Skip to content
2000
image of Integrating Biosensors in Phytochemical Research: Challenges and Breakthroughs

Abstract

Biosensors are devices that generate signals by interaction of biological elements and analytes, mainly based on their concentration. These are especially composed of enzymes or antibodies. They are associated with a physio-chemical transducer. Their rapid, simple, and real-time detection is of great importance in chemistry, analysis, and drug discovery and development. Phytoconstituents are biologically active compounds mainly synthesized by plants to support their growth and defend against various stresses. Medicinal plants and their products have a vast history of use in traditional medicine, but they are not reliable due to their narrow range and adverse and toxic effects. Moreover, they have vast therapeutic effects on humans, from antibiotics to anti-neoplastic agents. Hence, there is a need for an efficient method to detect and measure these phytoconstituents, and biosensors seem to be the solution. This article provides an overview of various biosensors that can be utilized to identify widely used phytoconstituents, also known as secondary metabolites, such as alkaloids, tannins, flavonoids, terpenoids, cardiac glycosides, and phenolic compounds. The article discusses different types of biosensors, including impedimetric immunosensors, Riboswitch-based biosensors, DNA biosensors, electrochemical biosensors, and others. Furthermore, the potential for patentable innovations in biosensor technologies targeting phytoconstituent detection is also highlighted, emphasizing their growing relevance in both scientific research and commercial applications.

Loading

Article metrics loading...

/content/journals/biot/10.2174/0118722083381223250612181959
2025-06-30
2025-09-27
Loading full text...

Full text loading...

References

  1. Das A. Pandita D. Jain G.K. Agarwal P. Grewal A.S. Khar R.K. Lather V. Role of phytoconstituents in the management of COVID-19. Chem. Biol. Interact. 2021 341 109449 10.1016/j.cbi.2021.109449 33798507
    [Google Scholar]
  2. Süntar I. Importance of ethnopharmacological studies in drug discovery: Role of medicinal plants. Phytochem. Rev. 2020 19 5 1199 1209 10.1007/s11101‑019‑09629‑9
    [Google Scholar]
  3. Velu G. Palanichamy V. Rajan A.P. Phytochemical and pharmacological importance of plant secondary metabolites in modern medicine. Bioorganic Phase in Natural Food: An Overview Springer Cham Roopan S. Madhumitha G. 2018 135 156 10.1007/978‑3‑319‑74210‑6_8
    [Google Scholar]
  4. Jain C. Khatana S. Vijayvergia R. Bioactivity of secondary metabolites of various plants: A review. Int. J. Pharm. Sci. Res. 2019 10 2 494 504 10.13040/IJPSR.0975‑8232.10(2).494‑04
    [Google Scholar]
  5. Ranjha M.M.A.N. Kanwal R. Shafique B. Arshad R.N. Irfan S. Kieliszek M. Kowalczewski P.Ł. Irfan M. Khalid M.Z. Roobab U. Aadil R.M. A critical review on pulsed electric field: A novel technology for the extraction of phytoconstituents. Molecules 2021 26 16 4893 10.3390/molecules26164893 34443475
    [Google Scholar]
  6. Heinrich M. Mah J. Amirkia V. Alkaloids used as medicines: Structural phytochemistry meets biodiversity - An update and forward look. Molecules 2021 26 7 1836 10.3390/molecules26071836 33805869
