Skip to content
2000
image of Prediction of Antithrombin Activity and Bioavailability of a Synthetic Peptide Using a Decision Tree Algorithm

Abstract

Background

Thrombosis is a major cause of mortality from cardiovascular disease (CVD). The use of known antithrombin drugs is limited by the presence of side effects and complications. Peptides may be promising antithrombin agents.

Objective

A peptide having the amino acid sequence QLSNGLFLFVDYLWW, designated as QW-13, was designed, synthesized, and used as a research object to evaluate the efficiency of the algorithm.

Methods

The solid-phase Fmoc (SPPS) method, followed by purification by high-performance liquid chromatography (HPLC) was used for synthesis. The molecular weight distribution of the peptide was estimated by mass spectrometry. Peptide identification was performed using the MALDI-TOF MS Ultraflex method. Mass spectra were analyzed using the Mascot program. To confirm the efficiency of the algorithm, the antithrombin effect of the peptide was studied, which was evaluated by the activated partial thromboplastin time (APTT) of human citrate blood plasma coagulation.

Results

A decision tree algorithm was developed to predict antithrombin activity and bioavailability of oral peptides. The top-down inductions of decision tree algorithms were used to create the algorithm. The decision tree is pruned if there is a mismatch in the peptide under study. Algorithm criteria or descriptors include amino acid sequence, number of amino acids, molecular weight, clinical potency, body distribution and metabolism index, plasma clearance, and half-life. According to the algorithm, if the result of “Antithrombin Peptide” is positive, it is concluded that it is bioavailable and effective for clinical use. To validate and evaluate the efficiency of the algorithm, a peptide containing antithrombin amino acid sequences was synthesized. The algorithm found the peptide to be antithrombin and bioavailable. The results of the biological activity of the peptide were confirmed in an experiment.

Conclusion

Employing a decision tree method to assess the antithrombin activity and bioavailability of peptides can facilitate the development of effective oral peptides, hence minimizing the development time and the quantity of and studies required to validate efficacy.

Loading

Article metrics loading...

/content/journals/aps/10.2174/0113892037356348250523031542
2025-06-16
2025-09-26
Loading full text...

Full text loading...

