Skip to content
2000
image of Current Status of Microalgae-based Food Products: Future Trends of Functional Ingredients

Abstract

The use of microalgae in food and beverages is becoming increasingly popular as a viable way to develop products with enhanced nutritional profiles, offering positive health effects. In parallel, the plant-based food market is expanding due to the growing vegan, vegetarian, and flexitarian populations, prompting manufacturers to create innovative foods and techniques, such as the addition of microalgae to products. These functional and/or nutraceutical foods present an attractive option for consumers seeking plant-based alternatives. Although some challenges remain, this is a growing market. Furthermore, biotechnological processes are being utilized to optimize the production of microalgae with even more robust nutritional characteristics, thereby increasing their added value. This review was based on a structured literature search across major databases, applying predefined keywords and selection criteria to identify recent advances, regulatory aspects, and biotechnological developments in the field. These innovations hold significant potential to meet the rising demand for bioactive products and to propel a new era in the commercialization of microalgae-based products, a segment still underexplored in the current market. Additionally, progress in this sector depends on the development and protection of biotechnological innovations through patents, ensuring greater security and competitiveness in the industry.

Loading

Article metrics loading...

/content/journals/biot/10.2174/0118722083380758250802021828
2025-08-13
2025-09-27
Loading full text...

Full text loading...

References

  1. Elazzazy A.M. Baeshen M.N. Alasmi K.M. Alqurashi S.I. Desouky S.E. Khattab S.M.R. Where biology meets engineering: Scaling up microbial nutraceuticals to bridge nutrition, therapeutics, and global impact. Microorganisms 2025 13 3 566 10.3390/microorganisms13030566 40142459
    [Google Scholar]
  2. Jacob-Lopes E. Zepka L.Q. Deprá M.C. Smart Food Industry: The Blockchain for Sustainable Engineering: Volume II-Current Status, Future Foods, and Global Issues. CRC Press 2024 10.1201/9781003231172
    [Google Scholar]
  3. Nörnberg M.L. Pinheiro P.N. Nascimento T.C. Fernandes A.S. Lopes E.J. Zepka L.Q. Production of microalgae biocompounds in different cultivation conditions. Braz J Dev 2022 8 2 10226 40.c 10.34117/bjdv8n2‑119
    [Google Scholar]
  4. Çelekli A. Özbal B. Bozkurt H. Challenges in functional food products with the incorporation of some microalgae. Foods 2024 13 5 725 10.3390/foods13050725 38472838
    [Google Scholar]
  5. Deprá M.C. Nörnberg M.L. Schneider A.T. Dias R.R. Zepka L.Q. Jacob-Lopes E. Chapter 13-Microalgae: green cell biofactories in food and feed supply chains. Advances in Sustainable Applications of Microalgae. Woodhead Publishing 2025 301 315 10.1016/B978‑0‑443‑22127‑9.00013‑5
    [Google Scholar]
  6. Bombe K. Aerospace and Defence Metal Stamping Market Worth $33.6 billion by 2027. 2020 Available from: www.meticulousresearch.com/pressrelease/59/plant-based-food-products-market-2027
  7. Grand View Research. Vegan food market size, share & trends analysis report by product (meat & seafood, creamer, ice cream & frozen novelties, yogurt, cheese, butter, meals, protein bars, others), by distribution channel, by region, and segment forecasts, 2023 - 2030. 2020 Available from: https://www.grandviewresearch.com/industry-analysis/vegan-food-market
