Skip to content
2000
image of Isolation, Characterization, Molecular Docking, and Antioxidant Evaluation of Esculetin Derived from Cichorium intybus Seeds

Abstract

Introduction

a biennial plant belonging to the Asteraceae family, has been widely utilized in traditional Indian medicine for its tonic, anti-acne, anti-inflammatory, antioxidant, and hepatoprotective properties. Despite its known medicinal benefits, the bioactive compounds responsible for these activities require further exploration to validate their therapeutic potential. Our aim is to investigate the molecular docking interactions and antioxidant potential of an isolated bioactive compound from Cichorium intybus seeds, with a focus on its role in mitigating oxidative stress and inflammation in the liver.

Methods

The compound was isolated using ethanol extraction, followed by phytochemical screening, TLC, column chromatography, and identification through FTIR, NMR, and mass spectroscopy. Molecular docking studies were conducted using Schrödinger Suite to analyze interactions with PPARα. Antioxidant activity was evaluated using DPPH and ABTS radical scavenging assays, with results compared through Trolox Equivalent Antioxidant Capacity (TEAC) values.

Results

Esculetin, the isolated compound, exhibited strong binding affinity with PPARα (XP GScore: -7.0 kcal/mol). Antioxidant assays showed moderate activity, with DPPH radical scavenging activity (RSA) of 10.37% and ABTS RSA of 7.445%. The TEAC values were 13.23 μmol/mg and 21.930 μmol/mg, respectively, indicating its potential antioxidant efficacy.

Discussion

Esculetin from showed moderate antioxidant activity and strong PPARα binding, indicating its potential as a therapeutic agent. These findings align with existing research but require validation through in vivo studies to confirm efficacy and elucidate biological mechanisms.

Conclusion

Esculetin demonstrates significant potential as a bioactive antioxidant and anti-inflammatory agent, supporting its relevance for further pharmacological and therapeutic investigations.

Loading

Article metrics loading...

/content/journals/aiaamc/10.2174/0118715230393322250911114129
2025-10-03
2025-12-05
Loading full text...

Full text loading...

