Skip to content
2000
image of Analytical Techniques for the Quantification and Validation of Resveratrol: A Review

Abstract

Introduction

Trans-resveratrol is a bioactive polyphenol that has been widely studied for its antioxidant, anti-inflammatory, and chemoprotective properties. It holds promise in pharmaceutical and nutraceutical formulations but is limited by poor bioavailability and stability.

Methods

This review synthesizes validated analytical methods for quantifying trans-resveratrol across various matrices. A comprehensive literature search (2000–2024) was conducted using PubMed, Scopus, and Google Scholar, focusing on RP-HPLC, HPTLC, GC, and UV spectroscopy. Method validation follows ICH guidelines.

Results

Thirty-seven validated analytical methods were reviewed. RP-HPLC using C18 columns with acetonitrile-water mobile phases dominated the literature. The most sensitive technique identified was LC-MS/MS (LOD = 0.001 μg/mL), particularly effective in biological samples. Matrix types included wine, serum, and nanoparticle formulations.

Discussion

RP-HPLC and LC-MS/MS have emerged as robust techniques for resveratrol quantification due to their sensitivity and specificity. Emerging tools like biosensors and UPLC offer rapid analysis with lower solvent consumption. Challenges such as isomerization, photodegradation, and matrix interferences necessitate stringent sample-handling protocols.

Conclusion

Advanced chromatographic methods, especially RP-HPLC and LC-MS/MS, are essential for the reliable quantification of trans-resveratrol. Future research should focus on analytical standardization and the development of novel delivery systems to enhance resveratrol's pharmacokinetic profile.

Loading

Article metrics loading...

/content/journals/aiaamc/10.2174/0118715230403013250901204059
2025-09-23
2025-09-25
Loading full text...

Full text loading...