  8. Nascimento T.C. Nass P.P. Fernandes A.S. Nörnberg M.L. Zepka Q.Z. Jacob-Lopes E. Chapter 20-Microalgae carotenoids: An overview of biomedical applications. Algal Biotechnology: Integrated Algal Engineering for Bioenergy, Bioremediation, and Biomedical Applications. Elsevier 2022 409 425 10.1016/B978‑0‑323‑90476‑6.00013‑3
    [Google Scholar]
  9. Nascimento T.C. Nass P.P. Schetinger L.C. Uses of microorganisms for carotenoid production: Contribution of modern technologies in food sustainability. Carotenoids: Trends and Advances. Cham Springer Nature Switzerland 2024 203 225 10.1007/978‑3‑031‑75322‑0_9
    [Google Scholar]
  10. Fernandes A.S. Schetinger L.C. Nornberg M.L. Nascimento T.C. Microalgae as a key ingredient in meat analogs. Handbook of Food and Feed from Microalgae. Cambridge, Massachusetts Academic Press 2023 305 316 10.1016/B978‑0‑323‑99196‑4.00046‑2
    [Google Scholar]
  11. Thakur A. Sharma D. Saini R. Suhag R. Thakur D. Cultivating blue food proteins: Innovating next-generation ingredients from macro and microalgae. Biocatal. Agric. Biotechnol. 2024 60 103278 10.1016/j.bcab.2024.103278
    [Google Scholar]
  12. Afzaal M. Imran A. Iqbal S.S. Potential microalgae-derived antioxidants as human health supplements nutritional evaluation and benefits. Algae Biotechnology for Biomedical and Nutritional Applications. Cambridge, Massachusetts Academic Press 2025 131 144 10.1016/B978‑0‑443‑24006‑5.00011‑0
    [Google Scholar]
  13. de Souza M.P. Hoeltz M. Gressler P.D. Benitez L.B. Schneider R.C.S. Potential of microalgal bioproducts: General perspectives and main challenges. Waste Biomass Valoriz. 2019 10 8 2139 2156 10.1007/s12649‑018‑0253‑6
    [Google Scholar]
  14. Jacob-Lopes E. Maroneze M.M. Deprá M.C. Sartori R.B. Dias R.R. Zepka L.Q. Bioactive food compounds from microalgae: An innovative framework on industrial biorefineries. Curr. Opin. Food Sci. 2019 25 1 7 10.1016/j.cofs.2018.12.003
    [Google Scholar]
  15. Nörnberg M.L. Caetano P.A. Nass P.P. Limonene production in microalgal photoautotrophic cultivation. Braz J Dev 2022 8 2 10241 54.b 10.34117/bjdv8n2‑120
    [Google Scholar]
  16. Nörnberg M.L. Pinheiro P.N. Nascimento T.C. Bioactive compounds in butters: Carotenoids and fatty acids. Braz J Dev 2022 8 2 10270 88.d 10.34117/bjdv8n2‑122
    [Google Scholar]
  17. Hernández H. Nunes M.C. Prista C. Raymundo A. Innovative and healthier dairy products through the addition of microalgae: A review. Foods 2022 11 5 755 10.3390/foods11050755 35267388
    [Google Scholar]
  18. Caporgno M.P. Mathys A. Trends in microalgae incorporation into innovative food products with potential health benefits. Front. Nutr. 2018 5 58 10.3389/fnut.2018.00058 30109233
    [Google Scholar]
  19. Caporgno M.P. Böcker L. Müssner C. Extruded meat analogues based on yellow, heterotrophically cultivated Auxenochlorella protothecoides microalgae. Innov. Food Sci. Emerg. Technol. 2020 59 102275 10.1016/j.ifset.2019.102275
    [Google Scholar]
  20. Boukid F. Rosell C.M. Rosene S. Bover-Cid S. Castellari M. Non-animal proteins as cutting-edge ingredients to reformulate animal-free foodstuffs: Present status and future perspectives. Crit. Rev. Food Sci. Nutr. 2022 62 23 6390 6420 10.1080/10408398.2021.1901649 33775185
    [Google Scholar]
  21. Fu Y. Chen T. Chen S.H.Y. The potentials and challenges of using microalgae as an ingredient to produce meat analogues. Trends Food Sci. Technol. 2021 112 188 200 10.1016/j.tifs.2021.03.050