References

  1. Ahmad R. Mujeeb M. Anwar F. Ahmad A. Development of quality standards and phytochemical investigation of cichorium intybus L. Seeds. World J. Pharm. Sci. 2015 3 1925 1933
    [Google Scholar]
  2. Khalid A. Shahid S. Khan S.A. Kanwal S. Yaqoob A. Rasool Z.G. Rizwan K. Antioxidant activity and hepatoprotective effect of Cichorium intybus (Kasni) seed extract against carbon tetrachloride-induced liver toxicity in rats. Trop. J. Pharm. Res. 2018 17 8 1531 10.4314/tjpr.v17i8.10
    [Google Scholar]
  3. Khan A. Khan A.A. Samreen S. Irfan M. Assessment of Sodium Chloride (NaCl) induced salinity on the growth and yield parameters of cichorium intybus l. Nat. Environ. Pollut. Technol 2023 22 2 845 852 10.46488/NEPT.2023.v22i02.026
    [Google Scholar]
  4. Ghaffari A. Rafraf M. Navekar R. Asghari-Jafarabadi M. Effects of turmeric and chicory seed supplementation on antioxidant and inflammatory biomarkers in patients with non-alcoholic fatty liver disease (NAFLD). Adv. Integr. Med. 2018 5 3 89 95 10.1016/j.aimed.2018.01.002
    [Google Scholar]
  5. Zhang R. Zhu X. Bai H. Ning K. Network pharmacology databases for traditional Chinese medicine: Review and assessment. Front. Pharmacol. 2019 10 123 10.3389/fphar.2019.00123 30846939
    [Google Scholar]
  6. Tendulkar M. Tendulkar R. Dhanda P.S. Yadav A. Jain M. Kaushik P. Clinical potential of sensory neurites in the heart and their role in decision-making. Front. Neurosci. 2024 17 1308232 10.3389/fnins.2023.1308232 38415053
    [Google Scholar]
  7. Kozieł S.; Wojtala, D.; Szmitka, M.; Sawka, J.; Komarnicka, U.K. Can Mn coordination compounds be good candidates for medical applications? Frontiers in Chemical Biology 2024 3 1337372 10.3389/fchbi.2024.1337372
    [Google Scholar]
  8. shaikh, T.; Rub, R.A.; Sasikumar, S. Antimicrobial screening of Cichorium intybus seed extracts. Arab. J. Chem. 2016 9 S1569 S1573 10.1016/j.arabjc.2012.04.012
    [Google Scholar]
  9. Farag R.S. Abdel-Latif M.S. Abd El Baky H.H. Tawfeek L.S. Phytochemical screening and antioxidant activity of some medicinal plants’ crude juices. Biotechnol. Rep. 2020 28 e00536 10.1016/j.btre.2020.e00536 33088732
    [Google Scholar]
  10. Zahoor I. Anjum N. Ganaie T.A. Allai F.M. Al-Ghamdi A.A. Abbasi A.M. Effect of hybrid drying technique on non-traditional Chicory (Cichorium intybus L.) herb: Phytochemical, antioxidant characteristics, and optimization of process conditions. Front. Sustain. Food Syst. 2022 6 10.3389/fsufs.2022.1002396
    [Google Scholar]
  11. Banothu V. Neelagiri C. Adepally U. Lingam J. Bommareddy K. Phytochemical screening and evaluation of in vitro antioxidant and antimicrobial activities of the indigenous medicinal plant Albizia odoratissima. Pharm. Biol. 2017 55 1 1155 1161 10.1080/13880209.2017.1291694 28219296
    [Google Scholar]
  12. Mailu J.K. Nguta J.M. Mbaria J.M. Okumu M.O. Qualitative and quantitative phytochemical composition, antimicrobial activity, and brine shrimp cytotoxicity of different solvent extracts of Acanthus polystachyus, Keetia gueinzii, and Rhynchosia elegans. Future J. Pharm. Sci. 2021 7 1 195 10.1186/s43094‑021‑00342‑z
    [Google Scholar]
  13. Ugwu C.E. Suru S.M. Medicinal plants with hepatoprotective potentials against carbon tetrachloride-induced toxicity: A review. Egypt Liver J. 2021 11 1 88 10.1186/s43066‑021‑00161‑0
    [Google Scholar]
  14. Yan M. Zhang Z. Liu Y. Difference analysis of different parts of chicory based on HPLC fingerprint and multi-component content determination. Chin. Herb. Med. 2022 14 2 317 323 10.1016/j.chmed.2022.01.006 36117663
    [Google Scholar]
  15. Amatjan M. Li N. He P. Zhang B. Mai X. Jiang Q. Xie H. Shao X. A novel approach based on gut microbiota analysis and network pharmacology to explain the mechanisms of action of cichorium intybus l. formula in the improvement of hyperuricemic nephropathy in Rats. Drug Des. Devel. Ther. 2023 17 107 128 10.2147/DDDT.S389811 36712944
