Skip to content
2000
Volume 20, Issue 1
  • ISSN: 1872-2083
  • E-ISSN: 2212-4012

Abstract

Personalized medicine is an evolving paradigm that aims to tailor therapeutic interventions to individual patient characteristics. With a growing understanding of the genetic, epigenetic, and molecular mechanisms underlying diseases, tailored therapies are becoming more feasible and effective. This review highlights the significant advancements in personalized medicine, focusing specifically on pharmacological strategies. The article explores the integration of genomics, transcriptomics, proteomics, and metabolomics in drug development and therapy optimization. Pharmacogenomics, the customization of drug therapy based on an individual's genetic makeup, receives particular emphasis. This leads to the identification of specific biomarkers that can predict therapeutic response, drug toxicity, and susceptibility to various diseases. Additionally, the development of patented drugs and personalized therapeutic approaches based on these discoveries underscores the innovation in this field. Together with computational tools and artificial intelligence, these advancements contribute to tailored treatment plans for patients with conditions such as cancer, cardiovascular diseases, and neurological disorders. We also highlight the challenges and ethical considerations in implementing personalized medicine, such as data privacy, cost-effectiveness, and accessibility. We outline future prospects and ongoing research in this field, emphasizing the importance of collaborative efforts between researchers, clinicians, pharmacists, and regulatory authorities.

Loading

Article metrics loading...

/content/journals/biot/10.2174/0118722083359334250116063638
2025-01-20
2025-12-06
Loading full text...

Full text loading...

References

  1. JohnsonK.B. WeiW.Q. WeeraratneD. FrisseM.E. MisulisK. RheeK. Precision medicine, AI, and the future of personalized health care.Clin. Trans. Sci.2021148693
    [Google Scholar]
  2. DelpierreC. LefèvreT. Precision and personalized medicine: What their current definition says and silences about the model of health they promote. Implication for the development of personalized health.Front. Sociol.20238111215910.3389/fsoc.2023.1112159 36895332
    [Google Scholar]
  3. SeyhanA.A. CariniC. Are innovation and new technologies in precision medicine paving a new era in patients centric care?J. Transl. Med.201917111410.1186/s12967‑019‑1864‑9 30953518
    [Google Scholar]
  4. LitmanT. Personalized medicine—Concepts, technologies, and applications in inflammatory skin diseases.Apmis20191275386424
    [Google Scholar]
  5. JakkaS. RossbachM. An economic perspective on personalized medicine.The HUGO J.201371610.1186/1877‑6566‑7‑1
    [Google Scholar]
  6. BrothersK.B. RothsteinM.A. Ethical, legal and social implications of incorporating personalized medicine into healthcare.Personalized Med.201512435110.2217/pme.14.65
    [Google Scholar]
  7. MisraS.C. BisuiS. Modelling vital success factors in adopting personalized medicine system in healthcare technology and management.Eng Sci Technol Int J201821353254510.1016/j.jestch.2018.04.011
    [Google Scholar]
  8. ArjmandB. GoodarziP. JahaniM.F. FalahzadehK. LarijaniB. Personalized regenerative medicine.Acta Med. Iran.2017553144149 28282715
    [Google Scholar]
  9. HusnA.N.S. KennyE.E. Personalized medicine and the power of electronic health records.Cell20191771586910.1016/j.cell.2019.02.039 30901549
    [Google Scholar]
  10. JainK.K. Textbook of personalized medicine.Textb Pers Med2009143010.1007/978‑1‑4419‑0769‑1
    [Google Scholar]
  11. GambardellaV. TarazonaN. CejalvoJ.M. Personalized medicine: Recent progress in cancer therapy.Cancers20201241009