    [Google Scholar]
  22. Barros de Medeiros V.P. da Costa W.K.A. da Silva R.T. Pimentel T.C. Magnani M. Microalgae as source of functional ingredients in new-generation foods: Challenges, technological effects, biological activity, and regulatory issues. Crit. Rev. Food Sci. Nutr. 2022 62 18 4929 4950 10.1080/10408398.2021.1879729 33544001
    [Google Scholar]
  23. Singh M. Trivedi N. Enamala M.K. Plant-based meat analogue (PBMA) as a sustainable food: A concise review. Eur. Food Res. Technol. 2021 247 10 2499 2526 10.1007/s00217‑021‑03810‑1
    [Google Scholar]
  24. Torres-Tiji Y. Fields F.J. Mayfield S.P. Microalgae as a future food source. Biotechnol. Adv. 2020 41 107536 10.1016/j.biotechadv.2020.107536 32194145
    [Google Scholar]
  25. Matos J. Cardoso C. Bandarra N.M. Afonso C. Microalgae as healthy ingredients for functional food: A review. Food Funct. 2017 8 8 2672 2685 10.1039/C7FO00409E 28681866
    [Google Scholar]
  26. Wu J. Gu X. Yang D. Bioactive substances and potentiality of marine microalgae. Food Sci. Nutr. 2021 9 9 5279 5292 10.1002/fsn3.2471 34532034
    [Google Scholar]
  27. Bohn T. Bonet M.L. Borel P. Mechanistic aspects of carotenoid health benefits – Where are we now? Nutr. Res. Rev. 2021 34 2 276 302 10.1017/S0954422421000147 34057057
    [Google Scholar]
  28. Liu Y. Ren X. Fan C. Wu W. Zhang W. Wang Y. Health benefits, food applications, and sustainability of microalgae-derived n-3 PUFA. Foods 2022 11 13 1883 10.3390/foods11131883 35804698
    [Google Scholar]
  29. Lucakova S. Branyikova I. Hayes M. Microalgal proteins and bioactives for food, feed, and other applications. Appl. Sci. 2022 12 9 4402 10.3390/app12094402
    [Google Scholar]
  30. Koyande A.K. Chew K.W. Rambabu K. Tao Y. Chu D.T. Show P.L. Microalgae: A potential alternative to health supplementation for humans. Food Sci. Hum. Wellness 2019 8 1 16 24 10.1016/j.fshw.2019.03.001
    [Google Scholar]
  31. Becker E.W. Micro-algae as a source of protein. Biotechnol. Adv. 2007 25 2 207 210 10.1016/j.biotechadv.2006.11.002 17196357
    [Google Scholar]
  32. Van De Walle S. Broucke K. Baune M.C. Terjung N. Van Royen G. Boukid F. Microalgae protein digestibility: How to crack open the black box? Crit. Rev. Food Sci. Nutr. 2024 64 20 7149 7171 10.1080/10408398.2023.2181754 38975868
    [Google Scholar]
  33. Lu Q. A state-of-the-art review of microalgae-based food processing wastewater treatment: Progress, problems, and prospects. Water 2025 17 4 536 10.3390/w17040536
    [Google Scholar]
  34. Andrade B.B. Cardoso L.G. Assis D.J. Costa J.A.V. Druzian J.I. da Cunha Lima S.T. Production and characterization of Spirulina sp. LEB 18 cultured in reused Zarrouk’s medium in a raceway-type bioreactor. Bioresour. Technol. 2019 284 340 348 10.1016/j.biortech.2019.03.144 30954902
    [Google Scholar]
  35. Barkia I. Saari N. Manning S.R. Microalgae for high-value products towards human health and nutrition. Mar. Drugs 2019 17 5 304 10.3390/md17050304 31137657
    [Google Scholar]
  36. Tang D.Y.Y. Khoo K.S. Chew K.W. Tao Y. Ho S.H. Show P.L. Potential utilization of bioproducts from microalgae for the quality enhancement of natural products. Bioresour. Technol. 2020 304 122997 10.1016/j.biortech.2020.122997 32094007
    [Google Scholar]
  37. de Morais M.G. Vaz B.S. de Morais E.G. Costa J.A.V. Biologically active metabolites synthesized by microalgae. BioMed Res. Int. 2015 2015 1 1 15 10.1155/2015/835761 26339647