    [Google Scholar]
  16. Abdel Raoof G.F. Abdelfatah Elsayed, M Cytotoxic activity, molecular docking study and phytochemical investigation on cichorium intybus herb. Egypt. J. Chem. 2020 64 2 10.21608/ejchem.2020.44299.2896
    [Google Scholar]
  17. Sinkovič L.; Jamnik, P.; Korošec, M.; Vidrih, R.; Meglič V. In-vitro and in-vivo antioxidant assays of chicory plants (Cichorium intybus L.) as influenced by organic and conventional fertilisers. BMC Plant Biol. 2020 20 1 36 10.1186/s12870‑020‑2256‑2 31959114
    [Google Scholar]
  18. Nuryandani E. Kurnianto D. Jasmadi J. Sefrienda A.R. Novitasari E. Apriyati E. Wanita Y.P. Indrasari S.D. Sunaryanto R. Tjokrokusumo D. Yani A. Suryaningtyas I.T. Andriana Y. Phytotoxic and cytotoxic effects, antioxidant potentials, and phytochemical constituents of stevia rebaudiana leaves. Scientifica 2024 2024 1 2200993 10.1155/2024/2200993 38974771
    [Google Scholar]
  19. Chakma A. Afrin F. Rasul M.G. Maeda H. Yuan C. Shah A.K.M.A. Effects of extraction techniques on antioxidant and antibacterial activity of stevia (Stevia rebaudiana Bertoni) leaf extracts. Food. Chem. Adv. 2023 3 100494 10.1016/j.focha.2023.100494
    [Google Scholar]
  20. Keshavarzi A. Akrami R. Zarshenas M.M. Zareie S. Ghadimi T. Najafi A. Rostami Chijan M. Dehghan A. Zarenezhad E. Evaluation of the effect of cichorium intybus l. on the liver enzymes in burn patients: a randomized double-blind clinical trial. Int. J. Clin. Pract. 2024 2024 1 7 10.1155/2024/1016247 38239768
    [Google Scholar]
  21. Deyalage S.T. Wickramasinghe I. Amarasinghe N. Thilakarathna G. Influence of cooking methods on antioxidant activities of selected leafy vegetables gymnema lactiferum, wattakaka volubilis, and argyreia populifolia in Sri Lanka. Int. J. Food Sci. 2021 2021 1 8 10.1155/2021/6660308 34124235
    [Google Scholar]
  22. Abbas Z.K. Saggu S. Sakeran M.I. Zidan N. Rehman H. Ansari A.A. Phytochemical, antioxidant and mineral composition of hydroalcoholic extract of chicory (Cichorium intybus L.) leaves. Saudi J. Biol. Sci. 2015 22 3 322 326 10.1016/j.sjbs.2014.11.015 25972754
    [Google Scholar]
  23. Nwafor I.C. Shale K. Achilonu M.C. Chemical Composition and nutritive benefits of chicory (cichorium intybus) as an ideal complementary and/or alternative livestock feed supplement. ScientificWorldJournal 2017 2017 1 11 10.1155/2017/7343928 29387778
    [Google Scholar]
  24. Aisa H.A. Xin X. Tang D. Chemical constituents and their pharmacological activities of plants from Cichorium genus. Chin. Herb. Med. 2020 12 3 224 236 10.1016/j.chmed.2020.05.001 36119016
    [Google Scholar]
  25. Samreen S. Khan E. Ahmad I.Z. Molecular docking and molecular dynamics simulation analysis of bioactive compounds of Cichorium intybus L. seed against hepatocellular carcinoma. J. Biomol. Struct. Dyn. 2024 42 17 9133 9144 10.1080/07391102.2023.2250465 37621217
    [Google Scholar]
  26. Tabassum R. Ashfaq M. Tahir T. Oku H. DPPH and nitric oxide free radical scavenging potential of phenyl quinoline derivatives and their transition metal complexes. J. Mol. Struct. 2024 1310 134058 10.1016/j.molstruc.2022.134058
    [Google Scholar]
  27. Huang X. Wang N. Ma Y. Liu X. Guo H. Song L. Zhao Q. Hai D. Cheng Y. Bai G. Guo Q. Flaxseed polyphenols: Effects of varieties on its composition and antioxidant capacity. Food Chem. X 2024 23 101597 10.1016/j.fochx.2024.101597 39071936
    [Google Scholar]
/content/journals/aiaamc/10.2174/0118715230393322250911114129
Loading
/content/journals/aiaamc/10.2174/0118715230393322250911114129
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: flavonoids ; Cichorium intybus ; molecular docking ; phytoconstituents ; antioxidant activity
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test