References

  1. Rigon R.B. Fachinetti N. Severino P. Durazzo A. Lucarini M. Atanasov A.G. El Mamouni S. Chorilli M. Santini A. Souto E.B. Quantification of trans-resveratrol-loaded solid lipid nanoparticles by a validated reverse-phase HPLC photodiode array. Appl. Sci. 2019 9 22 4961 10.3390/app9224961
    [Google Scholar]
  2. Mota-Lugo E. Dolores-Hernández M. Morales-Hipólito E.A. Blanco-Alcántara I.A. Cuatecontzi-Flores H. López-Arellano R. Development and validation of a stability-indicating hplc method for the simultaneous determination of trans -resveratrol and cis -resveratrol in an injectable solution. J. Anal. Methods Chem. 2021 2021 1 12 10.1155/2021/8402157 34812295
    [Google Scholar]
  3. Shah A.A. Nayak Y. Development, optimisation and validation of RP-HPLC method for the quantification of resveratrol. Int. J. Pharm. Sci. Res. 2019 53 3s s356 s363 10.5530/ijper.53.3s.106
    [Google Scholar]
  4. Neves A.R. Reis S. Segundo M.A. Development and validation of a HPLC method using a monolithic column for quantification of trans-resveratrol in lipid nanoparticles for intestinal permeability studies. J. Agric. Food Chem. 2015 63 12 3114 3120 10.1021/acs.jafc.5b00390 25764378
    [Google Scholar]
  5. Bernardes C.D. Poppi R.J. Sena M.M. Direct determination of trans-resveratrol in human plasma by spectrofluorimetry and second-order standard addition. Talanta 2010 82 2 640 645 10.1016/j.talanta.2010.05.024 20602948
    [Google Scholar]
  6. Chimento A. De Amicis F. Sirianni R. Sinicropi M.S. Puoci F. Casaburi I. Saturnino C. Pezzi V. Progress to improve oral bioavailability and beneficial effects of resveratrol. Int. J. Mol. Sci. 2019 20 6 1381 10.3390/ijms20061381 30893846
    [Google Scholar]
  7. Zupančič Š. Lavrič Z. Kristl J. Stability and solubility of trans-resveratrol are strongly influenced by pH and temperature. Eur. J. Pharm. Biopharm. 2015 93 196 204 10.1016/j.ejpb.2015.04.002 25864442
    [Google Scholar]
  8. Oganesyan E.A. Miroshnichenko I.I. Vikhrieva N.S. Lyashenko A.A. Leshkov S.Y. Use of nanoparticles to increase the systemic bioavailability of trans-resveratrol. Pharm. Chem. J. 2010 44 2 74 76 10.1007/s11094‑010‑0401‑1
    [Google Scholar]
  9. Kristl J. Teskač K. Caddeo C. Abramović Z. Šentjurc M. Improvements of cellular stress response on resveratrol in liposomes. Eur. J. Pharm. Biopharm. 2009 73 2 253 259 10.1016/j.ejpb.2009.06.006 19527785
    [Google Scholar]
  10. Das S. Ng K.Y. Quantification of trans-resveratrol in rat plasma by a simple and sensitive high performance liquid chromatography method and its application in pre-clinical study. J. Liq. Chromatogr. Relat. Technol. 2011 34 14 1399 1414 10.1080/10826076.2011.572215
    [Google Scholar]
  11. Zunino S.J. Storms D.H. Resveratrol-3-O-glucuronide and resveratrol-4′-O-glucuronide reduce DNA strand breakage but not apoptosis in Jurkat T cells treated with camptothecin. Oncol. Lett. 2017 14 2 2517 2522 10.3892/ol.2017.6392 28781690
    [Google Scholar]
  12. Flieger J. Tatarczak-Michalewska M. Blicharska E. Characterization of the cis/trans Isomerization of Resveratrol by High-Performance Liquid Chromatography. Anal. Lett. 2017 50 2 294 303 10.1080/00032719.2016.1178756
    [Google Scholar]
  13. Careri M. Corradini C. Elviri L. Nicoletti I. Zagnoni I. Liquid chromatography-electrospray tandem mass spectrometry of cis-resveratrol and trans-resveratrol: Development, validation, and application of the method to red wine, grape, and winemaking byproducts. J. Agric. Food Chem. 2004 52 23 6868 6874 10.1021/jf049219d 15537288
    [Google Scholar]
  14. Tzanova M. Peeva P. Rapid HPLC method for simultaneous quantification of trans-resveratrol and quercetin in the skin of red grapes. Food Anal. Methods 2018 11 2 514 521 10.1007/s12161‑017‑1022‑z
    [Google Scholar]
  15. Gupta A. Padmanabhan P. Singh S. Resveratrol isomeric switching during bioreduction of gold nanoparticles: A gateway for cis -resveratrol. Nanotechnology 2020 31 46 465603 10.1088/1361‑6528/ababcb 32746439
    [Google Scholar]