    [Google Scholar]
  12. SonjaP. ZukićB. StojiljkovićP.M. Molecular genetic markers as a basis for personalized medicine.J. Med. Biochem.201433182110.2478/jomb‑2013‑0035
    [Google Scholar]
  13. GoetzL.H. SchorkN.J. Personalized medicine: Motivation, challenges, and progress.Fertil. Steril.2018109695296310.1016/j.fertnstert.2018.05.006 29935653
    [Google Scholar]
  14. RothS.C. What is genomic medicine?J. Med. Libr. Assoc.2019107344244810.5195/jmla.2019.604 31258451
    [Google Scholar]
  15. ShendureJ. FindlayG.M. SnyderM.W. Genomic medicine-progress, pitfalls, and promise.Cell20191771455710.1016/j.cell.2019.02.003 30901547
    [Google Scholar]
  16. WatsonJ.D. CrickF.H.C. The structure of DNA.Cold Spring Harb. Symp. Quant. Biol.195318012313110.1101/SQB.1953.018.01.020 13168976
    [Google Scholar]
  17. AlbertsB. JohnsonA. LewisJ. RaffM. RobertsK. WalterP. The structure and function of DNA.4th edNew YorkGarland Science2002
    [Google Scholar]
  18. McKusickV.A. Mendelian inheritance in man and its online version, OMIM.Am. J. Hum. Genet.200780458860410.1086/514346 17357067
    [Google Scholar]
  19. WheelerD.A. WangL. From human genome to cancer genome: The first decade.Genome Res.201323710541062
    [Google Scholar]
  20. GlossB.S. DingerM.E. Realizing the significance of noncoding functionality in clinical genomics.Exp. Mol. Med.20185081810.1038/s12276‑018‑0087‑0 30089779
    [Google Scholar]
  21. LingH. VincentK. PichlerM. Junk DNA and the long non-coding RNA twist in cancer genetics.Oncogene201534395003501110.1038/onc.2014.456 25619839
    [Google Scholar]
  22. PattanV. KashyapR. BansalV. CandulaN. KoritalaT. SuraniS. Genomics in medicine: A new era in medicine.World J. Methodol.202111523124210.5662/wjm.v11.i5.231 34631481
    [Google Scholar]
  23. BrownellS.E. PriceJ.V. SteinmanL. Science communication to the general public: Why we need to teach undergraduate and graduate students this skill as part of their formal scientific training.J Under Neur Educ201312E6
    [Google Scholar]
  24. KhouryM.J. No shortcuts on the long road to evidence-based genomic medicine.JAMA20173181272810.1001/jama.2017.6315 28570728
    [Google Scholar]
  25. WhitneyW. KeselmanA. HumphreysB. Libraries and librarians: Key partners for progress in health literacy research and practice.Inform Serv. Use20173785100
    [Google Scholar]
  26. HortonR.H. LucassenA.M. Recent developments in genetic/genomic medicine.Clin. Sci.20191335697708
    [Google Scholar]
  27. CatalanoM.M. VaughnP. BeenJ. Using maps to promote data-driven decision-making: One library’s experience in data visualization instruction.Med. Ref. Serv. Q.201736441542210.1080/02763869.2017.1369292 29043940
    [Google Scholar]
  28. BohleS. “Plutchik”: Artificial intelligence chatbot for searching NCBI databases.J. Med. Libr. Assoc.2018106450150310.5195/jmla.2018.500 30271296
    [Google Scholar]
  29. EvansW.E. McLeodH.L. Pharmacogenomics-drug disposition, drug targets, and side effects.N. Engl. J. Med.2003348653854910.1056/NEJMra020526 12571262
    [Google Scholar]
  30. GrayK.A. YatesB. SealR.L. WrightM.W. BrufordE.A. Genenames.org: The HGNC resources in 2015.Nucleic Acids Res.201543D1D1079D108510.1093/nar/gku1071 25361968
    [Google Scholar]
  31. KarczewskiK.J. DaneshjouR. AltmanR.B. Chapter 7: Pharmacogenomics.PLOS Comput. Biol.2012812e100281710.1371/journal.pcbi.1002817 23300409
    [Google Scholar]
  32. AneeshT.P. SekharS. JoseA. ChandranL. ZachariahS.M. Pharmacogenomics: The right drug to the right person.J. Clin. Med. Res.20091419119410.4021/jocmr2009.08.1255 22461867
    [Google Scholar]
  33. HodgsonJ. MarshallA. Pharmacogenomics: Will the regulators approve?Nat. Biotechnol.19981621315
