Skip to content
2000
Volume 24, Issue 4
  • ISSN: 1871-5230
  • E-ISSN: 1875-614X

Abstract

Introduction

Trans-resveratrol is a bioactive polyphenol that has been widely studied for its antioxidant, anti-inflammatory, and chemoprotective properties. It holds promise in pharmaceutical and nutraceutical formulations but is limited by poor bioavailability and stability.

Methods

This review synthesizes validated analytical methods for quantifying trans-resveratrol across various matrices. A comprehensive literature search (2000–2024) was conducted using PubMed, Scopus, and Google Scholar, focusing on RP-HPLC, HPTLC, GC, and UV spectroscopy. Method validation follows ICH guidelines.

Results

Thirty-seven validated analytical methods were reviewed. RP-HPLC using C18 columns with acetonitrile-water mobile phases dominated the literature. The most sensitive technique identified was LC-MS/MS (LOD = 0.001 μg/mL), particularly effective in biological samples. Matrix types included wine, serum, and nanoparticle formulations.

Discussion

RP-HPLC and LC-MS/MS have emerged as robust techniques for resveratrol quantification due to their sensitivity and specificity. Emerging tools like biosensors and UPLC offer rapid analysis with lower solvent consumption. Challenges such as isomerization, photodegradation, and matrix interferences necessitate stringent sample-handling protocols.

Conclusion

Advanced chromatographic methods, especially RP-HPLC and LC-MS/MS, are essential for the reliable quantification of trans-resveratrol. Future research should focus on analytical standardization and the development of novel delivery systems to enhance resveratrol's pharmacokinetic profile.

Loading

Article metrics loading...

/content/journals/aiaamc/10.2174/0118715230403013250901204059
2025-12-01
2026-01-03
Loading full text...

Full text loading...

