Skip to content
2000
image of Pharmacological Approaches and Innovative Strategies for Individualized Patient Care

Abstract

Personalized medicine is an evolving paradigm that aims to tailor therapeutic interventions to individual patient characteristics. With a growing understanding of the genetic, epigenetic, and molecular mechanisms underlying diseases, tailored therapies are becoming more feasible and effective. This review highlights the significant advancements in personalized medicine, focusing specifically on pharmacological strategies. The article explores the integration of genomics, transcriptomics, proteomics, and metabolomics in drug development and therapy optimization. Pharmacogenomics, the customization of drug therapy based on an individual's genetic makeup, receives particular emphasis. This leads to the identification of specific biomarkers that can predict therapeutic response, drug toxicity, and susceptibility to various diseases. Together with computational tools and artificial intelligence, these advancements contribute to tailored treatment plans for patients with conditions such as cancer, cardiovascular diseases, and neurological disorders. We also highlight the challenges and ethical considerations in implementing personalized medicine, such as data privacy, cost-effectiveness, and accessibility. We outline future prospects and ongoing research in this field, highlighting the importance of collaborative efforts between researchers, clinicians, pharmacists, and regulatory authorities.

Loading

Article metrics loading...

/content/journals/biot/10.2174/0118722083359334250116063638
2025-01-20
2025-09-20
Loading full text...

Full text loading...

References

  1. Johnson KB Wei WQ Weeraratne D Frisse ME Misulis K Rhee K Precision medicine, AI, and the future of personalized health care. Clin. Trans. Sci. 2021 14 86 93
    [Google Scholar]
  2. Delpierre C. Lefèvre T. Precision and personalized medicine: What their current definition says and silences about the model of health they promote. Implication for the development of personalized health. Front. Sociol. 2023 8 1112159 10.3389/fsoc.2023.1112159 36895332
    [Google Scholar]
  3. Seyhan A.A. Carini C. Are innovation and new technologies in precision medicine paving a new era in patients centric care? J. Transl. Med. 2019 17 1 114 10.1186/s12967‑019‑1864‑9 30953518
    [Google Scholar]
  4. Litman T. Personalized medicine—concepts, technologies, and applications in inflammatory skin diseases. Apmis 2019 127 5 386 424
    [Google Scholar]
  5. Jakka S Rossbach M An economic perspective on personalized medicine. The HUGO J. 2013 7 1 6 10.1186/1877‑6566‑7‑1
    [Google Scholar]
  6. Brothers KB Rothstein MA Ethical, legal and social implications of incorporating personalized medicine into healthcare. Personalized Med. 2015 12 43 51 10.2217/pme.14.65
    [Google Scholar]
  7. Misra S.C. Bisui S. Modelling vital success factors in adopting personalized medicine system in healthcare technology and management. Eng. Sci. Technol. Int. J. 2018 21 3 532 545 10.1016/j.jestch.2018.04.011
    [Google Scholar]
  8. Arjmand B. Goodarzi P. Jahani M.F. Falahzadeh K. Larijani B. Personalized regenerative medicine. Acta Med. Iran. 2017 55 3 144 149 28282715
    [Google Scholar]
  9. Husn A.N.S. Kenny E.E. Personalized medicine and the power of electronic health records. Cell 2019 177 1 58 69 10.1016/j.cell.2019.02.039 30901549
