Skip to content
2000
Volume 20, Issue 1
  • ISSN: 1872-2083
  • E-ISSN: 2212-4012

Abstract

Introduction

The present study examined Polyhydroxy butyrate production (PHB) potential of different photosynthetic microbes such as and -PK under different nutrient conditions. Biodegradable bioplastics, such as Poly-β-hydroxybutyrates (PHB), derived from these microbes provide a sustainable alternative to conventional petroleum-based non-degradable plastics.

Background

As the demand for clean and sustainable alternatives rises, bio-plastic is gaining attention as a viable substitute to conventional plastics. However, conventional sources of bio-plastic production have inherent limitations, which can be effectively addressed through the utilization of photosynthetic microbes ., microalgae, purple non sulphur bacteria.

Methodology

The production of bioplastic was evaluated by cultivating the microalgae in BG-11, BBM and PNSB in synthetic growth media (MI, MII) with different nitrogen concentrations of 0%, 50% and 100%. The biopolymer (PHB) was obtained from all experiments in a wide range of concentration (7-42.8%) of dry cell weight (DCW).

Results

In this study, algal isolate SK1 demonstrated the highest PHB content (42.8%) in BBM under 100% nitrogen starvations rendering the bioplastic exceptionally compatible and suitable for eco-friendly applications. Additionally, various patents cited by different authors on different aspects of microbial bioplastic production.

Conclusion

Nutrition depletion such as nitrogen scarcity induced stressful growth conditions that resulted in highest accumulation of the biopolymer PHB. Optimizing nitrogen availability is key to maximizing PHB production, making it a viable sustainable alternative to conventional plastics.

Loading

Article metrics loading...

/content/journals/biot/10.2174/0118722083295143241220054012
2024-12-31
2025-10-21
Loading full text...

Full text loading...