References

  1. RigonR.B. FachinettiN. SeverinoP. DurazzoA. LucariniM. AtanasovA.G. El MamouniS. ChorilliM. SantiniA. SoutoE.B. Quantification of trans-resveratrol-loaded solid lipid nanoparticles by a validated reverse-phase HPLC photodiode array.Appl. Sci.2019922496110.3390/app9224961
    [Google Scholar]
  2. Mota-LugoE. Dolores-HernándezM. Morales-HipólitoE.A. Blanco-AlcántaraI.A. Cuatecontzi-FloresH. López-ArellanoR. Development and validation of a stability-indicating HPLC method for the simultaneous determination of trans -resveratrol and cis -resveratrol in an injectable solution.J. Anal. Methods Chem.2021202111210.1155/2021/8402157 34812295
    [Google Scholar]
  3. ShahA.A. NayakY. Development, optimisation and validation of RP-HPLC method for the quantification of resveratrol.Int. J. Pharm. Sci. Res.2019533ss356s36310.5530/ijper.53.3s.106
    [Google Scholar]
  4. NevesA.R. ReisS. SegundoM.A. Development and validation of a HPLC method using a monolithic column for quantification of trans-resveratrol in lipid nanoparticles for intestinal permeability studies.J. Agric. Food Chem.201563123114312010.1021/acs.jafc.5b00390 25764378
    [Google Scholar]
  5. BernardesC.D. PoppiR.J. SenaM.M. Direct determination of trans-resveratrol in human plasma by spectrofluorimetry and second-order standard addition.Talanta201082264064510.1016/j.talanta.2010.05.024 20602948
    [Google Scholar]
  6. ChimentoA. De AmicisF. SirianniR. SinicropiM.S. PuociF. CasaburiI. SaturninoC. PezziV. Progress to improve oral bioavailability and beneficial effects of resveratrol.Int. J. Mol. Sci.2019206138110.3390/ijms20061381 30893846
    [Google Scholar]
  7. ZupančičŠ. LavričZ. KristlJ. Stability and solubility of trans-resveratrol are strongly influenced by pH and temperature.Eur. J. Pharm. Biopharm.20159319620410.1016/j.ejpb.2015.04.002 25864442
    [Google Scholar]
  8. OganesyanE.A. MiroshnichenkoI.I. VikhrievaN.S. LyashenkoA.A. LeshkovS.Y. Use of nanoparticles to increase the systemic bioavailability of trans-resveratrol.Pharm. Chem. J.2010442747610.1007/s11094‑010‑0401‑1
    [Google Scholar]
  9. KristlJ. TeskačK. CaddeoC. AbramovićZ. ŠentjurcM. Improvements of cellular stress response on resveratrol in liposomes.Eur. J. Pharm. Biopharm.200973225325910.1016/j.ejpb.2009.06.006 19527785
    [Google Scholar]
  10. DasS. NgK.Y. Quantification of trans-resveratrol in rat plasma by a simple and sensitive high performance liquid chromatography method and its application in pre-clinical study.J. Liq. Chromatogr. Relat. Technol.201134141399141410.1080/10826076.2011.572215
    [Google Scholar]
  11. ZuninoS.J. StormsD.H. Resveratrol-3-O-glucuronide and resveratrol-4′-O-glucuronide reduce DNA strand breakage but not apoptosis in Jurkat T cells treated with camptothecin.Oncol. Lett.20171422517252210.3892/ol.2017.6392 28781690
    [Google Scholar]
  12. FliegerJ. Tatarczak-MichalewskaM. BlicharskaE. Characterization of the cis/trans Isomerization of Resveratrol by High-Performance Liquid Chromatography.Anal. Lett.201750229430310.1080/00032719.2016.1178756
    [Google Scholar]
  13. CareriM. CorradiniC. ElviriL. NicolettiI. ZagnoniI. Liquid chromatography-electrospray tandem mass spectrometry of cis-resveratrol and trans-resveratrol: Development, validation, and application of the method to red wine, grape, and winemaking byproducts.J. Agric. Food Chem.200452236868687410.1021/jf049219d 15537288
    [Google Scholar]
  14. TzanovaM. PeevaP. Rapid HPLC method for simultaneous quantification of trans-resveratrol and quercetin in the skin of red grapes.Food Anal. Methods201811251452110.1007/s12161‑017‑1022‑z
    [Google Scholar]
  15. GuptaA. PadmanabhanP. SinghS. Resveratrol isomeric switching during bioreduction of gold nanoparticles: A gateway for cis -resveratrol.Nanotechnology2020314646560310.1088/1361‑6528/ababcb 32746439
    [Google Scholar]