    [Google Scholar]
  10. Jain K.K. Textbook of personalized medicine. Textb Pers Med 2009 1 430 10.1007/978‑1‑4419‑0769‑1
    [Google Scholar]
  11. Gambardella V Tarazona N Cejalvo JM Lombardi P Huerta M Roselló S Personalized medicine: Recent progress in cancer therapy. Cancers 2020 12 4 1009
    [Google Scholar]
  12. Sonja P. Zukić B. Stojiljković P.M. Molecular genetic markers as a basis for personalized medicine. J. Med. Biochem. 2014 33 1 8 21 10.2478/jomb‑2013‑0035
    [Google Scholar]
  13. Goetz L.H. Schork N.J. Personalized medicine: Motivation, challenges, and progress. Fertil. Steril. 2018 109 6 952 963 10.1016/j.fertnstert.2018.05.006 29935653
    [Google Scholar]
  14. Roth S.C. What is genomic medicine? J. Med. Libr. Assoc. 2019 107 3 442 448 10.5195/jmla.2019.604 31258451
    [Google Scholar]
  15. Shendure J. Findlay G.M. Snyder M.W. Genomic medicine -- progress, pitfalls, and promise. Cell 2019 177 1 45 57 10.1016/j.cell.2019.02.003 30901547
    [Google Scholar]
  16. Watson J.D. Crick F.H.C. The structure of DNA. Cold Spring Harb. Symp. Quant. Biol. 1953 18 0 123 131 10.1101/SQB.1953.018.01.020 13168976
    [Google Scholar]
  17. Alberts B Johnson A Lewis J Raff M Roberts K Walter P. The structure and function of DNA. 2002
    [Google Scholar]
  18. McKusick V.A. Mendelian inheritance in man and its online version, OMIM. Am. J. Hum. Genet. 2007 80 4 588 604 10.1086/514346 17357067
    [Google Scholar]
  19. Wheeler DA Wang L From human genome to cancer genome: The first decade. Genome Res. 2013 23 7 1054 1062
    [Google Scholar]
  20. Gloss B.S. Dinger M.E. Realizing the significance of noncoding functionality in clinical genomics. Exp. Mol. Med. 2018 50 8 1 8 10.1038/s12276‑018‑0087‑0 30089779
    [Google Scholar]
  21. Ling H. Vincent K. Pichler M. Fodde R. Neagoe B.I. Slack F.J. Calin G.A. Junk DNA and the long non-coding RNA twist in cancer genetics. Oncogene 2015 34 39 5003 5011 10.1038/onc.2014.456 25619839
    [Google Scholar]
  22. Pattan V. Kashyap R. Bansal V. Candula N. Koritala T. Surani S. Genomics in medicine: A new era in medicine. World J. Methodol. 2021 11 5 231 242 10.5662/wjm.v11.i5.231 34631481
    [Google Scholar]
  23. Brownell SE Price J V. Steinman L. Science communication to the general public: Why we need to teach undergraduate and graduate students this skill as part of their formal scientific training. J. Under. Neur. Educ. 2013 12 E6
    [Google Scholar]
  24. Khoury M.J. No shortcuts on the long road to evidence-based genomic medicine. JAMA 2017 318 1 27 28 10.1001/jama.2017.6315 28570728
    [Google Scholar]
  25. Whitney W Keselman A Humphreys B. Libraries and librarians: Key partners for progress in health literacy research and practice. Inform. Serv. Use 2017 37 85 100
    [Google Scholar]
  26. Horton RH Lucassen AM Recent developments in genetic/genomic medicine. Clin. Sci. 2019 133 5 697 708
    [Google Scholar]
  27. Catalano M.M. Vaughn P. Been J. Using maps to promote data-driven decision-making: One library’s experience in data visualization instruction. Med. Ref. Serv. Q. 2017 36 4 415 422 10.1080/02763869.2017.1369292 29043940
    [Google Scholar]
  28. Bohle S. “Plutchik”: Artificial intelligence chatbot for searching NCBI databases. J. Med. Libr. Assoc. 2018 106 4 501 503 10.5195/jmla.2018.500 30271296
    [Google Scholar]