  16. Zhao R. Liu S. Zhou L. Rapid quantitative HPTLC analysis, on one plate, of emodin, resveratrol, and polydatin in the Chinese herb Polygonum cuspidatum. Chromatographia 2005 61 5-6 311 314 10.1365/s10337‑005‑0514‑y
    [Google Scholar]
  17. Imran M. D. Gangurde M. V Bairagi V. A. Gangurde M. Extraction of resveratrol from grape skin and determination by HPLC method.
    [Google Scholar]
  18. Topkoska M. Miloshevska M. Piponski M. Slaveska Spirevska I. Nakov N. Brezovska K. Acevska J. Greenness assessment and validation of HPLC method for simultaneous determination of resveratrol and vitamin E in dietary supplements. J. AOAC Int. 2024 107 2 248 253 10.1093/jaoacint/qsad131 38092031
    [Google Scholar]
  19. Sathishbabu P. Hani U. Shakeela C. Hemanth Vikram P.R. Ghazwani M. Osmani R.A.M. Gurupadayya B.M. Gowda D.V. A novel RP-HPLC method development and validation for simultaneous quantification of gefitinib and resveratrol in polymeric hybrid lipid nanoparticles and glioma cells. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2022 1212 123483 10.1016/j.jchromb.2022.123483 36279777
    [Google Scholar]
  20. Gadag S. Narayan R. Mehta C.H. Suresh A. Nayak U.Y. Development and validation of a rapid and sensitive stability-indicating RP-HPLC method for resveratrol quantification in pharmaceutical formulation. Int. J. Pharm. Sci. Res. 2021 55 3s S825 S836 10.5530/ijper.55.3s.190
    [Google Scholar]
  21. Jagwani S. Jalalpure S. Dhamecha D. Hua G.S. Jadhav K. Development and validation of reverse-phase high-performance liquid chromatographic method for determination of resveratrol in human and rat plasma for preclinical and clinical studies. Int. J. Pharm. Sci. Res. 2019 54 1 187 193 10.5530/ijper.54.1.22
    [Google Scholar]
  22. Haritha K. Method development and validation for the simultaneous estimation of resveratrol and quercetin in bulk and pharmaceutical dosage form by RP-HPLC. J. Pharm. Sci. Res. 2019 11 12 3195 3199
    [Google Scholar]
  23. Jagwani S. Jalalpure S. Dhamecha D. Hua G.S. Jadhav K. A Stability indicating reversed phase hplc method for estimation of trans -resveratrol in oral capsules and nanoliposomes. Anal. Chem. Lett. 2019 9 5 711 726 10.1080/22297928.2019.1696227
    [Google Scholar]
  24. Gupta M. Amar AK. Baba S. Singh A. Singh J. Method development and validation for simultaneous estimation of resveratrol and gallic acid by RP-HPLC. Int. J. Pharm. Chem. Biol. Sci. 2019 2019 1 19 26
    [Google Scholar]
  25. Kumar S. Lather V. Pandita D. Stability indicating simplified HPLC method for simultaneous analysis of resveratrol and quercetin in nanoparticles and human plasma. Food. Chem 2016 167 PT A 959 964 10.1016/j.foodchem.2015.11.078 26617040
    [Google Scholar]
  26. Cvetkovic Z. Nikolic V. Savic I. Savic-Gajic I. Nikolic L. Development and validation of an RP-HPLC method for quantification of trans-resveratrol in the plant extracts. Hem. Ind. 2015 69 6 679 687 10.2298/HEMIND140917004C
    [Google Scholar]
  27. Pangeni R. Mustafa G. Sharma S. Baboota S. Design expert-supported development and validation of stability indicating high-performance liquid chromatography (HPLC) method for determination of resveratrol in bulk drug and pharmaceutical formulation. Int. J. Pharm. Sci. Res. 2015 5115 5125 10.13040/IJPSR.0975‑8232.6(12).5115‑25
    [Google Scholar]
  28. Singh G. Pai R.S. A rapid reversed-phase HPLC method for analysis of Trans -resveratrol in PLGA nanoparticulate formulation. ISRN Chromatography 2014 2014 1 6 10.1155/2014/248635
    [Google Scholar]
  29. Patidar M. Behera C. Pillai S. Development and validation of RP-HPLC method for simultaneous determination of resveratrol and curcumin in pure form. Res. J. Pharm. Technol 2013 6 9 990 992
    [Google Scholar]
  30. Singh G. Pai R.S. Pandit V. In vivo pharmacokinetic applicability of a simple and validated HPLC method for orally administered trans-resveratrol loaded polymeric nanoparticles to rats. J. Pharm. Investig. 2014 44 2 69 78 10.1007/s40005‑013‑0105‑0
    [Google Scholar]