  16. ZhaoR. LiuS. ZhouL. Rapid quantitative HPTLC analysis, on one plate, of emodin, resveratrol, and polydatin in the Chinese herb Polygonum cuspidatum.Chromatographia2005615-631131410.1365/s10337‑005‑0514‑y
    [Google Scholar]
  17. ImranM.D. GangurdeM.V. BairagiV.A. GangurdeM. Extraction of resveratrol from grape skin and determination by HPLC method. AFJBS 2024132116212510.48047/AFJBS.6.13.2024.2116‑2125
    [Google Scholar]
  18. TopkoskaM. MiloshevskaM. PiponskiM. Slaveska SpirevskaI. NakovN. BrezovskaK. AcevskaJ. Greenness assessment and validation of HPLC method for simultaneous determination of resveratrol and vitamin E in dietary supplements.J. AOAC Int.2024107224825310.1093/jaoacint/qsad131 38092031
    [Google Scholar]
  19. SathishbabuP. HaniU. ShakeelaC. Hemanth VikramP.R. GhazwaniM. OsmaniR.A.M. GurupadayyaB.M. GowdaD.V. A novel RP-HPLC method development and validation for simultaneous quantification of gefitinib and resveratrol in polymeric hybrid lipid nanoparticles and glioma cells.J. Chromatogr. B Analyt. Technol. Biomed. Life Sci.2022121212348310.1016/j.jchromb.2022.123483 36279777
    [Google Scholar]
  20. GadagS. NarayanR. MehtaC.H. SureshA. NayakU.Y. Development and validation of a rapid and sensitive stability-indicating RP-HPLC method for resveratrol quantification in pharmaceutical formulation.Int. J. Pharm. Sci. Res.2021553sS825S83610.5530/ijper.55.3s.190
    [Google Scholar]
  21. JagwaniS. JalalpureS. DhamechaD. HuaG.S. JadhavK. Development and validation of reverse-phase high-performance liquid chromatographic method for determination of resveratrol in human and rat plasma for preclinical and clinical studies.Int. J. Pharm. Sci. Res.201954118719310.5530/ijper.54.1.22
    [Google Scholar]
  22. HarithaK. Method development and validation for the simultaneous estimation of resveratrol and quercetin in bulk and pharmaceutical dosage form by RP-HPLC.J. Pharm. Sci. Res.2019111231953199
    [Google Scholar]
  23. JagwaniS. JalalpureS. DhamechaD. HuaG.S. JadhavK. A Stability indicating reversed phase hplc method for estimation of trans -resveratrol in oral capsules and nanoliposomes.Anal. Chem. Lett.20199571172610.1080/22297928.2019.1696227
    [Google Scholar]
  24. GuptaM. AmarA.K. BabaS. SinghA. SinghJ. Method development and validation for simultaneous estimation of resveratrol and gallic acid by RP-HPLC.Int. J. Pharm. Chem. Biol. Sci.2019201911926
    [Google Scholar]
  25. KumarS. LatherV. PanditaD. Stability indicating simplified HPLC method for simultaneous analysis of resveratrol and quercetin in nanoparticles and human plasma.Food. Chem.2016197Pt A95996410.1016/j.foodchem.2015.11.07826617040
    [Google Scholar]
  26. CvetkovicZ. NikolicV. SavicI. Savic-GajicI. NikolicL. Development and validation of an RP-HPLC method for quantification of trans-resveratrol in the plant extracts.Hem. Ind.201569667968710.2298/HEMIND140917004C
    [Google Scholar]
  27. PangeniR. MustafaG. SharmaS. BabootaS. Design expert-supported development and validation of stability indicating high-performance liquid chromatography (HPLC) method for determination of resveratrol in bulk drug and pharmaceutical formulation.Int. J. Pharm. Sci. Res.20155115512510.13040/IJPSR.0975‑8232.6(12).5115‑25
    [Google Scholar]
  28. SinghG. PaiR.S. A rapid reversed-phase HPLC method for analysis of Trans -resveratrol in PLGA nanoparticulate formulation.ISRN Chromatography201420141610.1155/2014/248635
    [Google Scholar]
  29. PatidarM. BeheraC. PillaiS. Development and validation of RP-HPLC method for simultaneous determination of resveratrol and curcumin in pure form.Res. J. Pharm. Technol201369990992
    [Google Scholar]
  30. SinghG. PaiR.S. PanditV. In vivo pharmacokinetic applicability of a simple and validated HPLC method for orally administered trans-resveratrol loaded polymeric nanoparticles to rats.J. Pharm. Investig.2014442697810.1007/s40005‑013‑0105‑0