  29. Evans W.E. McLeod H.L. Pharmacogenomics--drug disposition, drug targets, and side effects. N. Engl. J. Med. 2003 348 6 538 549 10.1056/NEJMra020526 12571262
    [Google Scholar]
  30. Gray K.A. Yates B. Seal R.L. Wright M.W. Bruford E.A. Genenames.org: The HGNC resources in 2015. Nucleic Acids Res. 2015 43 D1 D1079 D1085 10.1093/nar/gku1071 25361968
    [Google Scholar]
  31. Karczewski K.J. Daneshjou R. Altman R.B. Chapter 7: Pharmacogenomics. PLOS Comput. Biol. 2012 8 12 e1002817 10.1371/journal.pcbi.1002817 23300409
    [Google Scholar]
  32. Aneesh T.P. Sekhar S. Jose A. Chandran L. Zachariah S.M. Pharmacogenomics: The right drug to the right person. J. Clin. Med. Res. 2009 1 4 191 194 10.4021/jocmr2009.08.1255 22461867
    [Google Scholar]
  33. Hodgson J Marshall A. Pharmacogenomics: Will the regulators approve?. Nat. Biotechnol. 1998 16 2 13 15
    [Google Scholar]
  34. Pistoi S. Facing your genetic destiny, part II. Scientific American 2002 1200 1205
    [Google Scholar]
  35. Oates J.T. Lopez D. Pharmacogenetics: An important part of drug development with a focus on its application. Int. J. Biomed. Investig. 2018 1 2 111 32467882
    [Google Scholar]
  36. Fournier V. Prebet T. Dormal A. Brunel M. Cremer R. Schiaratura L. Definition of personalized medicine and targeted therapies: Does medical familiarity matter? J. Pers. Med. 2021 11 1 26 10.3390/jpm11010026 33406631
    [Google Scholar]
  37. Saeed R.F. Awan U.A. Saeed S. Mumtaz S. Akhtar N. Aslam S. Targeted therapy and personalized medicine. Cancer Treat. Res. 2023 185 177 205 10.1007/978‑3‑031‑27156‑4_10 37306910
    [Google Scholar]
  38. Liu B. Zhou H. Tan L. Siu K.T.H. Guan X.Y. Exploring treatment options in cancer: Tumor treatment strategies. Signal Trans. Targ. Ther. 2024 9 175 10.1038/s41392‑024‑01856‑7
    [Google Scholar]
  39. Zhang S. Xiao X. Yi Y. Wang X. Zhu L. Shen Y. Tumor initiation and early tumorigenesis: Molecular mechanisms and interventional targets. Signal Trans. Targ. Ther. 2024 9 149 10.1038/s41392‑024‑01848‑7
    [Google Scholar]
  40. Saijo N. Progress in cancer chemotherapy with special stress on molecular-targeted therapy. Jpn. J. Clin. Oncol. 2010 40 9 855 862 10.1093/jjco/hyq035 20651047
    [Google Scholar]
  41. Huang M. Shen A. Ding J. Geng M. Molecularly targeted cancer therapy: Some lessons from the past decade. Trends Pharmacol. Sci. 2014 35 1 41 50 10.1016/j.tips.2013.11.004 24361003
    [Google Scholar]
  42. Shuel S.L. Targeted cancer therapies. Can. Fam. Physician 2022 68 7 515 518 10.46747/cfp.6807515 35831091
    [Google Scholar]
  43. Oprea T.I. Mestres J. Drug repurposing: Far beyond new targets for old drugs. AAPS J. 2012 14 4 759 763 10.1208/s12248‑012‑9390‑1 22826034
    [Google Scholar]
  44. Strittmatter S.M. Overcoming drug development bottlenecks with repurposing: Old drugs learn new tricks. Nat. Med. 2014 20 6 590 591 10.1038/nm.3595 24901567
    [Google Scholar]
  45. Dinić J. Efferth T. Sosa G.A.T. Grahovac J. Padrón J.M. Pajeva I. Rizzolio F. Saponara S. Spengler G. Tsakovska I. Repurposing old drugs to fight multidrug resistant cancers. Drug Resist. Updat. 2020 52 Sep 100713 10.1016/j.drup.2020.100713 32615525
    [Google Scholar]
  46. Jin G. Wong S.T.C. Toward better drug repositioning: Prioritizing and integrating existing methods into efficient pipelines. Drug Discov. Today 2014 19 5 637 644 10.1016/j.drudis.2013.11.005 24239728
    [Google Scholar]