    [Google Scholar]
  38. Katiyar R. Arora A. Health promoting functional lipids from microalgae pool: A review. Algal Res. 2020 46 101800 10.1016/j.algal.2020.101800
    [Google Scholar]
  39. Karnaouri A. Chalima A. Kalogiannis K.G. Varamogianni-Mamatsi D. Lappas A. Topakas E. Utilization of lignocellulosic biomass towards the production of omega-3 fatty acids by the heterotrophic marine microalga Crypthecodinium cohnii. Bioresour. Technol. 2020 303 122899 10.1016/j.biortech.2020.122899 32028216
    [Google Scholar]
  40. Caetano P.A. do Nascimento T.C. Fernandes A.S. Microalgae-based polysaccharides: Insights on production, applications, analysis, and future challenges. Biocatal. Agric. Biotechnol. 2022 45 102491 10.1016/j.bcab.2022.102491
    [Google Scholar]
  41. Nörnberg M.L. Bortolotti C.M. Minella E. Nörnberg J.L. Use of barley flour as a source of biocompounds in bakery products. Braz J Dev 2022 8 2 10334 10353.a 10.34117/bjdv8n2‑125
    [Google Scholar]
  42. Niccolai A. Chini Zittelli G. Rodolfi L. Biondi N. Tredici M.R. Microalgae of interest as food source: Biochemical composition and digestibility. Algal Res. 2019 42 101617.a 10.1016/j.algal.2019.101617
    [Google Scholar]
  43. Chew K.W. Yap J.Y. Show P.L. Microalgae biorefinery: High value products perspectives. Bioresour. Technol. 2017 229 53 62 10.1016/j.biortech.2017.01.006 28107722
    [Google Scholar]
  44. Mobin S.M.A. Chowdhury H. Alam F. Commercially important bioproducts from microalgae and their current applications – A review. Energy Procedia 2019 160 752 760 10.1016/j.egypro.2019.02.183
    [Google Scholar]
  45. Nazih H. Bard J.M. Chapter 10-Microalgae in human health: Interest as a functional food. Microalgae in Health and Disease Prevention. Cambridge, Massachusetts Academic Press 2018 211 226 10.1016/B978‑0‑12‑811405‑6.00010‑4
    [Google Scholar]
  46. Edelmann M. Aalto S. Chamlagain B. Kariluoto S. Piironen V. Riboflavin, niacin, folate and vitamin B12 in commercial microalgae powders. J. Food Compos. Anal. 2019 82 103226 10.1016/j.jfca.2019.05.009
    [Google Scholar]
  47. Gao F. Guo W. Zeng M. Feng Y. Feng G. Effect of microalgae as iron supplements on iron-deficiency anemia in rats. Food Funct. 2019 10 2 723 732 10.1039/C8FO01834K 30664135
    [Google Scholar]
  48. Bhatnagar R.S. Miller D.D. Padilla-Zakour O.I. Lei X.G. Supplemental microalgal iron helps replete blood hemoglobin in moderately anemic mice fed a rice-based diet. Nutrients 2020 12 8 2239 10.3390/nu12082239 32727043
    [Google Scholar]
  49. Vendruscolo R.G. Fernandes A.S. Fagundes M.B. Development of a new method for simultaneous extraction of chlorophylls and carotenoids from microalgal biomass. J. Appl. Phycol. 2021 33 4 1987 1997 10.1007/s10811‑021‑02470‑8
    [Google Scholar]
  50. Nörnberg M.L. Pinheiro P.N. Nascimento T.C. Fernandes A.S. Jacob-Lopes E. Zepka L.Q. Carotenoids profile of Desertifilum spp. in mixotrophic conditions. Braz J Dev 2021 7 3 33017 33029 10.34117/bjdv7n3‑835
    [Google Scholar]
  51. Fernandes A.S. Nascimento T.C. Pinheiro P.N. Insights on the intestinal absorption of chlorophyll series from microalgae. Food Res. Int. 2021 140 110031 10.1016/j.foodres.2020.110031 33648259
    [Google Scholar]
  52. Chen M. Blankenship R.E. Expanding the solar spectrum used by photosynthesis. Trends Plant Sci. 2011 16 8 427 431 10.1016/j.tplants.2011.03.011 21493120