    [Google Scholar]
  34. PistoiS. Facing your genetic destiny, part II.Scientific American200212001205
    [Google Scholar]
  35. OatesJ.T. LopezD. Pharmacogenetics: An important part of drug development with a focus on its application.Int. J. Biomed. Investig.201812111 32467882
    [Google Scholar]
  36. FournierV. PrebetT. DormalA. BrunelM. CremerR. SchiaraturaL. Definition of personalized medicine and targeted therapies: Does medical familiarity matter?J. Pers. Med.20211112610.3390/jpm11010026 33406631
    [Google Scholar]
  37. SaeedR.F. AwanU.A. SaeedS. MumtazS. AkhtarN. AslamS. Targeted therapy and personalized medicine.Cancer Treat Res202318517720510.1007/978‑3‑031‑27156‑4_10 37306910
    [Google Scholar]
  38. LiuB. ZhouH. TanL. SiuK.T.H. GuanX.Y. Exploring treatment options in cancer: Tumor treatment strategies.Signal Trans. Targ. Ther.2024917510.1038/s41392‑024‑01856‑7
    [Google Scholar]
  39. ZhangS. XiaoX. YiY. WangX. ZhuL. ShenY. Tumor initiation and early tumorigenesis: Molecular mechanisms and interventional targets.Signal Trans. Targ. Ther.2024914910.1038/s41392‑024‑01848‑7
    [Google Scholar]
  40. SaijoN. Progress in cancer chemotherapy with special stress on molecular-targeted therapy.Jpn. J. Clin. Oncol.201040985586210.1093/jjco/hyq035 20651047
    [Google Scholar]
  41. HuangM. ShenA. DingJ. GengM. Molecularly targeted cancer therapy: Some lessons from the past decade.Trends Pharmacol. Sci.2014351415010.1016/j.tips.2013.11.004 24361003
    [Google Scholar]
  42. ShuelS.L. Targeted cancer therapies.Can. Fam. Physician202268751551810.46747/cfp.6807515 35831091
    [Google Scholar]
  43. OpreaT.I. MestresJ. Drug repurposing: Far beyond new targets for old drugs.AAPS J.201214475976310.1208/s12248‑012‑9390‑1 22826034
    [Google Scholar]
  44. StrittmatterS.M. Overcoming drug development bottlenecks with repurposing: Old drugs learn new tricks.Nat. Med.201420659059110.1038/nm.3595 24901567
    [Google Scholar]
  45. DinićJ. EfferthT. SosaG.A.T. Repurposing old drugs to fight multidrug resistant cancers.Drug Resist. Updat.202052Sep10071310.1016/j.drup.2020.100713 32615525
    [Google Scholar]
  46. JinG. WongS.T.C. Toward better drug repositioning: Prioritizing and integrating existing methods into efficient pipelines.Drug Discov. Today201419563764410.1016/j.drudis.2013.11.005 24239728
    [Google Scholar]
  47. KulkarniV.S. AlagarsamyV. SolomonV.R. JoseP.A. MurugesanS. Drug repurposing: An effective tool in modern drug discovery.Russ. J. Bioorganic Chem.202349215716610.1134/S1068162023020139 36852389
    [Google Scholar]
  48. JeanS.S. HsuehP.R. Old and re-purposed drugs for the treatment of COVID-19.Expert Rev. Anti Infect. Ther.202018984384710.1080/14787210.2020.1771181 32419524
    [Google Scholar]
  49. CanturriM.A. AlgabaA.R. SmaniY. Drug repurposing for the treatment of bacterial and fungal infections.Front. Microbiol.201910JAN4110.3389/fmicb.2019.00041 30745898
    [Google Scholar]
  50. ScheinC.H. Repurposing approved drugs on the pathway to novel therapies.Med. Res. Rev.202040258660510.1002/med.21627 31432544
    [Google Scholar]
  51. ChengF. KovácsI.A. BarabásiA.L. Publisher correction: Network-based prediction of drug combinations.Nat. Commun.2019101180610.1038/s41467‑019‑09692‑y
    [Google Scholar]
  52. ChouT.C. Theoretical basis, experimental design, and computerized simulation of synergism and antagonism in drug combination studies.Pharmacol. Rev.200658362168110.1124/pr.58.3.10 16968952
    [Google Scholar]
  53. ZimmermannG.R. LehárJ. KeithC.T. Multi-target therapeutics: When the whole is greater than the sum of the parts.Drug Discov. Today2007121-2344210.1016/j.drudis.2006.11.008 17198971