  31. Pai R.S. Singh G. Pandit V. Development and validation of a HPLC method for the determination of trans-resveratrol in spiked human plasma. J. Adv. Pharm. Technol. Res. 2012 3 2 130 135 10.4103/2231‑4040.97296 22837962
    [Google Scholar]
  32. Nour V. Trandafir I. Muntean C. Ultraviolet irradiation of trans-resveratrol and HPLC determination of trans-resveratrol and cis-resveratrol in Romanian red wines. J. Chromatogr. Sci. 2012 50 10 920 927 10.1093/chromsci/bms091 22689901
    [Google Scholar]
  33. Paulo L. Domingues F. Queiroz J.A. Gallardo E. Development and validation of an analytical method for the determination of trans- and cis-resveratrol in wine: Analysis of its contents in 186 Portuguese red wines. J. Agric. Food Chem. 2011 59 6 2157 2168 10.1021/jf105004y 21361293
    [Google Scholar]
  34. Juan M.E. Maijó M. Planas J.M. Quantification of trans-resveratrol and its metabolites in rat plasma and tissues by HPLC. J. Pharm. Biomed. Anal. 2010 51 2 391 398 10.1016/j.jpba.2009.03.026 19406597
    [Google Scholar]
  35. Vlase L. Kiss B. Leucuta S.E. Gocan S. A rapid method for determination of resveratrol in wines by HPLC-MS. J. Liq. Chromatogr. Relat. Technol. 2009 32 14 2105 2121 10.1080/10826070903126989
    [Google Scholar]
  36. Brizzi A. Brizzi V. Corradini D. Identification and quantification of trans-resveratrol in dietary supplements by a rapid and straightforward RP-HPLC method. J. Liq. Chromatogr. Relat. Technol. 2008 31 14 2089 2100 10.1080/10826070802225353
    [Google Scholar]
  37. Urpi-Sarda M. Zamora-Ros R. Lamuela-Raventos R. Cherubini A. Jauregui O. de la Torre R. Covas M.I. Estruch R. Jaeger W. Andres-Lacueva C. HPLC-tandem mass spectrometric method to characterize resveratrol metabolism in humans. Clin. Chem. 2007 53 2 292 299 10.1373/clinchem.2006.071936 17170057
    [Google Scholar]
  38. Katsagonis A. Atta-Politou J. Koupparis M.A. HPLC method with UV detection for the determination of trans-resveratrol in plasma. J. Liq. Chromatogr. Relat. Technol. 2005 28 9 1393 1405 10.1081/JLC‑200054884
    [Google Scholar]
  39. Mark, Laszlo A validated HPLC method for the quantitative analysis of trans-resveratrol and trans-piceid in Hungarian wines. J. Chromatogr. Sci. 2005 43 9 445 449 10.1093/chromsci/43.9.445
    [Google Scholar]
  40. Patil P. Shrotriya S. Mulgund S. Development and validation of a RP-HPLC method for simultaneous quantitation of resveratrol and curcumin: Application to nanolipid gel formulation. Int. J. Pharm. Sci. Res. 2021 6 2 24 36 10.47760/ijpsm.2021.v06i02.003
    [Google Scholar]
  41. Francioso A. Laštovičková L. Mosca L. Boffi A. Bonamore A. Macone A. Gas chromatographic–mass spectrometric method for the simultaneous determination of resveratrol isomers and 2,4,6-trihydroxyphenanthrene in red wines exposed to UV-Light. J. Agric. Food Chem. 2019 67 42 11752 11757 10.1021/acs.jafc.9b05992 31554403
    [Google Scholar]
  42. Rocha S. Araújo A.M. Almeida A. de Pinho P.G. Fernandes E. Development and validation of a gc-ms/ms method for cis-and trans-resveratrol determination: Application to portuguese wines. Food Anal. Methods 2019 12 7 1536 1544 10.1007/s12161‑019‑01482‑y
    [Google Scholar]
  43. Cacho J.I. Campillo N. Viñas P. Hernández-Córdoba M. Stir bar sorptive extraction with gas chromatography–mass spectrometry for the determination of resveratrol, piceatannol and oxyresveratrol isomers in wines. J. Chromatogr. A 2013 1315 21 27 10.1016/j.chroma.2013.09.045 24075014
    [Google Scholar]
  44. Montes R. García-López M. Rodríguez I. Cela R. Mixed-mode solid-phase extraction followed by acetylation and gas chromatography mass spectrometry for the reliable determination of trans-resveratrol in wine samples. Anal. Chim. Acta 2010 673 1 47 53 10.1016/j.aca.2010.05.021 20630177
    [Google Scholar]
  45. Cai L. Koziel J.A. Dharmadhikari M. Hans van Leeuwen J. Rapid determination of trans-resveratrol in red wine by solid-phase microextraction with on-fiber derivatization and multidimensional gas chromatography-mass spectrometry. J. Chromatogr. A 2009 1216 2 281 287 10.1016/j.chroma.2008.11.050 19081100