    [Google Scholar]
  31. PaiR.S. SinghG. PanditV. Development and validation of a HPLC method for the determination of trans-resveratrol in spiked human plasma.J. Adv. Pharm. Technol. Res.20123213013510.4103/2231‑4040.97296 22837962
    [Google Scholar]
  32. NourV. TrandafirI. MunteanC. Ultraviolet irradiation of trans-resveratrol and HPLC determination of trans-resveratrol and cis-resveratrol in Romanian red wines.J. Chromatogr. Sci.2012501092092710.1093/chromsci/bms091 22689901
    [Google Scholar]
  33. PauloL. DominguesF. QueirozJ.A. GallardoE. Development and validation of an analytical method for the determination of trans- and cis-resveratrol in wine: Analysis of its contents in 186 Portuguese red wines.J. Agric. Food Chem.20115962157216810.1021/jf105004y 21361293
    [Google Scholar]
  34. JuanM.E. MaijóM. PlanasJ.M. Quantification of trans-resveratrol and its metabolites in rat plasma and tissues by HPLC.J. Pharm. Biomed. Anal.201051239139810.1016/j.jpba.2009.03.026 19406597
    [Google Scholar]
  35. VlaseL. KissB. LeucutaS.E. GocanS. A rapid method for determination of resveratrol in wines by HPLC-MS.J. Liq. Chromatogr. Relat. Technol.200932142105212110.1080/10826070903126989
    [Google Scholar]
  36. BrizziA. BrizziV. CorradiniD. Identification and quantification of trans-resveratrol in dietary supplements by a rapid and straightforward RP-HPLC method.J. Liq. Chromatogr. Relat. Technol.200831142089210010.1080/10826070802225353
    [Google Scholar]
  37. Urpi-SardaM. Zamora-RosR. Lamuela-RaventosR. CherubiniA. JaureguiO. de la TorreR. CovasM.I. EstruchR. JaegerW. Andres-LacuevaC. HPLC-tandem mass spectrometric method to characterize resveratrol metabolism in humans.Clin. Chem.200753229229910.1373/clinchem.2006.071936 17170057
    [Google Scholar]
  38. KatsagonisA. Atta-PolitouJ. KoupparisM.A. HPLC method with UV detection for the determination of trans-resveratrol in plasma.J. Liq. Chromatogr. Relat. Technol.20052891393140510.1081/JLC‑200054884
    [Google Scholar]
  39. MarkL. A validated HPLC method for the quantitative analysis of trans-resveratrol and trans-piceid in Hungarian wines.J. Chromatogr. Sci.200543944544910.1093/chromsci/43.9.445
    [Google Scholar]
  40. PatilP. ShrotriyaS. MulgundS. Development and validation of a RP-HPLC method for simultaneous quantitation of resveratrol and curcumin: Application to nanolipid gel formulation.Int. J. Pharm. Sci. Res.202162243610.47760/ijpsm.2021.v06i02.003
    [Google Scholar]
  41. FranciosoA. LaštovičkováL. MoscaL. BoffiA. BonamoreA. MaconeA. Gas chromatographic–mass spectrometric method for the simultaneous determination of resveratrol isomers and 2,4,6-trihydroxyphenanthrene in red wines exposed to UV-Light.J. Agric. Food Chem.20196742117521175710.1021/acs.jafc.9b05992 31554403
    [Google Scholar]
  42. RochaS. AraújoA.M. AlmeidaA. de PinhoP.G. FernandesE. Development and validation of a GC-MS/MS method for cis-and trans-resveratrol determination: Application to portuguese wines.Food Anal. Methods20191271536154410.1007/s12161‑019‑01482‑y
    [Google Scholar]
  43. CachoJ.I. CampilloN. ViñasP. Hernández-CórdobaM. Stir bar sorptive extraction with gas chromatography–mass spectrometry for the determination of resveratrol, piceatannol and oxyresveratrol isomers in wines.J. Chromatogr. A20131315212710.1016/j.chroma.2013.09.045 24075014
    [Google Scholar]
  44. MontesR. García-LópezM. RodríguezI. CelaR. Mixed-mode solid-phase extraction followed by acetylation and gas chromatography mass spectrometry for the reliable determination of trans-resveratrol in wine samples.Anal. Chim. Acta20106731475310.1016/j.aca.2010.05.021 20630177
    [Google Scholar]
