW. LaiY.S. The chemical aspects of Raman spectroscopy: Statistical structure-spectrum relationship in the analyses of bioflavonoids.Yao Wu Shi Pin Fen Xi202028223924710.38212/2224‑6614.1058 35696108
    [Google Scholar]
/content/journals/cac/10.2174/0115734110301113240528102507
Loading
/content/journals/cac/10.2174/0115734110301113240528102507
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test