References

  1. RhodesC.J. Plastic pollution and potential solutions.Sci. Prog.2018101320726010.3184/003685018X15294876706211 30025551
    [Google Scholar]
  2. CuriaS. DautleS. SatterfieldB. Betulin-based thermoplastics and thermosets through sustainable and industrially viable approaches: New insights for the valorization of an underutilized resource.ACS Sustain. Chem.& Eng.2019719163711638110.1021/acssuschemeng.9b03471
    [Google Scholar]
  3. LebretonL. AndradyA. Future scenarios of global plastic waste generation and disposal.Palgrave Commun.201951610.1057/s41599‑018‑0212‑7
    [Google Scholar]
  4. LauW.W.Y. ShiranY. BaileyR.M. Evaluating scenarios toward zero plastic pollution.Science202036965101455146110.1126/science.aba9475 32703909
    [Google Scholar]
  5. BorundaA. This young whale died with 88 pounds of plastic in its stomach.Natl. Geogr. Mag.2019
    [Google Scholar]
  6. TokiwaY. CalabiaB.P. UgwuC.U. AibaS. Biodegradability of plastics.Int. J. Mol. Sci.20091093722374210.3390/ijms10093722 19865515
    [Google Scholar]
  7. AlabiO.A. OlogbonjayeK.I. AwosoluO. AlaladeO.E. Public and environmental health effects of plastic wastes disposal: A review.J. Toxicol. Risk Assess.2019502113
    [Google Scholar]
  8. ShahA.A. HasanF. HameedA. AhmedS. Biological degradation of plastics: A comprehensive review.Biotechnol. Adv.200826324626510.1016/j.biotechadv.2007.12.005 18337047
    [Google Scholar]
  9. Patrício SilvaA.L. PrataJ.C. WalkerT.R. Rethinking and optimising plastic waste management under COVID-19 pandemic: Policy solutions based on redesign and reduction of single-use plastics and personal protective equipment.Sci. Total Environ.202074214056510.1016/j.scitotenv.2020.140565 32622168
    [Google Scholar]
  10. HantokoD. LiX. PariatambyA. YoshikawaK. HorttanainenM. YanM. Challenges and practices on waste management and disposal during COVID-19 pandemic.J. Environ. Manage.202128611214010.1016/j.jenvman.2021.112140 33652254
    [Google Scholar]
  11. ShamsM. AlamI. MahbubM.S. Plastic pollution during COVID-19: Plastic waste directives and its long-term impact on the environment.Environ. Adv.2021510011910.1016/j.envadv.2021.100119 34604829
    [Google Scholar]
  12. KhooK.S. HoL.Y. LimH.R. LeongH.Y. ChewK.W. Plastic waste associated with the COVID-19 pandemic: Crisis or opportunity?J. Hazard. Mater.202141712610810.1016/j.jhazmat.2021.126108 34020352
    [Google Scholar]
  13. AgarwalS. Biodegradable polymers: Present opportunities and challenges in providing a microplastic‐free environment.Macromol. Chem. Phys.20202216200001710.1002/macp.202000017
    [Google Scholar]
  14. SirohiR. LeeJ.S. YuB.S. RohH. SimS.J. Sustainable production of polyhydroxybutyrate from autotrophs using CO2 as feedstock: Challenges and opportunities.Bioresour. Technol.202134112575110.1016/j.biortech.2021.125751 34416655
    [Google Scholar]
  15. ChoJ.Y. Lee ParkS. LeeH.J. Polyhydroxyalkanoates (PHAs) degradation by the newly isolated marine Bacillus sp. JY14.Chemosphere202128313117210.1016/j.chemosphere.2021.131172 34157624
    [Google Scholar]
  16. AtiweshG. MikhaelA. ParrishC.C. BanoubJ. LeT.A.T. Environmental impact of bioplastic use: A review.Heliyon202179e0791810.1016/j.heliyon.2021.e07918 34522811
    [Google Scholar]
  17. ZanchettaE. DamergiE. PatelB. Algal cellulose, production and potential use in plastics: Challenges and opportunities.Algal Res.20215610228810.1016/j.algal.2021.102288
    [Google Scholar]
  18. ThomasN.L. ClarkeJ. McLauchlinA.R. PatrickS.G. Oxodegradable plastics: Degradation, environmental impact and recycling.Proc Inst Civ Eng Waste Resour Manag2012165313314010.1680/warm.11.00014
    [Google Scholar]
  19. da LuzJ.M.R. PaesS.A. NunesM.D. da SilvaM.C.S. KasuyaM.C.M. Degradation of oxo-biodegradable plastic by Pleurotus ostreatus.PLoS One201388e6938610.1371/journal.pone.0069386 23967057
    [Google Scholar]
  20. MillerC. RahmanA. SimsR. SathishA. AnthonyR. Methods of bioplastic production.US Patent 03445502013
  21. SelvarajK. VishvanathanN. DhandapaniR. Screening, optimization and characterization of poly hydroxy butyrate from fresh water microalgal isolates.Int. J. Biol. Sci.202131139162