References

  1. Virani S.S. Alonso A. Benjamin E.J. Bittencourt M.S. Callaway C.W. Carson A.P. Chamberlain A.M. Chang A.R. Cheng S. Delling F.N. Djousse L. Elkind M.S.V. Ferguson J.F. Fornage M. Khan S.S. Kissela B.M. Knutson K.L. Kwan T.W. Lackland D.T. Lewis T.T. Lichtman J.H. Longenecker C.T. Loop M.S. Lutsey P.L. Martin S.S. Matsushita K. Moran A.E. Mussolino M.E. Perak A.M. Rosamond W.D. Roth G.A. Sampson U.K.A. Satou G.M. Schroeder E.B. Shah S.H. Shay C.M. Spartano N.L. Stokes A. Tirschwell D.L. VanWagner L.B. Tsao C.W. Heart disease and stroke statistics-2020 update: A report from the American Heart Association. Circulation 2020 141 9 e139 e596 31992061
    [Google Scholar]
  2. Alenazy F.O. Thomas M.R. Novel antiplatelet targets in the treatment of acute coronary syndromes. Platelets 2021 32 1 15 28 32529932
    [Google Scholar]
  3. Fang D. Li T. Wu Z. Wang Q. Wan M. Zhou M. Mao C. Dual drive mode polydopamine nanomotors for continuous treatment of an inferior vena cava thrombus. J. Mater. Chem. B Mater. Biol. Med. 2021 9 41 8659 8666 34608926
    [Google Scholar]
  4. Wang J. Xu X. Anti-Platelet peptides targeting αiibβ3 outside-in signaling pathway. Curr. Protein Pept. Sci. 2023 24 1 31 42 36380406
    [Google Scholar]
  5. Liu H. Yang Y. Liu Y. Cui L. Fu L. Li B. Various bioactive peptides in collagen hydrolysate from salmo salar skin and the combined inhibitory effects on atherosclerosis in vitro and in vivo. Food Res. Int. 2022 157 111281 35761591
    [Google Scholar]
  6. Tian Q. Li S.M. Li B. The Pro-Gly or Hyp-Gly containing peptides from absorbates of fish skin collagen hydrolysates inhibit platelet aggregation and target P2Y12 receptor by molecular docking. Foods 2021 10 7 1553 10.3390/foods10071553 34359423
    [Google Scholar]
  7. Yang Y. Liu H. Cui L. Liu Y. Fu L. Li B. A Collagen-Derived Oligopeptide from Salmo salar collagen hydrolysates restrains atherogenesis in ApoE –/– Mice via targeting P 2 Y 12 Receptor. Mol. Nutr. Food Res. 2022 66 13 2200166 10.1002/mnfr.202200166 35490399
    [Google Scholar]
  8. Yang Y. Tian Q. Li S. Li B. Structural insights on Hyp-Gly-containing peptides as antiplatelet compounds through topomer CoMFA and CoMSIA analysis. Foods 2023 12 4 777 10.3390/foods12040777 36832851
    [Google Scholar]
  9. Zhou X. Yu X. Wan C. Li F. Wang Y. Zhang K. Feng L. Wen A. Deng J. Li S. Xin G. Huang W. NINJ1 regulates platelet activation and panoptosis in septic disseminated intravascular coagulation. Int. J. Mol. Sci. 2023 24 4 4168 10.3390/ijms24044168 36835580
    [Google Scholar]
  10. Cheng S. Yuan L. Li-Gao R. Chen S. Li H. Du M. Nutrition and cardiovascular disease: The potential role of marine bioactive proteins and peptides in thrombosis prevention. J. Agric. Food Chem. 2024 72 13 6815 6832 10.1021/acs.jafc.3c08850 38523314
    [Google Scholar]
  11. Khan S. Gul A. Noreen R. Ahmad S. Ashraf M. Awan M.S.B. Niazi Z.R. Khan N. Potential applications of venom peptides as anti-thrombotic agents for management of arterial and deep-vein thrombosis. Protein Pept. Lett. 2018 25 7 677 687 10.2174/0929866524666180614100101 29921198
    [Google Scholar]
  12. Kim W.M. Huang Y.H. Gandhi A. Blumberg R.S. CEACAM1 structure and function in immunity and its therapeutic implications. Semin. Immunol. 2019 42 101296 10.1016/j.smim.2019.101296 31604530
    [Google Scholar]
  13. Ye Y. Wan W. Wang J. Hu W. Wang H. Li L. Sang P. Gu Y. Li D. Wang Z. Meng Z. The CEACAM1-derived peptide QLSN impairs collagen-induced human platelet activation through glycoprotein VI. Biosci. Biotechnol. Biochem. 2020 84 1 85 94 10.1080/09168451.2019.1662277 31794329