    [Google Scholar]
  53. Patel S.N. Sonani R.R. Jakharia K. Antioxidant activity and associated structural attributes of Halomicronema phycoerythrin. Int. J. Biol. Macromol. 2018 111 359 369 10.1016/j.ijbiomac.2017.12.170 29307804
    [Google Scholar]
  54. McCarty M.F. Barroso-Aranda J. Contreras F. Genistein and phycocyanobilin may prevent hepatic fibrosis by suppressing proliferation and activation of hepatic stellate cells. Med. Hypotheses 2009 72 3 330 332 10.1016/j.mehy.2008.07.045 18789597
    [Google Scholar]
  55. Timberlake C.F. Henry B.S. Plant pigments as natural food colours. Endeavour 1986 10 1 31 36 10.1016/0160‑9327(86)90048‑7 2422009
    [Google Scholar]
  56. Vesenick D.C. Paula N.A. Niwa A.M. Mantovani M.S. Evaluation of the effects of chlorophyllin on apoptosis induction, inhibition of cellular proliferation and mRNA expression of CASP8, CASP9, APC and $-catenin. Curr Res J Biol Sci 2012 4 3 315
    [Google Scholar]
  57. Subramoniam A. Asha V.V. Nair S.A. Chlorophyll revisited: Anti-inflammatory activities of chlorophyll a and inhibition of expression of TNF-α gene by the same. Inflammation 2012 35 3 959 966 10.1007/s10753‑011‑9399‑0 22038065
    [Google Scholar]
  58. da Silva Ferreira V. Sant’Anna C. Sant C. Impact of culture conditions on the chlorophyll content of microalgae for biotechnological applications. World J. Microbiol. Biotechnol. 2017 33 1 20 10.1007/s11274‑016‑2181‑6 27909993
    [Google Scholar]
  59. Suna G. Yilmaz-Ersan L. Utilization of microalgae in probiotic white brined cheese. Mljekarstvo 2022 72 2 88 104 10.15567/mljekarstvo.2022.0203
    [Google Scholar]
  60. Barkallah M. Dammak M. Louati I. Effect of Spirulina platensis fortification on physicochemical, textural, antioxidant and sensory properties of yogurt during fermentation and storage. Lebensm. Wiss. Technol. 2017 84 323 330 10.1016/j.lwt.2017.05.071
    [Google Scholar]
  61. Nourmohammadi N. Soleimanian-Zad S. Shekarchizadeh H. Effect of Spirulina (Arthrospira platensis) microencapsulated in alginate and whey protein concentrate addition on physicochemical and organoleptic properties of functional stirred yogurt. J. Sci. Food Agric. 2020 100 14 5260 5268 10.1002/jsfa.10576 32520419
    [Google Scholar]
  62. Durmaz Y. Kilicli M. Toker O.S. Konar N. Palabiyik I. Tamtürk F. Using spray-dried microalgae in ice cream formulation as a natural colorant: Effect on physicochemical and functional properties. Algal Res. 2020 47 101811 10.1016/j.algal.2020.101811
    [Google Scholar]
  63. Regulation (EC) No 1924/2006 of the European Parliament and of the Council of 20 December 2006 on nutrition and health claims made on foods. 2006 Available from: https://eur-lex.europa.eu/eli/reg/2006/1924/oj/eng
  64. Batista A.P. Niccolai A. Bursic I. Microalgae as functional ingredients in savory food products: Application to wheat crackers. Foods 2019 8 12 611 10.3390/foods8120611 31771197
    [Google Scholar]
  65. Igual M. Uribe-Wandurraga Z.N. García-Segovia P. Martínez-Monzó J. Microalgae-enriched breadsticks: Analysis for vitamin C, carotenoids, and chlorophyll a. Food Sci. Technol. Int. 2022 28 1 26 31 10.1177/1082013221990252 33517774
    [Google Scholar]
  66. Niccolai A. Venturi M. Galli V. Development of new microalgae-based sourdough “crostini”: functional effects of Arthrospira platensis (spirulina) addition. Sci. Rep. 2019 9 1 19433.b 10.1038/s41598‑019‑55840‑1 31857609
    [Google Scholar]