    [Google Scholar]
  22. DevadasV.V. KhooK.S. ChiaW.Y. Algae biopolymer towards sustainable circular economy.Bioresour. Technol.202132512470210.1016/j.biortech.2021.124702 33487515
    [Google Scholar]
  23. ScognamiglioV. GiardiM.T. ZappiD. TouloupakisE. AntonacciA. Photoautotrophs–bacteria co-cultures: Advances, challenges and applications.Materials20211411302710.3390/ma14113027 34199583
    [Google Scholar]
  24. López-PachecoI.Y. Rodas-ZuluagaL.I. Cuellar-BermudezS.P. Revalorization of microalgae biomass for synergistic interaction and sustainable applications: Bioplastic generation.Mar. Drugs2022201060110.3390/md20100601 36286425
    [Google Scholar]
  25. KhalisS.A. The effect of compatibilizer addition on Chlorella vulgaris microalgae utilization as a mixture for bioplastic. InE3S Web of Conferences.EDP Sciences20186703047
    [Google Scholar]
  26. ParkY.K. LeeJ. Achievements in the production of bioplastics from microalgae.Phytochem. Rev.2022819
    [Google Scholar]
  27. DasS.K. SathishA. StanleyJ. Production of biofuel and bioplastic from Chlorella pyrenoidosa.Mater. Today2018581677416781
    [Google Scholar]
  28. RanaivoarisoaT.O. SinghR. RengasamyK. GuzmanM.S. BoseA. Towards sustainable bioplastic production using the photoautotrophic bacterium Rhodopseudomonas palustris TIE-1.J. Ind. Microbiol. Biotechnol.2019469-101401141710.1007/s10295‑019‑02165‑7 30927110
    [Google Scholar]
  29. Higuchi-TakeuchiM. MorisakiK. NumataK. A screening method for the isolation of polyhydroxyalkanoate-producing purple non-sulfur photosynthetic bacteria from natural seawater.Front. Microbiol.20167150910.3389/fmicb.2016.01509 27708640
    [Google Scholar]
  30. PandaB. MallickN. Enhanced poly-?-hydroxybutyrate accumulation in a unicellular cyanobacterium, Synechocystis sp. PCC 6803.Lett. Appl. Microbiol.200744219419810.1111/j.1472‑765X.2006.02048.x 17257260
    [Google Scholar]
  31. KochM. BerendzenK.W. ForchhammerK. On the role and production of polyhydroxybutyrate (PHB) in the Cyanobacterium synechocystis sp. PCC 6803.Life20201044710.3390/life10040047 32331427
    [Google Scholar]
  32. VanessaC.C. CleberK.S. AnaL.T. JorgeA.V.C. MicheleG.M. Polyhydroxybutyrate production by Spirulina sp. LEB 18 grown under different nutrient concentrations.Afr. J. Microbiol. Res.20159241586159410.5897/AJMR2015.7530
    [Google Scholar]
  33. SangkharakK PrasertsanP Nutrient optimization for production of polyhydroxybutyrate from halotolerant photosynthetic bacteria cultivated under aerobic-dark condition.Electron J Biotechnol2008113010.2225/vol11‑issue3‑fulltext‑2
    [Google Scholar]
  34. LeeY.R. FitrianaH.N. LeeS.Y. Molecular profiling and optimization studies for growth and PHB production conditions in Rhodobacter sphaeroides.Energies20201323647110.3390/en13236471
    [Google Scholar]
  35. MarklE. GrünbichlerH. LacknerM. Cyanobacteria for PHB bioplastics production: A review.RijekaIntechOpen2018
    [Google Scholar]
  36. CarpineR. OlivieriG. HellingwerfK.J. PollioA. MarzocchellaA. Industrial production of poly-β-hydroxybutyrate from CO2: Can cyanobacteria meet this challenge?Processes20208332310.3390/pr8030323
    [Google Scholar]
  37. LeeY.R. FitrianaH.N. LeeS.Y. Molecular profiling and optimization studies for growth and PHB production conditions in Rhodobacter sphaeroides.Energies20201323647110.3390/en13236471
    [Google Scholar]
  38. GetachewA. WoldesenbetF. Production of biodegradable plastic by polyhydroxybutyrate (PHB) accumulating bacteria using low cost agricultural waste material.BMC Res. Notes20169150910.1186/s13104‑016‑2321‑y 27955705
    [Google Scholar]
  39. BieblH. PfennigN. Isolation of members of the family Rhodospirillaceae. The prokaryotes: A handbook on habitats, isolation, and identification of bacteria.Berlin, HeidelbergSpringer Berlin Heidelberg198126727310.1007/978‑3‑662‑13187‑9_14
    [Google Scholar]
  40. SudeshK. TaguchiK. DoiY. Effect of increased PHA synthase activity on polyhydroxyalkanoates biosynthesis in Synechocystis sp. PCC6803.Int. J. Biol. Macromol.20023029710410.1016/S0141‑8130(02)00010‑7 11911900