    [Google Scholar]
  7. Siswina T. Rustama M.M. Sumiarsa D. Kurnia D. Phytochemical profiling of Piper crocatum and its antifungal mechanism action as Lanosterol 14 alpha demethylase CYP51 inhibitor: A review. F1000Res. 2022 11 1115 10.12688/f1000research.125645.3 37151610
    [Google Scholar]
  8. Chung K.T. Wong T.Y. Wei C.I. Huang Y.W. Lin Y. Tannins and human health: A review. Crit. Rev. Food Sci. Nutr. 1998 38 6 421 464 10.1080/10408699891274273 9759559
    [Google Scholar]
  9. Tholl D. Biosynthesis and biological functions of terpenoids in plants. Adv. Biochem. Eng. Biotechnol. 2015 148 63 106 10.1007/10_2014_295 25583224
    [Google Scholar]
  10. Yi L. Ma S. Ren D. Phytochemistry and bioactivity of Citrus flavonoids: A focus on antioxidant, anti-inflammatory, anticancer and cardiovascular protection activities. Phytochem. Rev. 2017 16 3 479 511 10.1007/s11101‑017‑9497‑1
    [Google Scholar]
  11. Ali S.A. Singh G. Datusalia A.K. Potential therapeutic applications of phytoconstituents as immunomodulators: Pre‐clinical and clinical evidences. Phytother. Res. 2021 35 7 3702 3731 10.1002/ptr.7068 33734511
    [Google Scholar]
  12. Xue F. Li X. Qin L. Liu X. Li C. Adhikari B. Anti-aging properties of phytoconstituents and phyto-nanoemulsions and their application in managing aging-related diseases. Adv. Drug Deliv. Rev. 2021 176 113886 10.1016/j.addr.2021.113886 34314783
    [Google Scholar]
  13. Saxena M. Saxena J. Nema R. Singh D. Gupta A. Phytochemistry of medicinal plants. J. Pharmacogn. Phytochem. 2013 1 6 168 182
    [Google Scholar]
  14. Shukla A. Dubey S.A. A review: Traditionally used medicinal plants of family arecaceae with phytoconstituents and therapeutic applications. Int. J. Boil. Pharm. Allied Sci. 2022 11 12 5864 5877 10.31032/IJBPAS/2022/11.12.6655
    [Google Scholar]
  15. Singh A.K. Rai S.N. Maurya A. Mishra G. Awasthi R. Shakya A. Chellappan D.K. Dua K. Vamanu E. Chaudhary S.K. Singh M.P. Therapeutic potential of phytoconstituents in management of Alzheimer’s disease. Evid. Based Complement. Alternat. Med. 2021 2021 1 1 19 10.1155/2021/5578574 34211570
    [Google Scholar]
  16. Wink M. Modes of action of herbal medicines and plant secondary metabolites. Medicines (Basel) 2015 2 3 251 286 10.3390/medicines2030251 28930211
    [Google Scholar]
  17. Bejček J. Jurášek M. Spiwok V. Rimpelová S. Quo vadis cardiac glycoside research? Toxins (Basel) 2021 13 5 344 10.3390/toxins13050344 34064873
    [Google Scholar]
  18. Beale T.M. Taylor M.S. Synthesis of cardiac glycoside analogs by catalyst-controlled, regioselective glycosylation of digitoxin. Org. Lett. 2013 15 6 1358 1361 10.1021/ol4003042 23465047
    [Google Scholar]
  19. Xue R. Han N. Ye C. Wang L. Yang J. Wang Y. Yin J. The cytotoxic activities of cardiac glycosides from Streptocaulon juventas and the structure–activity relationships. Fitoterapia 2014 98 228 233 10.1016/j.fitote.2014.08.008 25128424
    [Google Scholar]
  20. Li X. Zheng J. Chen S. Meng F. Ning J. Sun S. Oleandrin, a cardiac glycoside, induces immunogenic cell death via the PERK/elF2α/ATF4/CHOP pathway in breast cancer. Cell Death Dis. 2021 12 4 314 10.1038/s41419‑021‑03605‑y 33762577
    [Google Scholar]