  67. Qazi W.M. Ballance S. Uhlen A.K. Kousoulaki K. Haugen J.E. Rieder A. Protein enrichment of wheat bread with the marine green microalgae Tetraselmis chuii – Impact on dough rheology and bread quality. Lebensm. Wiss. Technol. 2021 143 111115 10.1016/j.lwt.2021.111115
    [Google Scholar]
  68. Qazi M.W. de Sousa I.G. Nunes M.C. Raymundo A. Improving the nutritional, structural, and sensory properties of gluten-free bread with different species of microalgae. Foods 2022 11 3 397 10.3390/foods11030397 35159547
    [Google Scholar]
  69. Batista A.P. Niccolai A. Fradinho P. Microalgae biomass as an alternative ingredient in cookies: Sensory, physical and chemical properties, antioxidant activity and in vitro digestibility. Algal Res. 2017 26 161 171 10.1016/j.algal.2017.07.017
    [Google Scholar]
  70. Gouveia L. Batista A.P. Miranda A. Empis J. Raymundo A. Chlorella vulgaris biomass used as colouring source in traditional butter cookies. Innov. Food Sci. Emerg. Technol. 2007 8 3 433 436 10.1016/j.ifset.2007.03.026
    [Google Scholar]
  71. Aljobair M.O. Albaridi N.A. Alkuraieef A.N. AlKehayez N.M. Physicochemical properties, nutritional value, and sensory attributes of a nectar developed using date palm puree and spirulina. Int. J. Food Prop. 2021 24 1 845 858 10.1080/10942912.2021.1938604
    [Google Scholar]
  72. Ścieszka S. Gorzkiewicz M. Klewicka E. Innovative fermented soya drink with the microalgae Chlorella vulgaris and the probiotic strain Levilactobacillus brevis ŁOCK 0944. Lebensm. Wiss. Technol. 2021 151 112131 10.1016/j.lwt.2021.112131
    [Google Scholar]
  73. Boukid F. Comaposada J. Ribas-Agustí A. Castellari M. Development of high-protein vegetable creams by using single-cell ingredients from some microalgae species. Foods 2021 10 11 2550 10.3390/foods10112550 34828831
    [Google Scholar]
  74. Boukid F. Plant-based meat analogues: From niche to mainstream. Eur. Food Res. Technol. 2021 247 2 297 308 10.1007/s00217‑020‑03630‑9
    [Google Scholar]
  75. Marti-Quijal F.J. Zamuz S. Galvez F. Replacement of soy protein with other legumes or algae in turkey breast formulation: Changes in physicochemical and technological properties. J. Food Process. Preserv. 2018 42 12 13845 10.1111/jfpp.13845
    [Google Scholar]
  76. Marti-Quijal F.J. Zamuz S. Tomašević I. Influence of different sources of vegetable, whey and microalgae proteins on the physicochemical properties and amino acid profile of fresh pork sausages. Lebensm. Wiss. Technol. 2019 110 316 323 10.1016/j.lwt.2019.04.097
    [Google Scholar]
  77. Palanisamy M. Töpfl S. Berger R.G. Hertel C. Physico-chemical and nutritional properties of meat analogues based on Spirulina/lupin protein mixtures. Eur. Food Res. Technol. 2019 245 9 1889 1898 10.1007/s00217‑019‑03298‑w
    [Google Scholar]
  78. Bohrer B.M. An investigation of the formulation and nutritional composition of modern meat analogue products. Food Sci. Hum. Wellness 2019 8 4 320 329 10.1016/j.fshw.2019.11.006
    [Google Scholar]
  79. Ahmed N. Sheikh M.A. Ubaid M. Chauhan P. Kumar K. Choudhary S. Comprehensive exploration of marine algae diversity, bioactive compounds, health benefits, regulatory issues, and food and drug applications. Measurement. Food 2024 14 100163 10.1016/j.meafoo.2024.100163
    [Google Scholar]
  80. Zanella L. Vianello F. Microalgae of the genus Nannochloropsis: Chemical composition and functional implications for human nutrition. J. Funct. Foods 2020 68 103919 10.1016/j.jff.2020.103919