  47. Kulkarni V.S. Alagarsamy V. Solomon V.R. Jose P.A. Murugesan S. Drug repurposing: An effective tool in modern drug discovery. Russ. J. Bioorganic Chem. 2023 49 2 157 166 10.1134/S1068162023020139 36852389
    [Google Scholar]
  48. Jean S.S. Hsueh P.R. Old and re-purposed drugs for the treatment of COVID-19. Expert Rev. Anti Infect. Ther. 2020 18 9 843 847 10.1080/14787210.2020.1771181 32419524
    [Google Scholar]
  49. Canturri M.A. Algaba A.R. Smani Y. Drug repurposing for the treatment of bacterial and fungal infections. Front. Microbiol. 2019 10 JAN 41 10.3389/fmicb.2019.00041 30745898
    [Google Scholar]
  50. Schein C.H. Repurposing approved drugs on the pathway to novel therapies. Med. Res. Rev. 2020 40 2 586 605 10.1002/med.21627 31432544
    [Google Scholar]
  51. Cheng F. Kovács I.A. Barabási A.L. Publisher correction: Network-based prediction of drug combinations. Nat. Commun. 2019 10 1 1806 10.1038/s41467‑019‑09692‑y
    [Google Scholar]
  52. Chou T.C. Theoretical basis, experimental design, and computerized simulation of synergism and antagonism in drug combination studies. Pharmacol. Rev. 2006 58 3 621 681 10.1124/pr.58.3.10 16968952
    [Google Scholar]
  53. Zimmermann G.R. Lehár J. Keith C.T. Multi-target therapeutics: When the whole is greater than the sum of the parts. Drug Discov. Today 2007 12 1-2 34 42 10.1016/j.drudis.2006.11.008 17198971
    [Google Scholar]
  54. Zilberberg M.D. Shorr A.F. Micek S.T. Guillamet V.C. Kollef M.H. Multi-drug resistance, inappropriate initial antibiotic therapy and mortality in Gram-negative severe sepsis and septic shock: A retrospective cohort study. Crit. Care 2014 18 6 596 10.1186/s13054‑014‑0596‑8 25412897
    [Google Scholar]
  55. Zhanel G.G. Lawson C.D. Adam H. Schweizer F. Zelenitsky S. Wiens L.P.R.S. Denisuik A. Rubinstein E. Gin A.S. Hoban D.J. Lynch J.P. III Karlowsky J.A. Ceftazidime-avibactam: A novel cephalosporin/β-lactamase inhibitor combination. Drugs 2013 73 2 159 177 10.1007/s40265‑013‑0013‑7 23371303
    [Google Scholar]
  56. Correia A.S. Gärtner F. Vale N. Drug combination and repurposing for cancer therapy: The example of breast cancer. Heliyon 2021 7 1 e05948 10.1016/j.heliyon.2021.e05948 33490692
    [Google Scholar]
  57. Strimbu K. Tavel J.A. What are biomarkers? Curr. Opin. HIV AIDS 2010 5 6 463 466 10.1097/COH.0b013e32833ed177 20978388
    [Google Scholar]
  58. Ellenberg S.S. Hamilton J.M. Surrogate endpoints in clinical trials: Cancer. Stat. Med. 1989 8 4 405 413 10.1002/sim.4780080404 2727464
    [Google Scholar]
  59. Wittes J. Lakatos E. Probstfield J. Surrogate endpoints in clinical trials: Cardiovascular diseases. Stat. Med. 1989 8 4 415 425 10.1002/sim.4780080405 2727465
    [Google Scholar]
  60. Slikker W. Jr Biomarkers and their impact on precision medicine. Exp. Biol. Med. 2018 243 3 211 212 10.1177/1535370217733426 28927290
    [Google Scholar]
  61. Poste G. Bring on the biomarkers. Nature 2011 469 7329 156 157 10.1038/469156a 21228852
    [Google Scholar]
  62. Gyawali B. Point: The imprecise pursuit of precision medicine: Are biomarkers to blame? J. Natl. Compr. Canc. Netw. 2017 15 7 859 862 10.6004/jnccn/2017.0126 28687572
    [Google Scholar]
  63. Kato S. Subbiah V. Kurzrock R. Counterpoint: Successes in the pursuit of precision medicine: Biomarkers take credit. J. Natl. Compr. Canc. Netw. 2017 15 7 863 866 10.6004/jnccn.2017.0127 28687573