  21. Yang L. Zhou F. Zhuang Y. Liu Y. Xu L. Zhao H. Xiang Y. Dai X. Liu Z. Huang X. Wang L. Zhao C. Acetyl-bufalin shows potent efficacy against non-small-cell lung cancer by targeting the CDK9/STAT3 signalling pathway. Br. J. Cancer 2021 124 3 645 657 10.1038/s41416‑020‑01135‑6 33122847
    [Google Scholar]
  22. Whayne T.F. Clinical use of digitalis: a state of the art review. Am. J. Cardiovasc. Drugs 2018 18 6 427 440 10.1007/s40256‑018‑0292‑1 30066080
    [Google Scholar]
  23. Fuerstenwerth H. On the differences between ouabain and digitalis glycosides. Am. J. Ther. 2014 21 1 35 42 10.1097/MJT.0b013e318217a609 21642827
    [Google Scholar]
  24. Deepak D. Srivastava S. Khare N.K. Khare A. Khare N.K. Srivastava S. Deepak D. Srivastava S. Khare N.K. Khare A. Cardiac Glycosides. Fortschr. Chem. Org. Naturst. 1996 69 71 155 10.1007/978‑3‑7091‑6578‑2_2 8981834
    [Google Scholar]
  25. Botelho A.F.M. Pierezan F. Soto-Blanco B. Melo M.M. A review of cardiac glycosides: Structure, toxicokinetics, clinical signs, diagnosis and antineoplastic potential. Toxicon 2019 158 63 68 10.1016/j.toxicon.2018.11.429 30529380
    [Google Scholar]
  26. Britannica T. of Encyclopaedia. Organ. 2023 Available from: https://www.britannica.com/science/organ-biology
  27. Bhambhani S. Kondhare K.R. Giri A.P. Diversity in chemical structures and biological properties of plant alkaloids. Molecules 2021 26 11 3374 10.3390/molecules26113374 34204857
    [Google Scholar]
  28. Takshak S. Agrawal S.B. Defense potential of secondary metabolites in medicinal plants under UV-B stress. J. Photochem. Photobiol. B 2019 193 51 88 10.1016/j.jphotobiol.2019.02.002 30818154
    [Google Scholar]
  29. Liu C. Yang S. Wang K. Bao X. Liu Y. Zhou S. Liu H. Qiu Y. Wang T. Yu H. Alkaloids from traditional Chinese Mmedicine against hepatocellular carcinoma. Biomed. Pharmacother. 2019 120 109543 10.1016/j.biopha.2019.109543 31655311
    [Google Scholar]
  30. Elissawy A.M. Soleiman Dehkordi E. Mehdinezhad N. Ashour M.L. Mohammadi Pour P. Cytotoxic alkaloids derived from marine sponges: A comprehensive review. Biomolecules 2021 11 2 258 10.3390/biom11020258 33578987
    [Google Scholar]
  31. Dey P. Kundu A. Kumar A. Gupta M. Lee B.M. Bhakta T. Dash S. Kim H.S. Analysis of alkaloids (indole alkaloids, isoquinoline alkaloids, tropane alkaloids). Recent Advances in Natural Products Analysis Elsevier 2020 505 567 10.1016/B978‑0‑12‑816455‑6.00015‑9
    [Google Scholar]
  32. Mathew B. Suresh J.E. Mathew G. Parasuraman R. Abdulla N. Plant secondary metabolites - Potent inhibitors of monoamine oxidase isoforms. Cent. Nerv. Syst. Agents Med. Chem. 2014 14 6 28 33 10.2174/1871524914666140826111930
    [Google Scholar]
  33. Adamski Z. Blythe L.L. Milella L. Bufo S.A. Biological activities of alkaloids: From toxicology to pharmacology. Toxins (Basel) 2020 12 4 210 10.3390/toxins12040210 32224853
    [Google Scholar]
  34. Ren M. Lotfipour S. Nicotine gateway effects on adolescent substance use. West. J. Emerg. Med. 2019 20 5 696 709 10.5811/westjem.2019.7.41661 31539325
    [Google Scholar]
  35. Benchikh Y. Bachir-bey M. Chaalal M. Ydjedd S. Kati DE. Extraction of phenolic compounds. In Green Sustainable Process for Chemical and Environmental Engineering and Science 2023 Jan 1 (pp.329-354). Elsevier.