    [Google Scholar]
  41. MirzaS.S. QaziJ.I. LiangY. ChenS. Growth characteristics and photofermentative biohydrogen production potential of purple non sulfur bacteria from sugar cane bagasse.Fuel201925511580510.1016/j.fuel.2019.115805
    [Google Scholar]
  42. BadrA.A. FouadW.M. Identification of culturable microalgae diversity in the River Nile in Egypt using enrichment media.Afr J Biol Sci202132506410.33472/AFJBS.3.2.2021.50‑64
    [Google Scholar]
  43. AroraN. LoE. LegallN. PhilippidisG.P. A critical review of growth media recycling to enhance the economics and sustainability of algae cultivation.Energies20231614537810.3390/en16145378
    [Google Scholar]
  44. Dong PhuongN.T. Bao LyD.T. Investigation of the influence of microalgal culture medium on biomass production.Vietnam J. Biotechnol.202321469970510.15625/1811‑4989/20567
    [Google Scholar]
  45. RobertR. IyerP.R. Isolation and optimization of PHB (poly-β-hydroxybutyrate) based biodegradable plastics from Chlorella vulgaris.Int. J. Environ. Bioremediat. Biodegrad.201825
    [Google Scholar]
  46. GrivalskýT. LakatosG.E. ŠtěrbováK. Poly-β-hydroxybutyrate production by Synechocystis MT_a24 in a raceway pond using urban wastewater.Appl. Microbiol. Biotechnol.202410814410.1007/s00253‑023‑12924‑3 38180554
    [Google Scholar]
  47. NozariM. MohammadiA. FouladvandS. Ansari ShiriM. Novel sludge processing methods focusing on advantages and disadvantages, energy production, and bioplastic: A systematic review.Jundishapur J Health Sci202315213309213310910.5812/jjhs‑133092
    [Google Scholar]
  48. ConvertiA. CasazzaA.A. OrtizE.Y. PeregoP. Del BorghiM. Effect of temperature and nitrogen concentration on the growth and lipid content of Nannochloropsis oculata and Chlorella vulgaris for biodiesel production.Chem. Eng. Process.20094861146115110.1016/j.cep.2009.03.006
    [Google Scholar]
  49. OleninaI. Biovolumes and size-classes of phytoplankton in the Baltic Sea.Baltic Sea Environ. Process2006106
    [Google Scholar]
  50. TroschlC. MeixnerK. FritzI. Pilot-scale production of poly-β-hydroxybutyrate with the Cyanobacterium synechocytis sp. CCALA192 in a non-sterile tubular photobioreactor.Algal Res.20183411612510.1016/j.algal.2018.07.011
    [Google Scholar]
  51. DorryA NorastehniaA AbediniM Effects of phosphorus removal and pH changes in the culture medium of Spirulina sp. on the production rate of polyhydroxybutyrate.Current J Appl Sci Technol2024e0260240
    [Google Scholar]
  52. LiM. ShiX. GuoC. LinS. Phosphorus deficiency inhibits cell division but not growth in the dinoflagellate Amphidinium carterae.Front. Microbiol.2016782610.3389/fmicb.2016.00826 27313570
    [Google Scholar]
  53. DasR DhuliawalaS ZaheerM Go for a walk and arrive at the answer: Reasoning over paths in knowledge bases using reinforcement learningarXiv preprint2017 1711.05851
    [Google Scholar]
  54. SharmaK.K. SchuhmannH. SchenkP.M. High lipid induction in microalgae for biodiesel production.Energies2012551532155310.3390/en5051532
    [Google Scholar]
  55. AnsariS. FatmaT. Cyanobacterial polyhydroxybutyrate (PHB): Screening, optimization and characterization.PLoS One2016116e015816810.1371/journal.pone.0158168 27359097
    [Google Scholar]
  56. MendhulkarV.D. ShetyeL.A. Synthesis of biodegradable polymer polyhydroxyalkanoate (PHA) in cyanobacteria Synechococcus elongates under mixotrophic nitrogen-and phosphate-mediated stress conditions.J. Ind. Microbiol.20171328593
    [Google Scholar]
  57. TroschlC. MeixnerK. DrosgB. Cyanobacterial PHA production—Review of recent advances and a summary of three years’ working experience running a pilot plant.Bioengineering2017422610.3390/bioengineering4020026 28952505
    [Google Scholar]
  58. DeviL.G. KavithaR. A review on non metal ion doped titania for the photocatalytic degradation of organic pollutants under UV/solar light: Role of photogenerated charge carrier dynamics in enhancing the activity.Appl. Catal. B2013140-14155958710.1016/j.apcatb.2013.04.035
    [Google Scholar]
  59. ValentinoF Morgan-SagastumeF CampanariS VillanoM WerkerA MajoneM Carbon recovery from wastewater through bioconversion into biodegradable polymers.N Biotechnol201737Pt A92310.1016/j.nbt.2016.05.00727288751
