Skip to content
2000
image of Clinical Applications of Ligand Traps Targeting Activin Type II Receptors

Abstract

This review summarizes recent advances in ligand trap therapies targeting activin type II receptors [ActRIIA/ACVR2A and ActRIIB/ACVR2B], which serve as shared receptors for members of the TGF-β family, including activins, GDF11, and myostatin [MSTN]. These receptors mediate Smad2/3 signaling and play critical roles in hematopoiesis, vascular homeostasis, and muscle regulation. Two peptide-based ligand traps have recently received clinical approval: luspatercept [ActRIIB-Fc], an erythroid maturation agent, and sotatercept [ActRIIA-Fc], a novel therapeutic agent for pulmonary arterial hypertension [PAH]. Luspatercept primarily inhibits activin B and GDF11, thereby promoting late-stage erythropoiesis and demonstrating efficacy in anemia associated with conditions such as myelodysplastic syndromes [MDS] and β-thalassemia. Sotatercept binds activins and GDFs to rebalance Smad2/3 and Smad1/5/8 signaling, thereby improving vascular remodeling in PAH. Although both agents have failed to increase skeletal muscle mass in clinical trials consistently, they represent significant advances in the treatment of hematopoietic and vascular disorders. Future studies should focus on optimal dosing strategies, long-term safety, and potential synergistic effects when combined with other therapeutic modalities.

Loading

Article metrics loading...

/content/journals/aiaamc/10.2174/0118715230416604251029062751
2026-01-02
2026-01-31
Loading full text...

Full text loading...