    [Google Scholar]
  36. Lattanzio V. Phenolic compounds: Introduction. Natural Products Berlin, Heidelberg Springer 2013 10.1007/978‑3‑642‑22144‑6_57
    [Google Scholar]
  37. Haminiuk C.W.I. Maciel G.M. Plata-Oviedo M.S.V. Peralta R.M. Phenolic compounds in fruits – An overview. Int. J. Food Sci. Technol. 2012 47 10 2023 2044 10.1111/j.1365‑2621.2012.03067.x
    [Google Scholar]
  38. Vuolo M.M. Lima V.S. Maróstica M.R. Chapter 2 - Phenolic compounds: Structure, classification, and antioxidant power. Bioactive Compounds Woodhead Publishing Campos M.R.S. 2019 33 50 10.1016/B978‑0‑12‑814774‑0.00002‑5
    [Google Scholar]
  39. Rentzsch M. Wilkens A. Winterhalter P. Non-flavonoid phenolic compounds. Wine chemistry and biochemistry. New York, NY Springer New York 2009 509 527 10.1007/978‑0‑387‑74118‑5_23
    [Google Scholar]
  40. Clifford M.N. Dietary hydroxybenzoic acid derivatives-nature, occurrence and dietary burden. J. Sci. Food Agric. 2000 80 7 1024 1032 10.1002/(SICI)1097‑0010(20000515)80:7<1024::AID‑JSFA567>3.0.CO;2‑S
    [Google Scholar]
  41. El-Seedi H.R. El-Said A.M.A. Khalifa S.A.M. Göransson U. Bohlin L. Borg-Karlson A.K. Verpoorte R. Biosynthesis, natural sources, dietary intake, pharmacokinetic properties, and biological activities of hydroxycinnamic acids. J. Agric. Food Chem. 2012 60 44 10877 10895 10.1021/jf301807g 22931195
    [Google Scholar]
  42. Tsao R. Chemistry and biochemistry of dietary polyphenols. Nutrients 2010 2 12 1231 1246 10.3390/nu2121231 22254006
    [Google Scholar]
  43. Kumar S. Pandey A.K. Chemistry and biological activities of flavonoids: An overview. ScientificWorldJournal 2013 2013 1 162750 10.1155/2013/162750 24470791
    [Google Scholar]
  44. Panche A.N. Diwan A.D. Chandra S.R. Flavonoids: An overview. J. Nutr. Sci. 2016 5 e47 10.1017/jns.2016.41 28620474
    [Google Scholar]
  45. Samanta A. Das G. Das S.K. Roles of flavonoids in plants. Carbon 2011 100 6 12 35
    [Google Scholar]
  46. Calderaro A. Patanè G.T. Tellone E. Barreca D. Ficarra S. Misiti F. Laganà G. The neuroprotective potentiality of flavonoids on Alzheimer’s disease. Int. J. Mol. Sci. 2022 23 23 14835 10.3390/ijms232314835 36499159
    [Google Scholar]
  47. Havsteen B.H. The biochemistry and medical significance of the flavonoids. Pharmacol. Ther. 2002 96 2-3 67 202 10.1016/S0163‑7258(02)00298‑X 12453566
    [Google Scholar]
  48. Siedler S. Stahlhut S.G. Malla S. Maury J. Neves A.R. Novel biosensors based on flavonoid-responsive transcriptional regulators introduced into Escherichia coli. Metab. Eng. 2014 21 2 8 10.1016/j.ymben.2013.10.011 24188962
    [Google Scholar]
  49. Rodriguez A. Strucko T. Stahlhut S.G. Kristensen M. Svenssen D.K. Forster J. Nielsen J. Borodina I. Metabolic engineering of yeast for fermentative production of flavonoids. Bioresour. Technol. 2017 245 Pt B 1645 1654 10.1016/j.biortech.2017.06.043 28634125
    [Google Scholar]
  50. Ludwiczuk A. Skalicka-Woźniak K. Georgiev M.I. Chapter 11 - Terpenoids. Pharmacognosy Academic Press 2017 233 266 10.1016/B978‑0‑12‑802104‑0.00011‑1
    [Google Scholar]
  51. Dev S. Terpenoids. Natural Products of Woody Plants Berlin, Heidelberg Springer 1989 691 807 10.1007/978‑3‑642‑74075‑6_19