    [Google Scholar]
  81. Matos A.P. Microalgae as a potential source of proteins. Galanakis C. Proteins: Sustainable source, processing and applications. Cambridge, Massachusetts Academic Press 2019 63 93 10.1016/B978‑0‑12‑816695‑6.00003‑9
    [Google Scholar]
  82. EU Novel Food status Catalogue. 2020 Available from: https://ec.europa.eu/food/food-feed-portal/screen/novel-food-catalogue/search
  83. COMMISSION REGULATION (EU) No 231/2012 of 9 March 2012 laying down specifications for food additives listed in Annexes II and III to Regulation (EC) No 1333/2008 of the European Parliament and of the Council. 2008 Available from: https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:32012R0231
  84. 2003/427/EC of 5 June 2003 authorising the placing on the market of oil rich in DHA (docosahexaenoic acid) from the microalgae Schizochytrium sp. as a novel food ingredient under Regulation (EC) No 258/97 of the European Parliament and of the Council. 2003 Available from: https://eurlex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:32003D0427&from=SV
  85. 2009/777/EC of 21 October 2009, concerning the extension of uses of algal oil from the micro-algae Ulkenia sp. as a novel food ingredient under Regulation (EC) No 258/97 of the European Parliament and of the Council. 2009 Available from: https://eurlex. europa.eu/legalcontent/EN/TXT/HTML/?uri=CELEX:32009D0777
  86. Canada H. About Novel and Genetically-Modified (GM), Foods. 2020 Available from: https://www.canada.ca/en/health-canada/services/food-nutrition/genetically-modified-foods-other-novel-foods.html
  87. Food and Drug Administration. 2018 Available from: https://www.fda.gov/
  88. Cereals and cereal products - Determination of moisture content (Routine method). 2025 Available from: https://www.iso.org/standard/85395.html
  89. Amendment no. 1, June 1991 for Spirulina, food grade specification. 1990 Available from: https://archive.org/details/gov.in.is.12895.1990
  90. Jassby A. Some public health aspects of microalgal products. Algae and Human Affair. Lembi C.A. Waaland J.R. Cambridge Cambridge University Press 1988 181 201
    [Google Scholar]
  91. Normative instruction no. 12 of ministry of health. 2001 Available from: https://www.gov.br/anvisa/pt-br
  92. Normative instruction no. 42 of ministry of health. 2013 Available from: https://www.gov.br/anvisa/pt-br
  93. Normative instruction no. 14 of ministry of health. 2014 Available from: https://www.gov.br/anvisa/pt-br
  94. Specifies a method for the determination of crude ash of animal feeding stuffs. 2022 Available from: https://www.iso.org/standard/37272.html
  95. Food and feed products - General guidelines for the determination of nitrogen by the Kjeldahl method. 2025 Available from: https://www.iso.org/standard/41320.html
  96. Becker E.W. Microalgae: biotechnology and microbiology. Cambridge University Press 1994 10
    [Google Scholar]
  97. Chapter 6 - Oil production. 2025 Available from: www.fao.org/docrep/w7241e/w7241e0h.htm
  98. Chacón‐Lee T.L. González‐Mariño G.E. Microalgae for “healthy” foods—possibilities and challenges. Compr. Rev. Food Sci. Food Saf. 2010 9 6 655 675 10.1111/j.1541‑4337.2010.00132.x 33467820
    [Google Scholar]
  99. ISO 11085:2015. Cereals, cereals-based products and animal feeding stuffs - Determination of crude fat and total fat content by the Randall extraction method. Available from: https://www.iso.org/standard/63542.html>.Access in: April 2, 2025.