References

  1. Massagué J. Sheppard D. TGF-β signaling in health and disease. Cell 2023 186 19 4007 4037 10.1016/j.cell.2023.07.036 37714133
    [Google Scholar]
  2. Tsuchida K. Nakatani M. Hitachi K. Uezumi A. Sunada Y. Ageta H. Inokuchi K. Activin signaling as an emerging target for therapeutic interventions. Cell Commun. Signal. 2009 7 1 15 10.1186/1478‑811X‑7‑15 19538713
    [Google Scholar]
  3. Mina A. McGraw K.L. Cunningham L. Kim N. Jen E.Y. Calvo K.R. Ehrlich L.A. Aplan P.D. Garcia-Manero G. Foran J.M. Garcia J.S. Zeidan A.M. DeZern A.E. Komrokji R. Sekeres M.A. Scott B. Buckstein R. Tinsley-Vance S. Verma A. Wroblewski T. Pavletic S. Norsworthy K. Advancing drug development in myelodysplastic syndromes. Blood Adv. 2025 9 5 1095 1104 10.1182/bloodadvances.2024014865 39786387
    [Google Scholar]
  4. Musallam K.M. What we now BELIEVE is achievable with luspatercept in transfusion-dependent β-thalassaemia. Lancet Haematol. 2025 12 3 e164 e165 10.1016/S2352‑3026(25)00003‑1 39947216
    [Google Scholar]
  5. Sako D. Grinberg A.V. Liu J. Davies M.V. Castonguay R. Maniatis S. Andreucci A.J. Pobre E.G. Tomkinson K.N. Monnell T.E. Ucran J.A. Martinez-Hackert E. Pearsall R.S. Underwood K.W. Seehra J. Kumar R. Characterization of the ligand binding functionality of the extracellular domain of activin receptor type IIb. J. Biol. Chem. 2010 285 27 21037 21048 10.1074/jbc.M110.114959 20385559
    [Google Scholar]
  6. Fenaux P. Kiladjian J.J. Platzbecker U. Luspatercept for the treatment of anemia in myelodysplastic syndromes and primary myelofibrosis. Blood 2019 133 8 790 794 10.1182/blood‑2018‑11‑876888 30602619
    [Google Scholar]
  7. Goldstein J.M. Sengul H. Messemer K.A. Fernández-Alfara M. Garbern J.C. Kristl A.C. Lee R.T. Wagers A.J. Steady-state and regenerative hematopoiesis occurs normally in mice in the absence of GDF11. Blood 2019 134 20 1712 1716 10.1182/blood.2019002066 31530563
    [Google Scholar]
  8. Guerra A. Oikonomidou P.R. Sinha S. Zhang J. Lo Presti V. Hamilton C.R. Breda L. Casu C. La P. Martins A.C. Sendamarai A.K. Fleming M. Rivella S. Lack of Gdf11 does not improve anemia or prevent the activity of RAP-536 in a mouse model of β-thalassemia. Blood 2019 134 6 568 572 10.1182/blood.2019001057 31151988
    [Google Scholar]
  9. Suragani R.N.V.S. Cawley S.M. Li R. Wallner S. Alexander M.J. Mulivor A.W. Gardenghi S. Rivella S. Grinberg A.V. Pearsall R.S. Kumar R. Modified activin receptor IIB ligand trap mitigates ineffective erythropoiesis and disease complications in murine β-thalassemia. Blood 2014 123 25 3864 3872 10.1182/blood‑2013‑06‑511238 24795345
    [Google Scholar]
  10. Bazinet A. Bravo G.M. New Approaches to Myelodysplastic Syndrome Treatment. Curr. Treat. Options Oncol. 2022 23 5 668 687 10.1007/s11864‑022‑00965‑1 35320468
    [Google Scholar]
  11. Platzbecker U. Della Porta M.G. Santini V. Zeidan A.M. Komrokji R.S. Shortt J. Valcarcel D. Jonasova A. Dimicoli-Salazar S. Tiong I.S. Lin C.C. Li J. Zhang J. Giuseppi A.C. Kreitz S. Pozharskaya V. Keeperman K.L. Rose S. Shetty J.K. Hayati S. Vodala S. Prebet T. Degulys A. Paolini S. Cluzeau T. Fenaux P. Garcia-Manero G. Efficacy and safety of luspatercept versus epoetin alfa in erythropoiesis-stimulating agent-naive, transfusion-dependent, lower-risk myelodysplastic syndromes (COMMANDS): interim analysis of a phase 3, open-label, randomised controlled trial. Lancet 2023 402 10399 373 385 10.1016/S0140‑6736(23)00874‑7 37311468
    [Google Scholar]
  12. Cappellini M.D. Viprakasit V. Georgiev P. Coates T.D. Origa R. Khelif A. Liew H.K. Tantiworawit A. Chew L.P. Khalil A. Ho P.J. Kuo K.H.M. Holot N. Perin M. Giuseppi A.C. Kuo W.L. Lai Y. Medlin L.F. Bueno L.M. Kattamis A. Taher A.T. Long-term efficacy and safety of luspatercept for the treatment of anaemia in patients with transfusion-dependent β-thalassaemia (BELIEVE): final results from a phase 3 randomised trial. Lancet Haematol. 2025 12 3 e180 e189 10.1016/S2352‑3026(24)00376‑4 39947215
    [Google Scholar]
  13. Germing U. Fenaux P. Platzbecker U. Buckstein R. Santini V. Díez-Campelo M. Yucel A. Tang D. Fabre S. Zhang G. Zoffoli R. Ha X. Miteva D. Hughes C. Komrokji R.S. Zeidan A.M. Garcia-Manero G. Improved benefit of continuing luspatercept therapy: sub-analysis of patients with lower-risk MDS in the MEDALIST study. Ann. Hematol. 2023 102 2 311 321 10.1007/s00277‑022‑05071‑8 36635381
    [Google Scholar]