  45. CaiL. KozielJ.A. DharmadhikariM. Hans van LeeuwenJ. Rapid determination of trans-resveratrol in red wine by solid-phase microextraction with on-fiber derivatization and multidimensional gas chromatography-mass spectrometry.J. Chromatogr. A20091216228128710.1016/j.chroma.2008.11.050 19081100
    [Google Scholar]
  46. ShaoY. MarriottP. HügelH. Solid-phase microextraction—On-fibre derivatization with comprehensive two dimensional gas chromatography analysis of trans-resveratrol in wine.Chromatographia200357S1S349S353(Suppl. 1)10.1007/BF02492127
    [Google Scholar]
  47. LuanT. LiG. ZhangZ. Gas-phase postderivatization following solid-phase microextraction for rapid determination of trans -resveratrol in wine by gas chromatography-mass spectrometry.Anal. Chim. Acta20004241192510.1016/S0003‑2670(00)01103‑X
    [Google Scholar]
  48. BlacheD. RustanI. DurandP. LesgardsG. LoreauN. Gas chromatographic analysis of resveratrol in plasma, lipoproteins and cells after in vitro incubations.J. Chromatogr., Biomed. Appl.19977021-210311010.1016/S0378‑4347(97)00383‑6 9449561
    [Google Scholar]
  49. SoleasG.J. GoldbergD.M. DiamandisE.P. KarumanchiriA. YanJ. NgE. A derivatized gas chromatographic-mass spectrometric method for the analysis of both isomers of resveratrol in juice and wine.Am. J. Enol. Vitic.199546334635210.5344/ajev.1995.46.3.346
    [Google Scholar]
  50. GoldbergD.M. YanagawaR. SoleasT.T. Direct injection gas chromatographic mass spectrometric assay for trans-resveratrol.Anal. Chem.19987071336134110.1021/ac00094a017
    [Google Scholar]
  51. Roxana BancutaO. ChilianA. BancutaI. SetnescuR. SetnescuT. Mariana IonR. Thermal characterization of resveratrol.Rev. Chim20186961346135110.37358/RC.18.6.6322
    [Google Scholar]
  52. Fiod RiccioB.V. Fonseca-SantosB. Colerato FerrariP. ChorilliM. Characteristics, biological properties and analytical methods of trans-resveratrol: A review.Crit. Rev. Anal. Chem.202050433935810.1080/10408347.2019.1637242 31353930
    [Google Scholar]
  53. GonçalvesJ. CâmaraJ.S. New method for determination of (E)‐resveratrol in wine based on microextraction using packed sorbent and ultra‐performance liquid chromatography.J. Sep. Sci.201134182376238410.1002/jssc.201100336 21805631
    [Google Scholar]
  54. WangY. CatanaF. YangY. RoderickR. van BreemenR.B. An LC-MS method for analyzing total resveratrol in grape juice, cranberry juice, and in wine.J. Agric. Food Chem.200250343143510.1021/jf010812u 11804508
    [Google Scholar]
  55. GomesS.A.S.S. NogueiraJ.M.F. RebeloM.J.F. An amperometric biosensor for polyphenolic compounds in red wine.Biosens. Bioelectron.20042061211121610.1016/j.bios.2004.05.013 15556369
    [Google Scholar]
  56. FayazbakhshF. HataminiaF. EslamH.M. AjoudanianM. KharraziS. SharifiK. GhanbariH. Evaluating the antioxidant potential of resveratrol-gold nanoparticles in preventing oxidative stress in endothelium on a chip.Sci. Rep.20231312134410.1038/s41598‑023‑47291‑6 38049439
    [Google Scholar]
  57. BrownV.A. PatelK.R. ViskadurakiM. CrowellJ.A. PerloffM. BoothT.D. VasilininG. SenA. SchinasA.M. PiccirilliG. BrownK. StewardW.P. GescherA.J. BrennerD.E. Repeat dose study of the cancer chemopreventive agent resveratrol in healthy volunteers: Safety, pharmacokinetics, and effect on the insulin-like growth factor axis.Cancer Res.201070229003901110.1158/0008‑5472.CAN‑10‑2364 20935227
    [Google Scholar]
  58. SalehiB. MishraA.P. NigamM. SenerB. KilicM. Sharifi-RadM. FokouP.V.T. MartinsN. Sharifi-RadJ. Resveratrol: A double-edged sword in health benefits.Biomedicines2018639110.3390/biomedicines6030091 30205595
    [Google Scholar]
  59. SinghG. Resveratrol: Nanocarrier-based delivery systems to enhance its therapeutic potential.Nanomedicine202015282801281710.2217/nnm‑2020‑0289 33191840
    [Google Scholar]
/content/journals/aiaamc/10.2174/0118715230403013250901204059
Loading
/content/journals/aiaamc/10.2174/0118715230403013250901204059
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test