    [Google Scholar]
  54. ZilberbergM.D. ShorrA.F. MicekS.T. GuillametV.C. KollefM.H. Multi-drug resistance, inappropriate initial antibiotic therapy and mortality in Gram-negative severe sepsis and septic shock: A retrospective cohort study.Crit. Care201418659610.1186/s13054‑014‑0596‑8 25412897
    [Google Scholar]
  55. ZhanelG.G. LawsonC.D. AdamH. Ceftazidime-avibactam: A novel cephalosporin/β-lactamase inhibitor combination.Drugs201373215917710.1007/s40265‑013‑0013‑7 23371303
    [Google Scholar]
  56. CorreiaA.S. GärtnerF. ValeN. Drug combination and repurposing for cancer therapy: The example of breast cancer.Heliyon202171e0594810.1016/j.heliyon.2021.e05948 33490692
    [Google Scholar]
  57. StrimbuK. TavelJ.A. What are biomarkers?Curr. Opin. HIV AIDS20105646346610.1097/COH.0b013e32833ed177 20978388
    [Google Scholar]
  58. EllenbergS.S. HamiltonJ.M. Surrogate endpoints in clinical trials: Cancer.Stat. Med.19898440541310.1002/sim.4780080404 2727464
    [Google Scholar]
  59. WittesJ. LakatosE. ProbstfieldJ. Surrogate endpoints in clinical trials: Cardiovascular diseases.Stat. Med.19898441542510.1002/sim.4780080405 2727465
    [Google Scholar]
  60. SlikkerW.Jr Biomarkers and their impact on precision medicine.Exp. Biol. Med.2018243321121210.1177/1535370217733426 28927290
    [Google Scholar]
  61. PosteG. Bring on the biomarkers.Nature2011469732915615710.1038/469156a 21228852
    [Google Scholar]
  62. GyawaliB. Point: The imprecise pursuit of precision medicine: Are biomarkers to blame?J. Natl. Compr. Canc. Netw.201715785986210.6004/jnccn/2017.0126 28687572
    [Google Scholar]
  63. KatoS. SubbiahV. KurzrockR. Counterpoint: Successes in the pursuit of precision medicine: Biomarkers take credit.J. Natl. Compr. Canc. Netw.201715786386610.6004/jnccn.2017.0127 28687573
    [Google Scholar]
  64. MaloneE.R. OlivaM. SabatiniP.J.B. StockleyT.L. SiuL.L. Molecular profiling for precision cancer therapies.Genome Med.20201211910.1186/s13073‑019‑0703‑1
    [Google Scholar]
  65. LandeckL. KneipC. ReischlJ. AsadullahK. Biomarkers and personalized medicine: Current status and further perspectives with special focus on dermatology.Exp. Dermatol.201625533333910.1111/exd.12948 27167702
    [Google Scholar]
  66. SinghA.V. ChandrasekarV. PaudelN. Integrative toxicogenomics: Advancing precision medicine and toxicology through artificial intelligence and OMICs technology.Biomed. Pharmacother.202316311478410.1016/j.biopha.2023.114784 37121152
    [Google Scholar]
  67. AhmedZ. MohamedK. ZeeshanS. DongX.Q. Artificial intelligence with multi-functional machine learning platform development for better healthcare and precision medicine.Database20202020baaa01010.1093/database/baaa010
    [Google Scholar]
  68. HanR. YoonH. KimG. LeeH. LeeY. Revolutionizing medicinal chemistry: The application of artificial intelligence (AI) in early drug discovery.Pharmaceuticals20231691259
    [Google Scholar]
  69. KumarY. KoulA. SinglaR. IjazM.F. Artificial intelligence in disease diagnosis: A systematic literature review, synthesizing framework and future research agenda.J Ambient Int Human Comp202314784598486
    [Google Scholar]
  70. AlowaisS.A. AlghamdiS.S. AlsuhebanyN. Revolutionizing healthcare: The role of artificial intelligence in clinical practice.BMC Med. Educ.20232368910.1186/s12909‑023‑04698‑z
    [Google Scholar]
  71. BathulaA. GuptaS.K. MeruguS. Blockchain, artificial intelligence, and healthcare: The tripod of future—A narrative review.Artif. Intell. Rev.2024579238
    [Google Scholar]
  72. RezayiS. Effectiveness of artificial intelligence for personalized medicine in neoplasms: A systematic review.BioMed Res. Int.202220227842566
    [Google Scholar]