    [Google Scholar]
  64. Malone E.R. Oliva M. Sabatini P.J.B. Stockley T.L. Siu L.L. Molecular profiling for precision cancer therapies. Genome Med. 2020 12 1 19 10.1186/s13073‑019‑0703‑1
    [Google Scholar]
  65. Landeck L. Kneip C. Reischl J. Asadullah K. Biomarkers and personalized medicine: Current status and further perspectives with special focus on dermatology. Exp. Dermatol. 2016 25 5 333 339 10.1111/exd.12948 27167702
    [Google Scholar]
  66. Singh A.V. Chandrasekar V. Paudel N. Laux P. Luch A. Gemmati D. Tisato V. Prabhu K.S. Uddin S. Dakua S.P. Integrative toxicogenomics: Advancing precision medicine and toxicology through artificial intelligence and OMICs technology. Biomed. Pharmacother. 2023 163 114784 10.1016/j.biopha.2023.114784 37121152
    [Google Scholar]
  67. Ahmed Z Mohamed K Zeeshan S Dong XQ Artificial intelligence with multi-functional machine learning platform development for better healthcare and precision medicine. Database 2020 2020 baaa010 10.1093/database/baaa010
    [Google Scholar]
  68. Han R. Yoon H. Kim G. Lee H. Lee Y. Revolutionizing medicinal chemistry: The application of artificial intelligence (AI) in early drug discovery. Pharmaceuticals 2023 16 9 1259
    [Google Scholar]
  69. Kumar Y Koul A Singla R Ijaz MF Artificial intelligence in disease diagnosis: A systematic literature review, synthesizing framework and future research agenda. J. Ambient Int. Human. Comp. 2023 14 7 8459 8486
    [Google Scholar]
  70. Alowais S.A. Alghamdi S.S. Alsuhebany N. Alqahtani T. Alshaya A.I. Almohareb S.N. Revolutionizing healthcare: The role of artificial intelligence in clinical practice. BMC Med. Educ. 2023 23 689 10.1186/s12909‑023‑04698‑z
    [Google Scholar]
  71. Bathula A. Gupta S.K. Merugu S. Saba L. Khanna N.N. Laird J.R. Blockchain, artificial intelligence, and healthcare: The tripod of future—A narrative review. Artif Intell Rev 2024 57 9 238
    [Google Scholar]
  72. Rezayi S Effectiveness of artificial intelligence for personalized medicine in neoplasms: A systematic review. BioMed Res. Int. 2022 2022 7842566
    [Google Scholar]
  73. Chen Z Liang N Zhang H Li H Yang Y Zong X Harnessing the power of clinical decision support systems: Challenges and opportunities. Open Heart 2023 10 2 e002432
    [Google Scholar]
  74. Nia NG Kaplanoglu E Nasab A Evaluation of artificial intelligence techniques in disease diagnosis and prediction. Dis. Artif. Intel. 2023 3 5
    [Google Scholar]
  75. Thirunavukarasu R. Gnanasambandan R. Gopikrishnan M. Palanisamy V. Towards computational solutions for precision medicine based big data healthcare system using deep learning models: A review. Comput. Biol. Med. 2022 149 106020 10.1016/j.compbiomed.2022.106020 36088715
    [Google Scholar]
  76. González B.A Cabezón A González S.A Torres C.D Riveiro A.P Piñeiro Á The role of AI in drug discovery: Challenges, opportunities, and strategies. Pharmaceuticals 2023 16 6 891
    [Google Scholar]
  77. Xu Y. Liu X. Cao X. Huang C. Liu E. Qian S. Liu X. Wu Y. Dong F. Qiu C.W. Qiu J. Hua K. Su W. Wu J. Xu H. Han Y. Fu C. Yin Z. Liu M. Roepman R. Dietmann S. Virta M. Kengara F. Zhang Z. Zhang L. Zhao T. Dai J. Yang J. Lan L. Luo M. Liu Z. An T. Zhang B. He X. Cong S. Liu X. Zhang W. Lewis J.P. Tiedje J.M. Wang Q. An Z. Wang F. Zhang L. Huang T. Lu C. Cai Z. Wang F. Zhang J. Artificial intelligence: A powerful paradigm for scientific research. Innovation 2021 2 4 100179 10.1016/j.xinn.2021.100179 34877560