  100. Analytical Chemists. 1988 Available from: https://www.aoac.org/
  101. Detecting Heavy Metals in Foodstuffs 2025 Available from: https://analyticalscience.wiley.com/
  102. 2004/204/EC: Commission Decision of 23 February 2004 laying down detailed arrangements for the operation of the registers for recording information on genetic modifications in GMOs, provided for in Directive 2001/18/EC of the European Parliament and of the Council (Text with EEA relevance) (notified under document number C(2004) 540). 2004 Available from: https://eurlex.europa.eu/eli/dec/2004/204/oj/eng
    [Google Scholar]
  103. Decision No. 70/2008/EC of the European Parliament and of the Council of 15 January 2008 on a paperless environment for customs and trade. 2008 Available from: https://eur-lex.europa.eu/eli/dec/2008/70(1)/oj/eng
    [Google Scholar]
  104. Normative instruction no. 28 of ministry of health. 2018 Available from: https://www.gov.br/anvisa/pt-br
  105. The Gazette of India 2016 Available from: https://archive.org/details/in.gazette.2016.357
  106. List of new food ingredients and general food. 2016 Available from: https://eur-lex.europa.eu/EN/legal-content/summary/new-novel-foods-and-food-ingredients.html?fromSummary=30
  107. Specifications and Standards for Food, Food Additives, etc. Ministry of Health and Welfare Notification No. 370. 2011 Available from: https://www.fao.org/faolex/results/details/en/c/LEX-FAOC189801/
  108. da Silva S.C. Fernandes I.P. Barros L. Spray-dried Spirulina platensis as an effective ingredient to improve yogurt formulations: Testing different encapsulating solutions. J. Funct. Foods 2019 60 103427 10.1016/j.jff.2019.103427
    [Google Scholar]
  109. Cheftel J.C. Kitagawa M. Quéguiner C. New protein texturization processes by extrusion cooking at high moisture levels. Food Rev. Int. 1992 8 2 235 275 10.1080/87559129209540940
    [Google Scholar]
  110. Morais M.G. Alvarenga A.G.P. Vaz B.S. Costa J.A.V. Nanoencapsulation of Spirulina biomass by electrospraying for development of functional foods a review. Biotechnol Res Innov 2021 5 2 2021009 10.4322/biori.21050204
    [Google Scholar]
  111. Chen C. Tang T. Shi Q. Zhou Z. Fan J. The potential and challenge of microalgae as promising future food sources. Trends Food Sci. Technol. 2022 126 99 112 10.1016/j.tifs.2022.06.016
    [Google Scholar]
  112. de Oliveira A.P. Bragotto A.P.A. Microalgae-based products: Food and public health. Future Foods 2022 6 100157 10.1016/j.fufo.2022.100157
    [Google Scholar]
  113. Schetinger L.C. Nörnberg M.L. do Nascimento T.C. From potential to reality: Unraveling the factors limiting the use of microalgae as sustainable blue food protein sources - A critical review. Recent Pat. Biotechnol. 2025 10.2174/0118722083358276250703100020
    [Google Scholar]
  114. Xiaodong L Chunchao W Lu L Microencapsulated microalgae DHA oil containing antioxidant peptides and preparation method. CN106617074A, 2017 May 10. Univ Northeast Agricultural.
    [Google Scholar]
  115. Weijiang L Zuoqi Z Huaijuan Z Large-scale cultivation method of Spirulina. CN116640686A. 2023 Aug 25. Beihai Tianpule Biotechnology Co Ltd.
    [Google Scholar]
/content/journals/biot/10.2174/0118722083380758250802021828
Loading
/content/journals/biot/10.2174/0118722083380758250802021828
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test