  14. Suragani R.N.V.S. Cadena S.M. Cawley S.M. Sako D. Mitchell D. Li R. Davies M.V. Alexander M.J. Devine M. Loveday K.S. Underwood K.W. Grinberg A.V. Quisel J.D. Chopra R. Pearsall R.S. Seehra J. Kumar R. Transforming growth factor-β superfamily ligand trap ACE-536 corrects anemia by promoting late-stage erythropoiesis. Nat. Med. 2014 20 4 408 414 10.1038/nm.3512 24658078
    [Google Scholar]
  15. Della Porta M.G. Garcia-Manero G. Santini V. Zeidan A.M. Komrokji R.S. Shortt J. Valcárcel D. Jonasova A. Dimicoli-Salazar S. Tiong I.S. Lin C.C. Li J. Zhang J. Pilot R. Kreitz S. Pozharskaya V. Keeperman K.L. Rose S. Prebet T. Lai Y. Degulys A. Paolini S. Cluzeau T. Fenaux P. Platzbecker U. Luspatercept versus epoetin alfa in erythropoiesis-stimulating agent-naive, transfusion-dependent, lower-risk myelodysplastic syndromes (COMMANDS): primary analysis of a phase 3, open-label, randomised, controlled trial. Lancet Haematol. 2024 11 9 e646 e658 10.1016/S2352‑3026(24)00203‑5 39038479
    [Google Scholar]
  16. Martinez P.A. Li R. Ramanathan H.N. Bhasin M. Pearsall R.S. Kumar R. Suragani R.N.V.S. Smad2/3‐pathway ligand trap luspatercept enhances erythroid differentiation in murine β‐thalassaemia by increasing GATA‐1 availability. J. Cell. Mol. Med. 2020 24 11 6162 6177 10.1111/jcmm.15243 32351032
    [Google Scholar]
  17. Villanueva J. Wade J. Torres A. Hale G. Pham H. Sotatercept: The First FDA-Approved Activin A Receptor IIA Inhibitor Used in the Management of Pulmonary Arterial Hypertension. Am. J. Cardiovasc. Drugs 2025 25 1 17 24 10.1007/s40256‑024‑00694‑w 39466552
    [Google Scholar]
  18. Guglielmi G. Dimopoulos K. Wort S.J. New therapies in pulmonary arterial hypertension: Recent insights. Int. J. Cardiol. Congenit Heart Dis. 2025 19 100571 10.1016/j.ijcchd.2025.100571 39991439
    [Google Scholar]
  19. Fujiwara T. Ishii S. Minatsuki S. Hatano M. Takeda N. Exploring Novel Therapeutics for Pulmonary Arterial Hypertension. Int. Heart J. 2025 66 1 3 12 10.1536/ihj.24‑615 39894550
    [Google Scholar]
  20. Murakami K. Mathew R. Huang J. Farahani R. Peng H. Olson S.C. Etlinger J.D. Smurf1 ubiquitin ligase causes downregulation of BMP receptors and is induced in monocrotaline and hypoxia models of pulmonary arterial hypertension. Exp. Biol. Med. (Maywood) 2010 235 7 805 813 10.1258/ebm.2010.009383 20558834
    [Google Scholar]
  21. Rothman A.M.K. Florentin A. Zink F. Quigley C. Bonneau O. Hemmig R. Hachey A. Rejtar T. Thaker M. Jain R. Huang S.M. Sutton D. Roger J. Zhang J.H. Weiler S. Cotesta S. Ottl J. Srivastava S. Kordonsky A. Avishid R. Yariv E. Rathi R. Khvalevsky O. Troxler T. Binmahfooz S.K. Kleifeld O. Morrell N.W. Humbert M. Thomas M.J. Jarai G. Beckwith R.E.J. Cobb J.S. Smith N. Ostermann N. Tallarico J. Shaw D. Guth-Gundel S. Prag G. Rowlands D.J. Therapeutic potential of allosteric HECT E3 ligase inhibition. Cell 2025 188 10 2603 2620.e18 10.1016/j.cell.2025.03.001 40179885
    [Google Scholar]
  22. Hoeper M.M. Gomberg-Maitland M. Badesch D.B. Gibbs J.S.R. Grünig E. Kopeć G. McLaughlin V.V. Meyer G. Olsson K.M. Preston I.R. Rosenkranz S. Souza R. Waxman A.B. Perchenet L. Strait J. Xing A. Manimaran S. Wang X. Miller B. Cornell A.G. de Oliveira Pena J. Ghofrani H.A. Humbert M. Efficacy and safety of the activin signalling inhibitor, sotatercept, in a pooled analysis of PULSAR and STELLAR studies. Eur. Respir. J. 2025 65 5 2401424 10.1183/13993003.01424‑2024 39884760
    [Google Scholar]
  23. Gomberg-Maitland M. Badesch D.B. Gibbs J.S.R. Grünig E. Hoeper M.M. Humbert M. Kopeć G. McLaughlin V.V. Meyer G. Olsson K.M. Preston I.R. Rosenkranz S. Souza R. Waxman A.B. Perchenet L. Strait J. Xing A. Johnson-Levonas A.O. Cornell A.G. de Oliveira Pena J. Ardeschir Ghofrani H. Efficacy and safety of sotatercept across ranges of cardiac index in patients with pulmonary arterial hypertension: A pooled analysis of PULSAR and STELLAR. J. Heart Lung Transplant. 2025 44 4 609 624 10.1016/j.healun.2024.11.037 39645016
    [Google Scholar]
  24. Yung L.M. Yang P. Joshi S. Augur Z.M. Kim S.S.J. Bocobo G.A. Dinter T. Troncone L. Chen P.S. McNeil M.E. Southwood M. Poli de Frias S. Knopf J. Rosas I.O. Sako D. Pearsall R.S. Quisel J.D. Li G. Kumar R. Yu P.B. ACTRIIA-Fc rebalances activin/GDF versus BMP signaling in pulmonary hypertension. Sci. Transl. Med. 2020 12 543 eaaz5660 10.1126/scitranslmed.aaz5660 32404506
    [Google Scholar]
  25. Thomas A. Walpurgis K. Naumann N. Piper T. Thevis M. Bioanalytical methods in doping controls: a review. Bioanalysis 2025 17 5 359 370 10.1080/17576180.2025.2460951 39916648
    [Google Scholar]
/content/journals/aiaamc/10.2174/0118715230416604251029062751
Loading
/content/journals/aiaamc/10.2174/0118715230416604251029062751
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test