    [Google Scholar]
  52. Cheng A.X. Lou Y.G. Mao Y.B. Lu S. Wang L.J. Chen X.Y. Plant terpenoids: Biosynthesis and ecological functions. J. Integr. Plant Biol. 2007 49 2 179 186 10.1111/j.1744‑7909.2007.00395.x
    [Google Scholar]
  53. Masyita A. Mustika Sari R. Dwi Astuti A. Yasir B. Rahma Rumata N. Emran T.B. Nainu F. Simal-Gandara J. Terpenes and terpenoids as main bioactive compounds of essential oils, their roles in human health and potential application as natural food preservatives. Food Chem. X 2022 13 100217 10.1016/j.fochx.2022.100217 35498985
    [Google Scholar]
  54. Zwenger S. Basu C. Plant terpenoids: Applications and future potentials. Biotechnol. Mol. Biol. Rev. 2008 3 1 1
    [Google Scholar]
  55. Serrano J. Puupponen-Pimiä R. Dauer A. Aura A.M. Saura-Calixto F. Tannins: Current knowledge of food sources, intake, bioavailability and biological effects. Mol. Nutr. Food Res. 2009 53 S2 S310 S329 10.1002/mnfr.200900039 19437486
    [Google Scholar]
  56. Szczurek A. Perspectives on tannins. Biomolecules 2021 11 3 442 10.3390/biom11030442 33809775
    [Google Scholar]
  57. Prigione V. Spina F. Tigini V. Giovando S. Varese G.C. Biotransformation of industrial tannins by filamentous fungi. Appl. Microbiol. Biotechnol. 2018 102 24 10361 10375 10.1007/s00253‑018‑9408‑4 30293196
    [Google Scholar]
  58. Tong Z. He W. Fan X. Guo A. Biological function of plant tannin and its application in animal health. Front. Vet. Sci. 2022 8 803657 10.3389/fvets.2021.803657 35083309
    [Google Scholar]
  59. Engström M.T. Arvola J. Nenonen S. Virtanen V.T.J. Leppä M.M. Tähtinen P. Salminen J.P. Structural features of hydrolyzable tannins determine their ability to form insoluble complexes with bovine serum albumin. J. Agric. Food Chem. 2019 67 24 6798 6808 10.1021/acs.jafc.9b02188 31134805
    [Google Scholar]
  60. Rauf A. Imran M. Abu-Izneid T. Iahtisham-Ul-Haq Patel S. Pan X. Naz S. Sanches Silva A. Saeed F. Rasul Suleria H.A. Proanthocyanidins: A comprehensive review. Biomed. Pharmacother. 2019 116 108999 10.1016/j.biopha.2019.108999 31146109
    [Google Scholar]
  61. Hiroshi H. Yoshinobu K. Tsutomu H. Takashi Y. Takuo O. Antihepatotoxic actions of tannins. J. Ethnopharmacol. 1985 14 1 19 29 10.1016/0378‑8741(85)90024‑8 4087919
    [Google Scholar]
  62. Marcińczyk N. Gromotowicz-Popławska A. Tomczyk M. Chabielska E. Tannins as hemostasis modulators. Front. Pharmacol. 2022 12 806891 10.3389/fphar.2021.806891 35095516
    [Google Scholar]
  63. Ricci A. Olejar K.J. Parpinello G.P. Mattioli A.U. Teslić N. Kilmartin P.A. Versari A. Antioxidant activity of commercial food grade tannins exemplified in a wine model. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess. 2016 33 12 1761 1774 10.1080/19440049.2016.1241901 27696959
    [Google Scholar]
  64. Ayati Z. Amiri M.S. Ramezani M. Delshad E. Sahebkar A. Emami S.A. Phytochemistry, traditional uses and pharmacological profile of rose hip: A review. Curr. Pharm. Des. 2019 24 35 4101 4124 10.2174/1381612824666181010151849 30317989
    [Google Scholar]
  65. Yalavarthi C. Thiruvengadarajan V.S. A review on identification strategy of phyto constituents present in herbal plants. Int. J. Res. Pharm. Sci. 2013 4 2 123 140
