Skip to content
2000
image of The Structural Analogy of MASP-2 with Thrombin and MASP-1 Reveals Strong Binding with PAR4

Abstract

Introduction

The historical discovery that thrombin activates Protease-Activated Receptor 4 (PAR4) has paved the way for several novel findings. Besides thrombin, the complement lectin pathway protease Mannose-Binding Lectin-Associated Serine Protease-1 (MASP-1) also binds to PAR4, albeit with lower affinity. Similar to thrombin, MASP-1 activates Ca2+ signaling pathways in endothelial cells. MASP-2, a homolog of MASP-1, plays an important role in complement activation; however, its direct interaction with PAR4 has not yet been elucidated. In this study, we performed structural investigations of thrombin, MASP-1, and MASP-2 to evaluate their binding affinities toward the PAR4 peptide.

Methods

We employed docking, binding affinity calculations, molecular dynamics simulations, and mutagenesis studies to test our hypothesis.

Results

For the first time, we demonstrate that, like thrombin and MASP-1, MASP-2 binds to PAR4 with appreciable affinity and could serve as a potential agonist of the PAR4 receptor and its associated inflammatory signaling pathways.

Discussion

The high sequence similarity of MASP-2 with MASP-1 and thrombin is an important factor in attaining comparable binding with the PAR4 peptide.

Conclusion

Our findings may pave the way for future investigations into the signaling mechanisms and therapeutic potential of PAR4-mediated inflammatory diseases.

Loading

Article metrics loading...

/content/journals/aiaamc/10.2174/0118715230411505251126063432
2026-01-20
2026-01-31
Loading full text...

Full text loading...