    [Google Scholar]
  14. Ye Y. Leng M. Chai S. Yang L. Ren L. Wan W. Wang H. Li L. Li C. Meng Z. Antiplatelet effects of the CEACAM1-derived peptide QDTT. Platelets 2024 35 1 2308635 10.1080/09537104.2024.2308635 38345065
    [Google Scholar]
  15. Wu S. Qi W. Su R. Li T. Lu D. He Z. CoMFA and CoMSIA analysis of ACE-inhibitory, antimicrobial and bitter-tasting peptides. Eur. J. Med. Chem. 2014 84 100 106 10.1016/j.ejmech.2014.07.015 25016232
    [Google Scholar]
  16. Patel A. Bhatt H. Patel B. Structural insights on 2-phenylquinazolin-4-one derivatives as tankyrase inhibitors through CoMFA, CoMSIA, topomer CoMFA and HQSAR studies. J. Mol. Struct. 2022 1249 131636 10.1016/j.molstruc.2021.131636
    [Google Scholar]
  17. Matlock M.K. Hughes T.B. Dahlin J.L. Swamidass S.J. Modeling small-molecule reactivity identifies promiscuous bioactive compounds. J. Chem. Inf. Model. 2018 58 8 1483 1500 10.1021/acs.jcim.8b00104 29990427
    [Google Scholar]
  18. Rezende S.O. Intelligent systems: Fundamentals and applications. Barueri, São Paulo, Brazil Manole 2003
    [Google Scholar]
  19. Hubler S.L. Craciun G. Periodic patterns in distributions of peptide masses. Biosystems 2012 109 2 179 185 10.1016/j.biosystems.2012.04.008 22579741
    [Google Scholar]
  20. Webster J. Oxley D. Protein identification by MALDI-TOF mass spectrometry. Methods Mol. Biol. 2012 800 227 240 10.1007/978‑1‑61779‑349‑3_15 21964792
    [Google Scholar]
  21. Lovelock S.L. Crawshaw R. Basler S. Levy C. Baker D. Hilvert D. Green A.P. The road to fully programmable protein catalysis. Nature 2022 606 7912 49 58 10.1038/s41586‑022‑04456‑z 35650353
    [Google Scholar]
  22. Jacob B. Vogelaar A. Cadenas E. Camarero J.A. Using the cyclotide scaffold for targeting biomolecular interactions in drug development. Molecules 2022 27 19 6430 10.3390/molecules27196430 36234971
    [Google Scholar]
  23. Zorzi A. Deyle K. Heinis C. Cyclic peptide therapeutics: Past, present and future. Curr. Opin. Chem. Biol. 2017 38 24 29 10.1016/j.cbpa.2017.02.006 28249193
    [Google Scholar]
  24. Naylor M.R. Bockus A.T. Blanco M.J. Lokey R.S. Cyclic peptide natural products chart the frontier of oral bioavailability in the pursuit of undruggable targets. Curr. Opin. Chem. Biol. 2017 38 141 147 10.1016/j.cbpa.2017.04.012 28570865
    [Google Scholar]
  25. Ji X. Nielsen A.L. Heinis C. Cyclic peptides for drug development. Angew. Chem. Int. Ed. 2024 63 3 e202308251 10.1002/anie.202308251 37870189
    [Google Scholar]
  26. Atanasov A.G. Zotchev S.B. Dirsch V.M. Orhan I.E. Banach M. Rollinger J.M. Barreca D. Weckwerth W. Bauer R. Bayer E.A. Majeed M. Bishayee A. Bochkov V. Bonn G.K. Braidy N. Bucar F. Cifuentes A. D’Onofrio G. Bodkin M. Diederich M. Dinkova-Kostova A.T. Efferth T. El Bairi K. Arkells N. Fan T-P. Fiebich B.L. Freissmuth M. Georgiev M.I. Gibbons S. Godfrey K.M. Gruber C.W. Heer J. Huber L.A. Ibanez E. Kijjoa A. Kiss A.K. Lu A. Macias F.A. Miller M.J.S. Mocan A. Müller R. Nicoletti F. Perry G. Pittalà V. Rastrelli L. Ristow M. Russo G.L. Silva A.S. Schuster D. Sheridan H. Skalicka-Woźniak K. Skaltsounis L. Sobarzo-Sánchez E. Bredt D.S. Stuppner H. Sureda A. Tzvetkov N.T. Vacca R.A. Aggarwal B.B. Battino M. Giampieri F. Wink M. Wolfender J-L. Xiao J. Yeung A.W.K. Lizard G. Popp M.A. Heinrich M. Berindan-Neagoe I. Stadler M. Daglia M. Verpoorte R. Supuran C.T. International Natural Product Sciences Taskforce Natural products in drug discovery: Advances and opportunities. Nat. Rev. Drug Discov. 2021 20 3 200 216 10.1038/s41573‑020‑00114‑z 33510482