    [Google Scholar]
  66. Ingle K.P. Deshmukh A.G. Padole D.A. Dudhare M.S. Moharil M.P. Khelurkar V.C. Phytochemicals: Extraction methods, identification and detection of bioactive compounds from plant extracts. J. Pharmacogn. Phytochem. 2017 6 1 32 36
    [Google Scholar]
  67. Katiyar D. Manish Saxena Pal R. Bansal P. Kumar A. Prakash S. Electrochemical sensors for detection of phytomolecules: A mechanistic approach. Comb. Chem. High Throughput Screen. 2024 27 13 1887 1899 10.2174/0113862073282883231218145941 38279749
    [Google Scholar]
  68. Yoo E.H. Lee S.Y. Glucose biosensors: An overview of use in clinical practice. Sensors (Basel) 2010 10 5 4558 4576 10.3390/s100504558 22399892
    [Google Scholar]
  69. Abid S.A. Ahmed Muneer A. Al-Kadmy I.M.S. Sattar A.A. Beshbishy A.M. Batiha G.E.S. Hetta H.F. Biosensors as a future diagnostic approach for COVID-19. Life Sci. 2021 273 119117 10.1016/j.lfs.2021.119117 33508293
    [Google Scholar]
  70. Mehrotra P. Biosensors and their applications – A review. J. Oral Biol. Craniofac. Res. 2016 6 2 153 159 10.1016/j.jobcr.2015.12.002 27195214
    [Google Scholar]
  71. Arlett J.L. Myers E.B. Roukes M.L. Comparative advantages of mechanical biosensors. Nat. Nanotechnol. 2011 6 4 203 215 10.1038/nnano.2011.44 21441911
    [Google Scholar]
  72. Yüce M. Kurt H. How to make nanobiosensors: Surface modification and characterisation of nanomaterials for biosensing applications. RSC Advances 2017 7 78 49386 49403 10.1039/C7RA10479K
    [Google Scholar]
  73. Pohanka M. Overview of piezoelectric biosensors, immunosensors and DNA sensors and their applications. Materials (Basel) 2018 11 3 448 10.3390/ma11030448 29562700
    [Google Scholar]
  74. Khater M. de la Escosura-Muñiz A. Merkoçi A. Biosensors for plant pathogen detection. Biosens. Bioelectron. 2017 93 72 86 10.1016/j.bios.2016.09.091 27818053
    [Google Scholar]
  75. Mehrvar M. Abdi M. Recent developments, characteristics, and potential applications of electrochemical biosensors. Anal. Sci. 2004 20 8 1113 1126 10.2116/analsci.20.1113 15352497
    [Google Scholar]
  76. Pashazadeh-Panahi P. Hasanzadeh M. Digoxin as a glycosylated steroid-like therapeutic drug: Recent advances in the clinical pharmacology and bioassays of pharmaceutical compounds. Biomed. Pharmacother. 2020 123 109813 10.1016/j.biopha.2020.109813 31924598
    [Google Scholar]
  77. Vale-Gonzalez C. Pazos M.J. Alfonso A. Vieytes M.R. Botana L.M. Study of the neuronal effects of ouabain and palytoxin and their binding to Na,K-ATPases using an optical biosensor. Toxicon 2007 50 4 541 552 10.1016/j.toxicon.2007.04.024 17548099
    [Google Scholar]
  78. Cush R. Cronin J.M. Stewart W.J. Maule C.H. Molloy J. Goddard N.J. The resonant mirror: A novel optical biosensor for direct sensing of biomolecular interactions Part I: Principle of operation and associated instrumentation. Biosens. Bioelectron. 1993 8 7-8 347 354 10.1016/0956‑5663(93)80073‑X
    [Google Scholar]
  79. Ambrin G. Kausar H. Ahmad A. Designing and construction of genetically encoded FRET-based nanosensor for qualitative analysis of digoxin. J. Biotechnol. 2020 323 322 330 10.1016/j.jbiotec.2020.09.008 32937180