  73. ChenZ. LiangN. ZhangH. Harnessing the power of clinical decision support systems: Challenges and opportunities.Open Heart2023102e002432
    [Google Scholar]
  74. NiaN.G. KaplanogluE. NasabA. Evaluation of artificial intelligence techniques in disease diagnosis and prediction.Dis Artif Intel202335
    [Google Scholar]
  75. ThirunavukarasuR. GnanasambandanR. GopikrishnanM. PalanisamyV. Towards computational solutions for precision medicine based big data healthcare system using deep learning models: A review.Comput. Biol. Med.202214910602010.1016/j.compbiomed.2022.106020 36088715
    [Google Scholar]
  76. GonzálezB.A. CabezónA. GonzálezS.A. The role of AI in drug discovery: Challenges, opportunities, and strategies.Pharmaceuticals2023166891
    [Google Scholar]
  77. XuY. LiuX. CaoX. Artificial intelligence: A powerful paradigm for scientific research.Innovation20212410017910.1016/j.xinn.2021.100179 34877560
    [Google Scholar]
  78. VoraL.K. GholapA.D. JethaK. ThakurR.R.S. SolankiH.K. ChavdaV.P. Artificial intelligence in pharmaceutical technology and drug delivery design.Pharmaceutics2023157191610.3390/pharmaceutics15071916
    [Google Scholar]
  79. BorgoC. ChoudhuriS. YendluriM. Recent advancements in computational drug design algorithms through machine learning and optimization.Kinases Phosph202312117140
    [Google Scholar]
  80. ReboredoC.P. BlancoL.J. FernándezR.N. A review on machine learning approaches and trends in drug discovery.Comput. Struct. Biotechnol. J.2021194538455810.1016/j.csbj.2021.08.011 34471498
    [Google Scholar]
  81. FountzilasE. TsimberidouA.M. VoH.H. KurzrockR. Clinical trial design in the era of precision medicine.Genome Med.20221410110.1186/s13073‑022‑01102‑1
    [Google Scholar]
  82. SelkerH.P. GormanS. KaitinK.I. Efficacy-to-effectiveness clinical trials.Trans. American Clin. Climatol. Assoc.2018129279
    [Google Scholar]
  83. VidhyaK.S. SultanaA. Artificial intelligence’s impact on drug discovery and development from bench to bedside.Cureus20231510e47486
    [Google Scholar]
  84. SinghS. GuptaH. SharmaP. SahiS. Advances in artificial intelligence (AI)-assisted approaches in drug screening.Artif Intell Chem20242100039
    [Google Scholar]
  85. QuaziS. Artificial intelligence and machine learning in precision and genomic medicine.Med. Oncol.202239812010.1007/s12032‑022‑01711‑1
    [Google Scholar]
  86. KapelnerA. BleichJ. LevineA. CohenZ.D. DeRubeisR.J. BerkR. Evaluating the effectiveness of personalized medicine with software.Front. Big Data2021457253210.3389/fdata.2021.572532 34085036
    [Google Scholar]
  87. AmjadA. KordelP. FernandesG. A review on innovation in healthcare sector (telehealth) through artificial intelligence.Sustainability20231586655
    [Google Scholar]
  88. NaikN. HameedB.M.Z. ShettyD.K. SwainD. ShahM. PaulR. Legal and ethical consideration in artificial intelligence in healthcare: Who takes responsibility?.Front. Surg.20229862322
    [Google Scholar]
  89. ChehelgerdiM. DehkordiB.F. ChehelgerdiM. Exploring the promising potential of induced pluripotent stem cells in cancer research and therapy.Mol. Canc20232218910.1186/s12943‑023‑01873‑0
    [Google Scholar]
  90. CathaoirK. The invisible child of personalized medicine.J. Law Biosci.202182lsab029
    [Google Scholar]
  91. EsplinE.D. OeiL. SnyderM.P. Personalized sequencing and the future of medicine: Discovery, diagnosis and defeat of disease.Pharmacogenomics2014151417711790
    [Google Scholar]
  92. LiuB. SaberA. HaismaH.J. CRISPR/Cas9: A powerful tool for identification of new targets for cancer treatment.Drug Discov. Today201924495597010.1016/j.drudis.2019.02.011 30849442
    [Google Scholar]