    [Google Scholar]
  46. Shao Y. Marriott P. Hügel H. Solid-phase microextraction— On-fibre derivatization with comprehensive two dimensional gas chromatography analysis oftrans-resveratrol in wine Chromatographia, 2003 57 (S1) S349-S353. (Suppl. 1) 10.1007/BF02492127
    [Google Scholar]
  47. Luan T. Li G. Zhang Z. Gas-phase postderivatization following solid-phase microextraction for rapid determination of trans -resveratrol in wine by gas chromatography-mass spectrometry. Anal. Chim. Acta 2000 424 1 19 25 10.1016/S0003‑2670(00)01103‑X
    [Google Scholar]
  48. Blache D. Rustan I. Durand P. Lesgards G. Loreau N. Gas chromatographic analysis of resveratrol in plasma, lipoproteins and cells after in vitro incubations. J. Chromatogr., Biomed. Appl. 1997 702 1-2 103 110 10.1016/S0378‑4347(97)00383‑6 9449561
    [Google Scholar]
  49. Soleas G.J. Goldberg D.M. Diamandis E.P. Karumanchiri A. Yan J. Ng E. A derivatized gas chromatographic-mass spectrometric method for the analysis of both isomers of resveratrol in juice and wine. Am. J. Enol. Vitic. 1995 46 3 346 352 10.5344/ajev.1995.46.3.346
    [Google Scholar]
  50. Goldberg D.M. Yanagawa R. Soleas T.T. Direct injection gas chromatographic mass spectrometric assay for trans-resveratrol. Anal. Chem. 1998 70 7 1336 1341 10.1021/ac00094a017
    [Google Scholar]
  51. Roxana Bancuta O. Chilian A. Bancuta I. Setnescu R. Setnescu T. Mariana Ion R. Thermal characterization of resveratrol. Rev. Chim 2018 69 6 1346 1351 10.37358/RC.18.6.6322
    [Google Scholar]
  52. Fiod Riccio B.V. Fonseca-Santos B. Colerato Ferrari P. Chorilli M. Characteristics, biological properties and analytical methods of trans-resveratrol: A review. Crit. Rev. Anal. Chem. 2020 50 4 339 358 10.1080/10408347.2019.1637242 31353930
    [Google Scholar]
  53. Gonçalves J. Câmara J.S. New method for determination of (E)‐resveratrol in wine based on microextraction using packed sorbent and ultra‐performance liquid chromatography. J. Sep. Sci. 2011 34 18 2376 2384 10.1002/jssc.201100336 21805631
    [Google Scholar]
  54. Wang Y. Catana F. Yang Y. Roderick R. van Breemen R.B. An LC-MS method for analyzing total resveratrol in grape juice, cranberry juice, and in wine. J. Agric. Food Chem. 2002 50 3 431 435 10.1021/jf010812u 11804508
    [Google Scholar]
  55. Gomes S.A.S.S. Nogueira J.M.F. Rebelo M.J.F. An amperometric biosensor for polyphenolic compounds in red wine. Biosens. Bioelectron. 2004 20 6 1211 1216 10.1016/j.bios.2004.05.013 15556369
    [Google Scholar]
  56. Fayazbakhsh F. Hataminia F. Eslam H.M. Ajoudanian M. Kharrazi S. Sharifi K. Ghanbari H. Evaluating the antioxidant potential of resveratrol-gold nanoparticles in preventing oxidative stress in endothelium on a chip. Sci. Rep. 2023 13 1 21344 10.1038/s41598‑023‑47291‑6 38049439
    [Google Scholar]
  57. Brown V.A. Patel K.R. Viskaduraki M. Crowell J.A. Perloff M. Booth T.D. Vasilinin G. Sen A. Schinas A.M. Piccirilli G. Brown K. Steward W.P. Gescher A.J. Brenner D.E. Repeat dose study of the cancer chemopreventive agent resveratrol in healthy volunteers: Safety, pharmacokinetics, and effect on the insulin-like growth factor axis. Cancer Res. 2010 70 22 9003 9011 10.1158/0008‑5472.CAN‑10‑2364 20935227
    [Google Scholar]
  58. Salehi B. Mishra A.P. Nigam M. Sener B. Kilic M. Sharifi-Rad M. Fokou P.V.T. Martins N. Sharifi-Rad J. Resveratrol: A double-edged sword in health benefits. Biomedicines 2018 6 3 91 10.3390/biomedicines6030091 30205595
    [Google Scholar]
  59. Singh G. Resveratrol: Nanocarrier-based delivery systems to enhance its therapeutic potential. Nanomedicine 2020 15 28 2801 2817 10.2217/nnm‑2020‑0289 33191840
    [Google Scholar]
/content/journals/aiaamc/10.2174/0118715230403013250901204059
Loading
/content/journals/aiaamc/10.2174/0118715230403013250901204059
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: Reverse phase HPLC ; HPTLC ; gas chromatography ; UV spectroscopy ; LC-MS/MS
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test