    [Google Scholar]
  80. Ahmadi A. Shirazi H. Pourbagher N. Akbarzadeh A. Omidfar K. An electrochemical immunosensor for digoxin using core–shell gold coated magnetic nanoparticles as labels. Mol. Biol. Rep. 2014 41 3 1659 1668 10.1007/s11033‑013‑3014‑4 24395297
    [Google Scholar]
  81. Xiu Y. Jang S. Jones J.A. Zill N.A. Linhardt R.J. Yuan Q. Jung G.Y. Koffas M.A.G. Naringenin‐responsive riboswitch‐based fluorescent biosensor module for Escherichia coli co‐cultures. Biotechnol. Bioeng. 2017 114 10 2235 2244 10.1002/bit.26340 28543037
    [Google Scholar]
  82. Wang R. Cress B.F. Yang Z. Hordines J.C. III Zhao S. Jung G.Y. Wang Z. Koffas M.A.G. Design and characterization of biosensors for the screening of modular assembled naringenin biosynthetic library in Saccharomyces cerevisiae. ACS Synth. Biol. 2019 8 9 2121 2130 10.1021/acssynbio.9b00212 31433622
    [Google Scholar]
  83. Mitchler M.M. Garcia J.M. Montero N.E. Williams G.J. Transcription factor-based biosensors: A molecular-guided approach for natural product engineering. Curr. Opin. Biotechnol. 2021 69 172 181 10.1016/j.copbio.2021.01.008 33493842
    [Google Scholar]
  84. Marsafari M. Samizadeh H. Rabiei B. Mehrabi A. Koffas M. Xu P. Biotechnological production of flavonoids: An update on plant metabolic engineering, microbial host selection, and genetically encoded biosensors. Biotechnol. J. 2020 15 8 1900432 10.1002/biot.201900432 32267085
    [Google Scholar]
  85. Nabiabad HS. Amini M. Haidar Saify Nabiabad Fabrication of an impedimetric immunosensor for screening and determination of vincristine in biological samples. J. Anal. Chem. 2020 75 8 1094 1101 10.1134/S1061934820080092
    [Google Scholar]
  86. d’Oelsnitz S. Nguyen V. Alper H.S. Ellington A.D. Evolving a generalist biosensor for bicyclic monoterpenes. ACS Synth. Biol. 2022 11 1 265 272 10.1021/acssynbio.1c00402 34985281
    [Google Scholar]
  87. Kim S.K. Kim S.H. Subhadra B. Woo S.G. Rha E. Kim S.W. Kim H. Lee D.H. Lee S.G. A genetically encoded biosensor for monitoring isoprene production in engineered Escherichia coli. ACS Synth. Biol. 2018 7 10 2379 2390 10.1021/acssynbio.8b00164 30261142
    [Google Scholar]
  88. Ensafi A.A. Nasr-Esfahani P. Heydari-Bafrooei E. Rezaei B. Determination of atropine sulfate using a novel sensitive DNA–biosensor based on its interaction on a modified pencil graphite electrode. Talanta 2015 131 149 155 10.1016/j.talanta.2014.07.082 25281086
    [Google Scholar]
  89. Mokhtarzadeh A. Ezzati Nazhad Dolatabadi J. Abnous K. de la Guardia M. Ramezani M. Nanomaterial-based cocaine aptasensors. Biosens. Bioelectron. 2015 68 95 106 10.1016/j.bios.2014.12.052 25562736
    [Google Scholar]
  90. d’Oelsnitz S. Kim W. Burkholder N.T. Javanmardi K. Thyer R. Zhang Y. Alper H.S. Ellington A.D. Using fungible biosensors to evolve improved alkaloid biosyntheses. Nat. Chem. Biol. 2022 18 9 981 989 10.1038/s41589‑022‑01072‑w 35799063
    [Google Scholar]
  91. Tarasov A. Stozhko N. Bukharinova M. Khamzina E. Biosensors based on phenol oxidases (laccase, tyrosinase, and their mixture) for estimating the total phenolic index in food-related samples. Life (Basel) 2023 13 2 291 10.3390/life13020291 36836650