    [Google Scholar]
  27. Santini B.L. Gaardløs M. Wyrzykowski D. Rothemund S. Penk A. Zacharias M. Samsonov S.A. Rational design of glycosaminoglycan binding cyclic peptides using cPEPmatch. Comput. Struct. Biotechnol. J. 2024 23 2985 2994 10.1016/j.csbj.2024.07.016 39135886
    [Google Scholar]
  28. Deyle K. Kong X.D. Heinis C. Phage selection of cyclic peptides for application in research and drug development. Acc. Chem. Res. 2017 50 8 1866 1874 10.1021/acs.accounts.7b00184 28719188
    [Google Scholar]
  29. Walensky L.D. Bird G.H. Hydrocarbon-stapled peptides: Principles, practice, and progress. J. Med. Chem. 2014 57 15 6275 6288 10.1021/jm4011675 24601557
    [Google Scholar]
  30. Khatri B. Nuthakki V.R. Chatterjee J. Strategies to enhance metabolic stabilities. Cyclic Peptide Design. Goetz G. New York, NY Springer New York 2019 10.1007/978‑1‑4939‑9504‑2_2
    [Google Scholar]
  31. Wilbs J. Kong X.D. Middendorp S.J. Prince R. Cooke A. Demarest C.T. Abdelhafez M.M. Roberts K. Umei N. Gonschorek P. Lamers C. Deyle K. Rieben R. Cook K.E. Angelillo-Scherrer A. Heinis C. Cyclic peptide FXII inhibitor provides safe anticoagulation in a thrombosis model and in artificial lungs. Nat. Commun. 2020 11 1 3890 10.1038/s41467‑020‑17648‑w 32753636
    [Google Scholar]
  32. Dementiev A. Petitou M. Herbert J.M. Gettins P.G.W. The ternary complex of antithrombin–anhydrothrombin–heparin reveals the basis of inhibitor specificity. Nat. Struct. Mol. Biol. 2004 11 9 863 867 10.1038/nsmb810 15311268
    [Google Scholar]
  33. Kreuger J. Spillmann D. Li J. Lindahl U. Interactions between heparan sulfate and proteins: The concept of specificity. J. Cell Biol. 2006 174 3 323 327 10.1083/jcb.200604035 16880267
    [Google Scholar]
  34. Thacker B.E. Xu D. Lawrence R. Esko J.D. Heparan sulfate 3-O-sulfation: A rare modification in search of a function. Matrix Biol. 2014 35 60 72 10.1016/j.matbio.2013.12.001 24361527
    [Google Scholar]
  35. Vallet S.D. Clerc O. Ricard-Blum S. Glycosaminoglycan–protein interactions: The first draft of the glycosaminoglycan interactome. J. Histochem. Cytochem. 2021 69 2 93 104 10.1369/0022155420946403 32757871
    [Google Scholar]
  36. Tropsha A. Isayev O. Varnek A. Schneider G. Cherkasov A. Integrating QSAR modelling and deep learning in drug discovery: The emergence of deep QSAR. Nat. Rev. Drug Discov. 2024 23 2 141 155 10.1038/s41573‑023‑00832‑0 38066301
    [Google Scholar]
  37. Tesauro D. Accardo A. Diaferia C. Milano V. Guillon J. Ronga L. Rossi F. Peptide-based drug-delivery systems in biotechnological applications: Recent advances and perspectives. Molecules 2019 24 2 351 10.3390/molecules24020351 30669445
    [Google Scholar]
  38. Broccatelli F. Aliagas I. Zheng H. Why decreasing lipophilicity alone is often not a reliable strategy for extending iv half-life. ACS Med. Chem. Lett. 2018 9 6 522 527 10.1021/acsmedchemlett.8b00047 29937976
    [Google Scholar]
  39. Arnott J.A. Planey S.L. The influence of lipophilicity in drug discovery and design. Expert Opin. Drug Discov. 2012 7 10 863 875 10.1517/17460441.2012.714363 22992175
    [Google Scholar]
  40. Yang Z.Y. Yang Z.J. Dong J. Wang L.L. Zhang L.X. Ding J.J. Ding X.Q. Lu A.P. Hou T.J. Cao D.S. Structural analysis and identification of colloidal aggregators in drug discovery. J. Chem. Inf. Model. 2019 59 9 3714 3726 10.1021/acs.jcim.9b00541 31430151