References

  1. Hollenberg M.D. Compton S.J. International union of pharmacology. XXVIII. Proteinase-activated receptors. Pharmacol. Rev. 2002 54 2 203 217 10.1124/pr.54.2.203 12037136
    [Google Scholar]
  2. Adams M.N. Ramachandran R. Yau M.K. Suen J.Y. Fairlie D.P. Hollenberg M.D. Hooper J.D. Structure, function and pathophysiology of protease activated receptors. Pharmacol. Ther. 2011 130 3 248 282 10.1016/j.pharmthera.2011.01.003 21277892
    [Google Scholar]
  3. O’Brien P.J. Molino M. Kahn M. Brass L.F. Protease activated receptors: Theme and variations. Oncogene 2001 20 13 1570 1581 10.1038/sj.onc.1204194 11313904
    [Google Scholar]
  4. Ramachandran R. Noorbakhsh F. DeFea K. Hollenberg M.D. Targeting proteinase-activated receptors: Therapeutic potential and challenges. Nat. Rev. Drug Discov. 2012 11 1 69 86 10.1038/nrd3615 22212680
    [Google Scholar]
  5. Xu W. Andersen H. Whitmore T.E. Presnell S.R. Yee D.P. Ching A. Gilbert T. Davie E.W. Foster D.C. Cloning and characterization of human protease-activated receptor 4. Proc. Natl. Acad. Sci. USA 1998 95 12 6642 6646 10.1073/pnas.95.12.6642 9618465
    [Google Scholar]
  6. Mumaw M.M. A novel approach to antiplatelet therapy: Targeting protease activated receptor 4. Doctor of Philosophy. Case Western Reserve University 2016
    [Google Scholar]
  7. Al-Amer O.M. The role of thrombin in haemostasis. Blood Coagul. Fibrinolysis 2022 33 3 145 148 10.1097/MBC.0000000000001130 35239615
    [Google Scholar]
  8. Coughlin S.R. Thrombin signalling and protease-activated receptors. Nature 2000 407 6801 258 264 10.1038/35025229 11001069
    [Google Scholar]
  9. Presanis J. Hajela K. Ambrus G. Gál P. Sim R.B. Differential substrate and inhibitor profiles for human MASP-1 and MASP-2. Mol. Immunol. 2004 40 13 921 929 10.1016/j.molimm.2003.10.013 14725788
    [Google Scholar]
  10. Hajela K. Kojima M. Ambrus G. Wong K.H. Moffatt B.E. Ferluga J. Hajela S. Gál P. Sim R.B. The biological functions of MBL-associated serine proteases (MASPs). Immunobiology 2002 205 4-5 467 475 10.1078/0171‑2985‑00147 12396008
    [Google Scholar]
  11. Ambrus G. Gál P. Kojima M. Szilágyi K. Balczer J. Antal J. Gráf L. Laich A. Moffatt B.E. Schwaeble W. Sim R.B. Závodszky P. Natural substrates and inhibitors of mannan-binding lectin-associated serine protease-1 and -2: A study on recombinant catalytic fragments. J. Immunol. 2003 170 3 1374 1382 10.4049/jimmunol.170.3.1374 12538697
    [Google Scholar]
  12. Krarup A. Gulla K.C. Gál P. Hajela K. Sim R.B. The action of MBL-associated serine protease 1 (MASP1) on factor XIII and fibrinogen. Biochim. Biophys. Acta. Proteins Proteomics 2008 1784 9 1294 1300 10.1016/j.bbapap.2008.03.020 18456010
    [Google Scholar]
  13. Devaurs D. Antunes D.A. Hall-Swan S. Mitchell N. Moll M. Lizée G. Kavraki L.E. Using parallelized incremental meta-docking can solve the conformational sampling issue when docking large ligands to proteins. BMC Mol. Cell Biol. 2019 20 1 42 10.1186/s12860‑019‑0218‑z 31488048
    [Google Scholar]
  14. Honorato R.V. Trellet M.E. Jiménez-García B. Schaarschmidt J.J. Giulini M. Reys V. Koukos P.I. Rodrigues J.P. Karaca E. van Zundert G.C. Roel-Touris J. The HADDOCK2.4 web server for integrative modeling of biomolecular complexes. Nat. Protoc. 2024 19 11 3219 3241 10.1038/s41596‑024‑01011‑0
    [Google Scholar]
  15. Dominguez C. Boelens R. Bonvin A.M.J.J. HADDOCK: A protein-protein docking approach based on biochemical or biophysical information. J. Am. Chem. Soc. 2003 125 7 1731 1737 10.1021/ja026939x 12580598
    [Google Scholar]
  16. Cheng T.M.K. Blundell T.L. Fernandez-Recio J. pyDock: Electrostatics and desolvation for effective scoring of rigid‐body protein–protein docking. Proteins 2007 68 2 503 515 10.1002/prot.21419 17444519
    [Google Scholar]
  17. Desta I.T. Porter K.A. Xia B. Kozakov D. Vajda S. Performance and its limits in rigid body protein-protein docking. Structure 2020 28 9 1071 1081.e3 10.1016/j.str.2020.06.006 32649857
    [Google Scholar]
