Skip to content
2000
image of Translational Horizons in Computer-Aided Drug Discovery: Bridging In Silico Insights with One Health Challenges
Preview this fast track article:

There is no abstract available.

Loading

Article metrics loading...

/content/journals/aiaamc/10.2174/0118715230424575250729093150
2025-07-31
2025-09-25
Loading full text...

Full text loading...

References

  1. Popa S.L. Pop C. Dita M.O. Brata V.D. Bolchis R. Czako Z. Saadani M.M. Ismaiel A. Dumitrascu D.I. Grad S. David L. Cismaru G. Padureanu A.M. Deep learning and antibiotic resistance. Antibiotics 2022 11 11 1674 10.3390/antibiotics11111674 36421316
    [Google Scholar]
  2. McPhillie M.J. Cain R.M. Narramore S. Fishwick C.W.G. Simmons K.J. Computational methods to identify new antibacterial targets. Chem. Biol. Drug Des. 2015 85 1 22 29 10.1111/cbdd.12385 24974974
    [Google Scholar]
  3. dos Santos Nascimento I.J. da Silva Rodrigues É.E. da Silva M.F. de Araújo-Júnior J.X. de Moura R.O. Advances in computational methods to discover new ns2b-ns3 inhibitors useful against dengue and zika viruses. Curr. Top. Med. Chem. 2022 22 29 2435 2462 10.2174/1568026623666221122121330 36415099
    [Google Scholar]
  4. Gallo F.N. Enderle A.G. Pardo L.A. Leal E.S. Bollini M. Challenges and perspectives in the discovery of dengue virus entry inhibitors. Curr. Med. Chem. 2022 29 4 719 740 10.2174/0929867328666210521213118 34036904
    [Google Scholar]
  5. Shi C. Chen J. Kang X. Shen X. Lao X. Zheng H. Approaches for the discovery of metallo‐β‐lactamase inhibitors: A review. Chem. Biol. Drug Des. 2019 94 2 1427 1440 10.1111/cbdd.13526 30925023
    [Google Scholar]
  6. Panwar U. Chandra I. Selvaraj C. Singh S.K. Current computational approaches for the development of anti-hiv inhibitors: An overview. Curr. Pharm. Des. 2019 25 31 3390 3405 10.2174/1381612825666190911160244 31538884
    [Google Scholar]
  7. Hu J.P. Wu Z.X. Xie T. Liu X.Y. Yan X. Sun X. Liu W. Liang L. He G. Gan Y. Gou X.J. Shi Z. Zou Q. Wan H. Shi H.B. Chang S. Applications of molecular simulation in the discovery of antituberculosis drugs: A review. Protein Pept. Lett. 2019 26 9 648 663 10.2174/0929866526666190620145919 31218945
    [Google Scholar]
  8. Tiwari P. Khare T. Shriram V. Bae H. Kumar V. Plant synthetic biology for producing potent phyto-antimicrobials to combat antimicrobial resistance. Biotechnol. Adv. 2021 48 March 107729 10.1016/j.biotechadv.2021.107729 33705914
    [Google Scholar]
  9. Santos P. López-Vallejo F. Soto C.Y. In silico approaches and chemical space of anti‐P‐type ATPase compounds for discovering new antituberculous drugs. Chem. Biol. Drug Des. 2017 90 2 175 187 10.1111/cbdd.12950 28111912
    [Google Scholar]
  10. Torres M.D.T. de la Fuente-Nunez C. Toward computer-made artificial antibiotics. Curr. Opin. Microbiol. 2019 51 May 30 38 10.1016/j.mib.2019.03.004 31082661
    [Google Scholar]
  11. Onyango O.H. In silico models for anti-COVID-19 drug discovery: A systematic review. Adv. Pharmacol. Pharm. Sci. 2023 2023 4562974 10.1155/2023/4562974
    [Google Scholar]
  12. Ejalonibu M.A. Ogundare S.A. Elrashedy A.A. Ejalonibu M.A. Lawal M.M. Mhlongo N.N. Kumalo H.M. Drug discovery for Mycobacterium tuberculosis using a structure-based computer-aided drug design approach. Int. J. Mol. Sci. 2021 22 24 13259 10.3390/ijms222413259 34948055
    [Google Scholar]
  13. Jujjavarapu S.E. Dhagat S. In silico discovery of novel ligands for antimicrobial lipopeptides for computer-aided drug design. Probiotics Antimicrob. Proteins 2018 10 2 129 141 10.1007/s12602‑017‑9356‑9 29218506
    [Google Scholar]
  14. Davis A.M. Riley R.J. Predictive ADMET studies, the challenges and the opportunities. Curr. Opin. Chem. Biol. 2004 8 4 378 386 10.1016/j.cbpa.2004.06.005 15288247
    [Google Scholar]
  15. Diniz R.C. Soares L.W. Nascimento da Silva L.C. Virtual screening for the development of new effective compounds against staphylococcus aureus. Curr. Med. Chem. 2019 25 42 5975 5985 10.2174/0929867325666180327105842 29589530
    [Google Scholar]
  16. Jukič M. Bren U. Machine learning in antibacterial drug design. Front. Pharmacol. 2022 13 May 864412 10.3389/fphar.2022.864412 35592425
    [Google Scholar]
  17. Sabbatini G.P. Shirley W.A. Coffen D.L. The integration of high throughput technologies for drug discovery. J. Biomol. Screen. 2001 6 4 213 218 10.1177/108705710100600402
    [Google Scholar]
  18. Dutertre S. Nicke A. Tsetlin V.I. Nicotinic acetylcholine receptor inhibitors derived from snake and snail venoms. Neuropharmacology 2017 127 196 223 10.1016/j.neuropharm.2017.06.011 28623170
    [Google Scholar]
  19. Shin S. Kulatunga D.C.M. Dananjaya S.H.S. Nikapitiya C. Lee J. De Zoysa M. Saprolegnia parasitica isolated from rainbow trout in korea: Characterization, anti- Saprolegnia activity and host pathogen interaction in zebrafish disease model. Mycobiology 2017 45 4 297 311 10.5941/MYCO.2017.45.4.297 29371797
    [Google Scholar]
  20. Gupta R. Verma R. Pradhan D. Jain A.K. Umamaheswari A. Rai C.S. An in silico approach towards identification of novel drug targets in pathogenic species of Leptospira. PLoS One 2019 14 8 0221446 10.1371/journal.pone.0221446 31430340
    [Google Scholar]
/content/journals/aiaamc/10.2174/0118715230424575250729093150
Loading
/content/journals/aiaamc/10.2174/0118715230424575250729093150
Loading

Data & Media loading...


  • Article Type:
    Editorial
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test