  93. RatinerK. CiocanD. AbdeenS.K. ElinavE. Utilization of the microbiome in personalized medicine.Nat. Rev. Microbiol.2024225291308
    [Google Scholar]
  94. CariniC. SeyhanA.A. Tribulations and future opportunities for artificial intelligence in precision medicine.J. Transl. Med.202422411
    [Google Scholar]
  95. TaherdoostH. GhofraniA.A. I’s role in revolutionizing personalized medicine by reshaping pharmacogenomics and drug therapy.Intell Pharm202425643650
    [Google Scholar]
  96. SadeeW. WangD. HartmannK. TolandA.E. Pharmacogenomics: Driving personalized medicine.Pharmacol. Rev.202375478981410.1124/pharmrev.122.000810 36927888
    [Google Scholar]
  97. CaraballoP.J. HodgeL.S. BielinskiS.J. Multidisciplinary model to implement pharmacogenomics at the point of care.Genet. Med.201719442142910.1038/gim.2016.120 27657685
    [Google Scholar]
  98. ÁlvarezN.R. Pharmacogenomics in clinical trials: An overview.Front. Pharmacol.202314124708810.3389/fphar.2023.1247088 37927590
    [Google Scholar]
  99. MercoglianoM.F. BruniS. MauroF.L. SchillaciR. Emerging targeted therapies for HER2-positive breast cancer.Cancers2023157198710.3390/cancers15071987 37046648
    [Google Scholar]
  100. JagoskyM. TanA.R. Combination of pertuzumab and trastuzumab in the treatment of HER2-positive early breast cancer: A review of the emerging clinical data.Breast Canc20211339340710.2147/BCTT.S176514
    [Google Scholar]
  101. SwainS.M. ShastryM. HamiltonE. Targeting HER2-positive breast cancer: Advances and future directions.Nat. Rev. Drug Discov.202322210112610.1038/s41573‑022‑00579‑0
    [Google Scholar]
  102. YinT. MiyataT. Warfarin dose and the pharmacogenomics of CYP2C9 and VKORC1 - Rationale and perspectives.Thromb. Res.2007120111010.1016/j.thromres.2006.10.021 17161452
    [Google Scholar]
  103. HusnA.N.S. ObengO.A. SandersonS.C. GottesmanO. ScottS.A. Implementation and utilization of genetic testing in personalized medicine.Pharm Personal Med20147227240
    [Google Scholar]
  104. KaszturaM. RichardA. BempongN.E. LoncarD. FlahaultA. Cost-effectiveness of precision medicine: A scoping review.Int. J. Public Health20196491261127110.1007/s00038‑019‑01298‑x 31650223
    [Google Scholar]
  105. EbulueC.C. EbulueO.R. EkesiobiC.S. Public-private partnerships in health sector innovation: Lessons from around the world.Int Med Sci Res J20244448449910.51594/imsrj.v4i4.1051
    [Google Scholar]
  106. HoD. QuakeS.R. McCabeE.R.B. Enabling technologies for personalized and precision medicine.Trends Biotechnol.202038549751810.1016/j.tibtech.2019.12.021 31980301
    [Google Scholar]
  107. MollaG. BitewM. Revolutionizing personalized medicine: Synergy with multi-omics data generation, main hurdles, and future perspectives.Biomedicines202412122750
    [Google Scholar]
  108. NieuwlaatR. WilczynskiN. NavarroT. Interventions for enhancing medication adherence.Cochrane Libr.2014201411CD00001110.1002/14651858.CD000011.pub4 25412402
    [Google Scholar]
  109. IvanisevicT. SewduthR.N. Multi-omics integration for the design of novel therapies and the identification of novel biomarkers.Proteomes20231143410.3390/proteomes11040034
    [Google Scholar]
  110. TimothyT. LeiW. XinL. SenpingC. XiaolingL. 3D printing: Innovative solutions for patients and pharmaceutical industry.Internat J Pharmaceut2023631122480ISSN 0378-5173.10.1016/j.ijpharm.2022.122480
    [Google Scholar]
  111. ZhangY ZhuZ PangZ GuanM Primer for pharmacogenomics gene SNP (Single Nucleotide Polymorphism) detection and application thereof.CN Patent 118879852A2024
/content/journals/biot/10.2174/0118722083359334250116063638
Loading
/content/journals/biot/10.2174/0118722083359334250116063638
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test