  18. Vajda S. Yueh C. Beglov D. Bohnuud T. Mottarella S.E. Xia B. Hall D.R. Kozakov D. New additions to the ClusPro server motivated by CAPRI. Proteins 2017 85 3 435 444 10.1002/prot.25219 27936493
    [Google Scholar]
  19. Kozakov D. Hall D.R. Xia B. Porter K.A. Padhorny D. Yueh C. Beglov D. Vajda S. The ClusPro web server for protein–protein docking. Nat. Protoc. 2017 12 2 255 278 10.1038/nprot.2016.169 28079879
    [Google Scholar]
  20. Kurcinski M. Jamroz M. Blaszczyk M. Kolinski A. Kmiecik S. CABS-dock web server for the flexible docking of peptides to proteins without prior knowledge of the binding site. Nucleic Acids Res. 2015 43 W1 W419 W424 10.1093/nar/gkv456 25943545
    [Google Scholar]
  21. Blaszczyk M. Kurcinski M. Kouza M. Wieteska L. Debinski A. Kolinski A. Kmiecik S. Modeling of protein–peptide interactions using the CABS-dock web server for binding site search and flexible docking. Methods 2016 93 72 83 10.1016/j.ymeth.2015.07.004 26165956
    [Google Scholar]
  22. Schindler C.E.M. de Vries S.J. Zacharias M. Fully blind peptide-protein docking with pepATTRACT. Structure 2015 23 8 1507 1515 10.1016/j.str.2015.05.021 26146186
    [Google Scholar]
  23. de Vries S.J. Rey J. Schindler C.E.M. Zacharias M. Tuffery P. The pepATTRACT web server for blind, large-scale peptide–protein docking. Nucleic Acids Res. 2017 45 W1 W361 W364 10.1093/nar/gkx335 28460116
    [Google Scholar]
  24. Ko J. Park H. Heo L. Seok C. GalaxyWEB server for protein structure prediction and refinement. Nucleic Acids Res. 2012 40 W1 W294 W297 10.1093/nar/gks493 22649060
    [Google Scholar]
  25. Xue L.C. Rodrigues J.P. Kastritis P.L. Bonvin A.M. Vangone A. PRODIGY: A web server for predicting the binding affinity of protein–protein complexes. Bioinformatics 2016 32 23 3676 3678 10.1093/bioinformatics/btw514 27503228
    [Google Scholar]
  26. Wood C.W. Ibarra A.A. Bartlett G.J. Wilson A.J. Woolfson D.N. Sessions R.B. BAlaS: Fast, interactive and accessible computational alanine-scanning using BudeAlaScan. Bioinformatics 2020 36 9 2917 2919 10.1093/bioinformatics/btaa026 31930404
    [Google Scholar]
  27. Ibarra A.A. Bartlett G.J. Hegedüs Z. Dutt S. Hobor F. Horner K.A. Hetherington K. Spence K. Nelson A. Edwards T.A. Woolfson D.N. Sessions R.B. Wilson A.J. Predicting and experimentally validating hot-spot residues at protein–protein interfaces. ACS Chem. Biol. 2019 14 10 acschembio.9b00560. 10.1021/acschembio.9b00560 31525028
    [Google Scholar]
  28. Van Der Spoel D. Lindahl E. Hess B. Groenhof G. Mark A.E. Berendsen H.J.C. GROMACS: Fast, flexible, and free. J. Comput. Chem. 2005 26 16 1701 1718 10.1002/jcc.20291 16211538
    [Google Scholar]
  29. Best R.B. Hummer G. Eaton W.A. Native contacts determine protein folding mechanisms in atomistic simulations. Proc. Natl. Acad. Sci. USA 2013 110 44 17874 17879 10.1073/pnas.1311599110 24128758
    [Google Scholar]
  30. Bekker G.J. Araki M. Oshima K. Okuno Y. Kamiya N. Exhaustive search of the configurational space of heat‐shock protein 90 with its inhibitor by multicanonical molecular dynamics based dynamic docking. J. Comput. Chem. 2020 41 17 1606 1615 10.1002/jcc.26203 32267975
    [Google Scholar]
  31. Boknäs N. Faxälv L. Centellas D.S. Wallstedt M. Ramström S. Grenegård M. Lindahl T. Thrombin-induced platelet activation via PAR4: Pivotal role for exosite II. Thromb. Haemost. 2014 112 9 558 565 10.1160/TH13‑12‑1013 24990072
    [Google Scholar]
  32. Megyeri M. Makó V. Beinrohr L. Doleschall Z. Prohászka Z. Cervenak L. Závodszky P. Gál P. Protease C. MASP-1 activates human endothelial cells: PAR4 activation is a link between complement and endothelial function. J. Immunol. 2009 183 5 3409 3416 10.4049/jimmunol.0900879 19667088
    [Google Scholar]
/content/journals/aiaamc/10.2174/0118715230411505251126063432
Loading
/content/journals/aiaamc/10.2174/0118715230411505251126063432
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: complement system ; MASP-2 ; thrombin ; MASP-1 ; PAR4
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test