    [Google Scholar]
  78. Vora LK Gholap AD Jetha K Thakur RRS Solanki HK Chavda VP Artificial intelligence in pharmaceutical technology and drug delivery design. Pharmaceutics 2023 15 7 1916 10.3390/pharmaceutics15071916
    [Google Scholar]
  79. Borgo C. Choudhuri S. Yendluri M. Poddar S. Li A. Mallick K. Recent advancements in computational drug design algorithms through machine learning and optimization. Kinases Phosph. 2023 1 2 117 140
    [Google Scholar]
  80. Reboredo C.P. Blanco L.J. Fernández R.N. Cedrón F. Novoa F.J. Carballal A. Maojo V. Pazos A. Lozano F.C. A review on machine learning approaches and trends in drug discovery. Comput. Struct. Biotechnol. J. 2021 19 4538 4558 10.1016/j.csbj.2021.08.011 34471498
    [Google Scholar]
  81. Fountzilas E. Tsimberidou A.M. Vo H.H. Kurzrock R. Clinical trial design in the era of precision medicine. Genome Med. 2022 14 101 10.1186/s13073‑022‑01102‑1
    [Google Scholar]
  82. Selker HP Gorman S Kaitin KI Efficacy-to-effectiveness clinical trials. Trans. American Clin. Climatol. Assoc. 2018 129 279
    [Google Scholar]
  83. Vidhya KS Sultana A Artificial intelligence's impact on drug discovery and development from bench to bedside. Cureus 2023 15 10 e47486
    [Google Scholar]
  84. Singh S. Gupta H. Sharma P. Sahi S. Advances in artificial intelligence (AI)-assisted approaches in drug screening. Artif. Intell. Chem. 2024 2 100039
    [Google Scholar]
  85. Quazi S. Artificial intelligence and machine learning in precision and genomic medicine. Med. Oncol. 2022 39 8 120 10.1007/s12032‑022‑01711‑1
    [Google Scholar]
  86. Kapelner A. Bleich J. Levine A. Cohen Z.D. DeRubeis R.J. Berk R. Evaluating the effectiveness of personalized medicine with software. Front. Big Data 2021 4 572532 10.3389/fdata.2021.572532 34085036
    [Google Scholar]
  87. Amjad A. Kordel P. Fernandes G. A review on innovation in healthcare sector (telehealth) through artificial intelligence. Sustainability 2023 15 8 6655
    [Google Scholar]
  88. Naik N Hameed BMZ Shetty DK Swain D Shah M Paul R Legal and ethical consideration in artificial intelligence in healthcare: Who takes responsibility?. Front. Surg. 2022 9 862322
    [Google Scholar]
  89. Chehelgerdi M Dehkordi B.F Chehelgerdi M Kabiri H Dehkordi S.H Abdolvand M Exploring the promising potential of induced pluripotent stem cells in cancer research and therapy. Mol. Canc. 2023 22 189 10.1186/s12943‑023‑01873‑0
    [Google Scholar]
  90. Cathaoir K. The invisible child of personalized medicine. J. Law Biosci. 2021 8 2 lsab029
    [Google Scholar]
  91. Esplin ED Oei L Snyder MP Personalized sequencing and the future of medicine: Discovery, diagnosis and defeat of disease. Pharmacogenomics 2014 15 14 1771 1790
    [Google Scholar]
  92. Liu B. Saber A. Haisma H.J. CRISPR/Cas9: A powerful tool for identification of new targets for cancer treatment. Drug Discov. Today 2019 24 4 955 970 10.1016/j.drudis.2019.02.011 30849442
    [Google Scholar]
  93. Ratiner K. Ciocan D. Abdeen S.K. Elinav E. Utilization of the microbiome in personalized medicine. Nat. Rev. Microbiol. 2024 22 5 291 308
    [Google Scholar]
  94. Carini C. Seyhan A.A. Tribulations and future opportunities for artificial intelligence in precision medicine. J. Transl. Med. 2024 22 411
    [Google Scholar]