    [Google Scholar]
  60. AhujaV. SinghP.K. MahataC. A review on microbes mediated resource recovery and bioplastic (polyhydroxyalkanoates) production from wastewater.Microb. Cell Fact.202423118710.1186/s12934‑024‑02430‑0 38951813
    [Google Scholar]
  61. HuangL. ChenZ. WenQ. LeeD.J. Enhanced polyhydroxyalkanoate production by mixed microbial culture with extended cultivation strategy.Bioresour. Technol.201724180281110.1016/j.biortech.2017.05.192 28628985
    [Google Scholar]
  62. LiebergesellM. HustedeE. TimmA. Formation of poly(3-hydroxyalkanoates) by phototrophic and chemolithotrophic bacteria.Arch. Microbiol.1991155541542110.1007/BF00244955
    [Google Scholar]
  63. RamchanderS. SchwebachR.G. StakingK.I.M. The informational relevance of corporate social responsibility: Evidence from DS400 index reconstitutions.Strateg. Manage. J.201233330331410.1002/smj.952
    [Google Scholar]
  64. RadadiyaK. PandyaT. A comprehensive review on production of polyhydroxybutyrate (PHB).J Adv Microbiol Res202451136142
    [Google Scholar]
  65. YuP.H. ChuaH. HuangA.L. LoW. ChenG.Q. Conversion of food industrial wastes into bioplastics.Appl. Biochem. Biotechnol.199870-72160361410.1007/BF02920172 18576025
    [Google Scholar]
  66. de PhilippisR. SiliC. VincenziniM. Glycogen and poly-β-hydroxybutyrate synthesis in Spirulina maxima.Microbiology1992138816231628
    [Google Scholar]
  67. KemavongseK. PrasertsanP. UpaichitA. MethacanonP. Poly-β-hydroxyalkanoate production by halotolerant Rhodobacter sphaeroides U7.World J. Microbiol. Biotechnol.200824102073208510.1007/s11274‑008‑9712‑8
    [Google Scholar]
  68. ZhaoQ. LiuS. ShiM. Series of new cationic iridium (III) complexes with tunable emission wavelength and excited state properties: Structures, theoretical calculations, and photophysical and electrochemical properties.Inorg. Chem.200645166152616010.1021/ic052034j 16878924
    [Google Scholar]
  69. KimJ.W. IsobeT. ChangK.H. Levels and distribution of organophosphorus flame retardants and plasticizers in fishes from Manila Bay, the Philippines.Environ. Pollut.2011159123653365910.1016/j.envpol.2011.07.020 21835517
    [Google Scholar]
  70. Montiel-LuqueA. Núñez-MontenegroA.J. Martín-AuriolesE. Canca-SánchezJ.C. Toro-ToroM.C. González-CorreaJ.A. Medication-related factors associated with health-related quality of life in patients older than 65 years with polypharmacy.PLoS One2017122e017132010.1371/journal.pone.0171320 28166266
    [Google Scholar]
  71. TouloupakisE. PoloniatakiE.G. GhanotakisD.F. CarlozziP. Production of biohydrogen and/or poly-β-hydroxybutyrate by Rhodopseudomonas sp. using various carbon sources as substrate.Appl. Biochem. Biotechnol.2021193130731810.1007/s12010‑020‑03428‑1 32954484
    [Google Scholar]
  72. CarlozziP. Di LorenzoT. GhanotakisD.F. TouloupakisE. Effects of pH, temperature and salinity on P3HB synthesis culturing the marine Rhodovulum sulfidophilum DSM-1374.Appl. Microbiol. Biotechnol.202010452007201510.1007/s00253‑020‑10352‑1 31927760
    [Google Scholar]
  73. RuedaE. SenatoreV. ZarraT. NaddeoV. GarcíaJ. GarfíM. Life cycle assessment and economic analysis of bioplastics production from cyanobacteria.Sustainable Mat and Technol202335e0057910.1016/j.susmat.2023.e00579
    [Google Scholar]
  74. NurM.M.A. YuliestyanA. IrfandyF. SetyoningrumT.M. Nutritional factors influence polyhydroxybutyrate in microalgae growing on palm oil mill effluent.J. Appl. Phycol.202234112713310.1007/s10811‑021‑02654‑2
    [Google Scholar]
  75. ZhaoH. TurngL.S. Mechanical performance of microcellular injection molded biocomposites from green plastics: PLA and PHBV.In: Biocomposites.Woodhead Publishing201514116010.1016/B978‑1‑78242‑373‑7.00015‑9
    [Google Scholar]
  76. CriddleC.S. RostkowskiK.H. SubdstromE.R. Process for the selection of PHB-producing Methanotrophic cultures.US Patent 9062340B22015
/content/journals/biot/10.2174/0118722083295143241220054012
Loading
/content/journals/biot/10.2174/0118722083295143241220054012
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test