    [Google Scholar]
  41. Duan Y.J. Fu L. Zhang X.C. Long T.Z. He Y.H. Liu Z.Q. Lu A.P. Deng Y.F. Hsieh C.Y. Hou T.J. Cao D.S. Improved GNNs for Log D 7.4 prediction by transferring knowledge from low-fidelity data. J. Chem. Inf. Model. 2023 63 8 2345 2359 10.1021/acs.jcim.2c01564 37000044
    [Google Scholar]
  42. Duan D. Torosyan H. Elnatan D. McLaughlin C.K. Logie J. Shoichet M.S. Agard D.A. Shoichet B.K. Internal structure and preferential protein binding of colloidal aggregates. ACS Chem. Biol. 2017 12 1 282 290 10.1021/acschembio.6b00791 27983786
    [Google Scholar]
  43. McLaughlin C.K. Duan D. Ganesh A.N. Torosyan H. Shoichet B.K. Shoichet M.S. Stable colloidal drug aggregates catch and release active enzymes. ACS Chem. Biol. 2016 11 4 992 1000 10.1021/acschembio.5b00806 26741163
    [Google Scholar]
  44. Owen S.C. Doak A.K. Wassam P. Shoichet M.S. Shoichet B.K. Colloidal aggregation affects the efficacy of anticancer drugs in cell culture. ACS Chem. Biol. 2012 7 8 1429 1435 10.1021/cb300189b 22625864
    [Google Scholar]
  45. Owen S.C. Doak A.K. Wassam P. Shoichet M.S. Shoichet B.K. Predictions of colloidal molecular aggregation using AI/ML models. ACS Omega. 2024 9 26 28691 10.1021/acsomega.4c02886.
    [Google Scholar]
  46. Ertl P. Roggo S. Schuffenhauer A. New substructure filters for removal of pan assay interference compounds (PAINS) from screening libraries and for their exclusion in bioassays. J. Chem. Inf. Model. 2008 48 1 68 74 10.1021/ci700286x 18034468
    [Google Scholar]
  47. Ivanenkov Y.A. Zagribelnyy B.A. Aladinskiy V.A. Are we opening the door to a new era of medicinal chemistry or being collapsed to a chemical singularity? J. Med. Chem. 2019 62 22 10026 10043 10.1021/acs.jmedchem.9b00004 31188596
    [Google Scholar]
  48. Magalhães P.R. Reis P.B.P.S. Vila-Viçosa D. Machuqueiro M. Victor B.L. Identification of Pan-Assay INterference compoundS (PAINS) using an MD-based protocol. Methods Mol. Biol. 2021 2315 263 271 10.1007/978‑1‑0716‑1468‑6_15 34302681
    [Google Scholar]
  49. Kus M. Ibragimow I. Piotrowska-Kempisty H. Caco-2 cell line standardization with pharmaceutical requirements and in vitroo model suitability for permeability assays. Pharmaceutics 2023 15 11 2523 10.3390/pharmaceutics15112523 38004503
    [Google Scholar]
  50. Fu L. Shi S. Yi J. Wang N. He Y. Wu Z. Peng J. Deng Y. Wang W. Wu C. Lyu A. Zeng X. Zhao W. Hou T. Cao D. ADMETlab 3.0: An updated comprehensive online ADMET prediction platform enhanced with broader coverage, improved performance, API functionality and decision support. Nucleic Acids Res. 2024 52 W1 W422 W431 10.1093/nar/gkae236 38572755
    [Google Scholar]
  51. Judge R.A. Sridar J. Tunyasuvunakool K. Jain R. Wang J.C.K. Ouch C. Xu J. Mafi A. Nile A.H. Remarcik C. Smith C.L. Ghosh C. Xu C. Stoll V. Jumper J. Singh A.H. Eaton D. Hao Q. Structure of the PAPP-ABP5 complex reveals mechanism of substrate recognition. Nat. Commun. 2022 13 1 5500 10.1038/s41467‑022‑33175‑2 36127359
    [Google Scholar]
  52. Xiong G. Wu Z. Yi J. Fu L. Yang Z. Hsieh C. Yin M. Zeng X. Wu C. Lu A. Chen X. Hou T. Cao D. ADMETlab 2.0: An integrated online platform for accurate and comprehensive predictions of ADMET properties. Nucleic Acids Res. 2021 49 W1 W5 W14 10.1093/nar/gkab255 33893803
    [Google Scholar]
/content/journals/aps/10.2174/0113892037356348250523031542
Loading
/content/journals/aps/10.2174/0113892037356348250523031542
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test