  95. Taherdoost H. Ghofrani A.A. I’s role in revolutionizing personalized medicine by reshaping pharmacogenomics and drug therapy. Intell Pharm. 2024 2 5 643 650
    [Google Scholar]
  96. Sadee W. Wang D. Hartmann K. Toland A.E. Pharmacogenomics: Driving personalized medicine. Pharmacol. Rev. 2023 75 4 789 814 10.1124/pharmrev.122.000810 36927888
    [Google Scholar]
  97. Caraballo P.J. Hodge L.S. Bielinski S.J. Stewart A.K. Farrugia G. Schultz C.G. Vitek R.C.R. Olson J.E. Sauver S.J.L. Roger V.L. Parkulo M.A. Kullo I.J. Nicholson W.T. Elliott M.A. Black J.L. Weinshilboum R.M. Multidisciplinary model to implement pharmacogenomics at the point of care. Genet. Med. 2017 19 4 421 429 10.1038/gim.2016.120 27657685
    [Google Scholar]
  98. Álvarez N.R. Pharmacogenomics in clinical trials: An overview. Front. Pharmacol. 2023 14 1247088 10.3389/fphar.2023.1247088 37927590
    [Google Scholar]
  99. Mercogliano M.F. Bruni S. Mauro F.L. Schillaci R. Emerging targeted therapies for HER2-positive breast cancer. Cancers 2023 15 7 1987 10.3390/cancers15071987 37046648
    [Google Scholar]
  100. Jagosky M Tan AR Combination of pertuzumab and trastuzumab in the treatment of HER2-positive early breast cancer: A review of the emerging clinical data. Breast Canc. 2021 13 393 407 10.2147/BCTT.S176514
    [Google Scholar]
  101. Swain SM Shastry M Hamilton E Targeting HER2-positive breast cancer: Advances and future directions. Nat. Rev. Drug Discov. 2023 22 2 101 126 10.1038/s41573‑022‑00579‑0
    [Google Scholar]
  102. Yin T. Miyata T. Warfarin dose and the pharmacogenomics of CYP2C9 and VKORC1 — rationale and perspectives. Thromb. Res. 2007 120 1 1 10 10.1016/j.thromres.2006.10.021 17161452
    [Google Scholar]
  103. Husn A.NS Obeng O.A Sanderson SC Gottesman O Scott SA Implementation and utilization of genetic testing in personalized medicine. Pharm. Personal. Med. 2014 7 227 240
    [Google Scholar]
  104. Kasztura M. Richard A. Bempong N.E. Loncar D. Flahault A. Cost-effectiveness of precision medicine: A scoping review. Int. J. Public Health 2019 64 9 1261 1271 10.1007/s00038‑019‑01298‑x 31650223
    [Google Scholar]
  105. Ebulue C.C. Ebulue O.R. Ekesiobi C.S. Public-private partnerships in health sector innovation: Lessons from around the world. Int. Med. Sci. Res. J. 2024 4 4 484 499 10.51594/imsrj.v4i4.1051
    [Google Scholar]
  106. Ho D. Quake S.R. McCabe E.R.B. Chng W.J. Chow E.K. Ding X. Gelb B.D. Ginsburg G.S. Hassenstab J. Ho C.M. Mobley W.C. Nolan G.P. Rosen S.T. Tan P. Yen Y. Zarrinpar A. Enabling technologies for personalized and precision medicine. Trends Biotechnol. 2020 38 5 497 518 10.1016/j.tibtech.2019.12.021 31980301
    [Google Scholar]
  107. Molla G. Bitew M. Revolutionizing personalized medicine: Synergy with multi-omics data generation, main hurdles, and future perspectives. Biomedicines 2024 12 12 2750
    [Google Scholar]
  108. Nieuwlaat R. Wilczynski N. Navarro T. Hobson N. Jeffery R. Keepanasseril A. Agoritsas T. Mistry N. Iorio A. Jack S. Sivaramalingam B. Iserman E. Mustafa R.A. Jedraszewski D. Cotoi C. Haynes R.B. Interventions for enhancing medication adherence. Cochrane Libr. 2014 2014 11 CD000011 10.1002/14651858.CD000011.pub4 25412402
    [Google Scholar]
/content/journals/biot/10.2174/0118722083359334250116063638
Loading
/content/journals/biot/10.2174/0118722083359334250116063638
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test