    [Google Scholar]
  92. Alemán Nava G.S. Rodríguez Delgado J.M. Parra Saldivar R. Martínez Chapa S.O. Dieck Assad G. Laccase-based biosensors for detection of phenolic compounds. Trends Anal. Chem. 2015 74 21 45 10.1016/j.trac.2015.05.008
    [Google Scholar]
  93. Gutés A. Céspedes F. Alegret S. del Valle M. Determination of phenolic compounds by a polyphenol oxidase amperometric biosensor and artificial neural network analysis. Biosens. Bioelectron. 2005 20 8 1668 1673 10.1016/j.bios.2004.07.026 15626626
    [Google Scholar]
  94. Sanz J. de Marcos S. Galbán J. Autoindicating optical properties of laccase as the base of an optical biosensor film for phenol determination. Anal. Bioanal. Chem. 2012 404 2 351 359 10.1007/s00216‑012‑6061‑0 22562544
    [Google Scholar]
  95. Gagliardi M. Tori G. Agostini M. Lunardelli F. Mencarelli F. Sanmartin C. Cecchini M. Detection of oenological polyphenols via QCM-D measurements. Nanomaterials (Basel) 2022 12 1 166 10.3390/nano12010166 35010116
    [Google Scholar]
  96. Sainz-Urruela C. Vera-López S. San Andrés M.P. Díez-Pascual A.M. Graphene-based sensors for the detection of bioactive compounds: A review. Int. J. Mol. Sci. 2021 22 7 3316 10.3390/ijms22073316 33804997
    [Google Scholar]
  97. Romani A. Minunni M. Mulinacci N. Pinelli P. Vincieri F.F. Del Carlo M. Mascini M. Comparison among differential pulse voltammetry, amperometric biosensor, and HPLC/DAD analysis for polyphenol determination. J. Agric. Food Chem. 2000 48 4 1197 1203 10.1021/jf990767e 10775372
    [Google Scholar]
  98. Gerosa L. Sauer U. Regulation and control of metabolic fluxes in microbes. Curr. Opin. Biotechnol. 2011 22 4 566 575 10.1016/j.copbio.2011.04.016 21600757
    [Google Scholar]
  99. Razavi Z. Soltani M. Souri M. Pazoki-Toroudi H. CRISPR-driven Biosensors: A New Frontier in Rapid and Accurate Disease Detection. Crit. Rev. Anal. Chem. 2024 1 25 10.1080/10408347.2024.2400267 39288095
    [Google Scholar]
  100. Blaeser A. Evolution of biofabrication and 3D-bioprinting technologies - From market pull to technology push. at - Automatisierungstechnik 2024 72 7 645 656 10.1515/auto‑2024‑0070
    [Google Scholar]
  101. Piroozmand F. Mohammadipanah F. Faridbod F. Emerging biosensors in detection of natural products. Synth. Syst. Biotechnol. 2020 5 4 293 303 10.1016/j.synbio.2020.08.002 32954023
    [Google Scholar]
  102. Jumper J. Evans R. Pritzel A. Green T. Figurnov M. Ronneberger O. Tunyasuvunakool K. Bates R. Žídek A. Potapenko A. Bridgland A. Highly accurate protein structure prediction with AlphaFold. Nature 2021 596 7873 583 589 10.1038/s41586‑021‑03819‑2 34265844
    [Google Scholar]
  103. Kaur A. Kaur L. Singh G. Dhawan RK. Mahajan A. Nanotechnology-based herbal formulations: A survey of recent patents, advancements, and transformative headways. Recent Patents on Nanotechnology. 2022 16 4 295 307
    [Google Scholar]
/content/journals/biot/10.2174/0118722083381223250612181959
Loading
/content/journals/biot/10.2174/0118722083381223250612181959
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test