Skip to content
2000
image of Developments in the Management Strategies for Allergy: Advances in Artificial Intelligence and Future Perspectives

Abstract

Introduction

Artificial intelligence (AI) is rapidly transforming biomedical research by offering advanced tools to analyse complex datasets. In the field of allergy studies, however, the translation of AI-generated insights into clinical practice remains limited and underutilised.

Method

This review critically discussed the current applications of AI in allergy studies. It focuses on the methodological foundations of AI, including machine learning and clustering algorithms, and assesses their practical benefits and limitations. Representative case studies are explored to demonstrate real-world applications, and challenges in data quality, integration, and algorithmic fairness are examined.

Results

AI techniques have shown promise in tasks such as disease phenotyping and patient stratification within allergy research. Case studies reveal that AI can uncover immunological insights and support precision medicine approaches. However, the field faces challenges, including fragmented data sources, algorithmic bias, and the limited presence of therapeutic AI tools in clinical practice.

Discussion

Despite the demonstrated potential, several barriers hinder the broader adoption of AI in allergy care. These include the need for high-quality, standardised datasets, ethical oversight, and transparent methodologies. The review highlights the importance of these factors in ensuring the reliability, reproducibility, and equity of AI-driven interventions in allergy research.

Conclusion

AI holds significant promise for improving diagnostic accuracy and enabling personalised treatment strategies in allergy care. Realising its full potential will require robust frameworks, ethical governance, and interdisciplinary collaboration to overcome current limitations and drive clinical translation.

Loading

Article metrics loading...

/content/journals/aiaamc/10.2174/0118715230389406250906142050
2025-09-16
2025-10-21
Loading full text...

Full text loading...

References

  1. Joshi G. Jain A. Araveeti S.R. Adhikari S. Garg H. Bhandari M. FDA-approved artificial intelligence and machine learning (AI/ML)-enabled medical devices: An updated landscape. Electronics 2024 13 3 498 10.3390/electronics13030498
    [Google Scholar]
  2. Muehlematter U.J. Daniore P. Vokinger K.N. Approval of artificial intelligence and machine learning-based medical devices in the USA and Europe (2015–20): A comparative analysis. Lancet Digit Health 2021 3 3 e195 e203 10.1016/S2589‑7500(20)30292‑2 33478929
    [Google Scholar]
  3. Zhu S. Gilbert M. Chetty I. Siddiqui F. The 2021 landscape of FDA-approved artificial intelligence/machine learning-enabled medical devices: An analysis of the characteristics and intended use. Int J Med Inform 2022 165 104828 10.1016/j.ijmedinf.2022.104828 35780651
    [Google Scholar]
  4. Jiang F. Jiang Y. Zhi H. Dong Y. Li H. Ma S. Wang Y. Dong Q. Shen H. Wang Y. Artificial intelligence in healthcare: Past, present and future. Stroke Vasc Neurol 2017 2 4 230 243 10.1136/svn‑2017‑000101 29507784
    [Google Scholar]
  5. Seetharam K. Shrestha S. Sengupta P.P. Artificial intelligence in cardiovascular medicine. Curr Treat Options Cardiovasc Med 2019 21 5 25 10.1007/s11936‑019‑0728‑1 31089906
    [Google Scholar]
  6. Uddin S. Khan A. Hossain M.E. Moni M.A. Comparing different supervised machine learning algorithms for disease prediction. BMC Med Inform Decis Mak 2019 19 1 281 10.1186/s12911‑019‑1004‑8 31864346
    [Google Scholar]
  7. Bzdok D. Altman N. Krzywinski M. Statistics versus machine learning. Nat Methods 2018 15 4 233 234 10.1038/nmeth.4642 30100822
    [Google Scholar]
  8. Yu K.H. Beam A.L. Kohane I.S. Artificial intelligence in healthcare. Nat Biomed Eng 2018 2 10 719 731 10.1038/s41551‑018‑0305‑z 31015651
    [Google Scholar]
  9. Chang Y. Wang X. Wang J. Wu Y. Yang L. Zhu K. Chen H. Yi X. Wang C. Wang Y. Ye W. Zhang Y. Chang Y. Yu P.S. Yang Q. Xie X. A survey on evaluation of large language models. ACM Trans Intell Syst Technol 2024 15 3 1 45 10.1145/3641289
    [Google Scholar]
  10. Shahinfar S. Meek P. Falzon G. “How many images do I need?” Understanding how sample size per class affects deep learning model performance metrics for balanced designs in autonomous wildlife monitoring. Ecol Inform 2020 57 101085 10.1016/j.ecoinf.2020.101085
    [Google Scholar]
  11. Otter D.W. Medina J.R. Kalita J.K. A survey of the usages of deep learning for natural language processing. IEEE Trans Neural Netw Learn Syst 2021 32 2 604 624 10.1109/TNNLS.2020.2979670 32324570
    [Google Scholar]
  12. Shrestha A. Mahmood A. Review of deep learning algorithms and architectures. IEEE Access 2019 7 53040 53065 10.1109/ACCESS.2019.2912200
    [Google Scholar]
  13. Piccialli F. Somma V.D. Giampaolo F. Cuomo S. Fortino G. A survey on deep learning in medicine: Why, how and when? Inf Fusion 2021 66 111 137 10.1016/j.inffus.2020.09.006
    [Google Scholar]
  14. Wang F. Casalino L.P. Khullar D. Deep learning in medicine— Promise, progress, and challenges. JAMA Intern Med 2019 179 3 293 294 10.1001/jamainternmed.2018.7117 30556825
    [Google Scholar]
  15. Ting D.S.W. Cheung C.Y.L. Lim G. Tan G.S.W. Quang N.D. Gan A. Hamzah H. Garcia-Franco R. San Yeo I.Y. Lee S.Y. Wong E.Y.M. Sabanayagam C. Baskaran M. Ibrahim F. Tan N.C. Finkelstein E.A. Lamoureux E.L. Wong I.Y. Bressler N.M. Sivaprasad S. Varma R. Jonas J.B. He M.G. Cheng C.Y. Cheung G.C.M. Aung T. Hsu W. Lee M.L. Wong T.Y. Development and validation of a deep learning system for diabetic retinopathy and related eye diseases using retinal images from multiethnic populations with diabetes. JAMA 2017 318 22 2211 2223 10.1001/jama.2017.18152 29234807
    [Google Scholar]
  16. Sood A. Oroszi T. Artificial Intelligence and its scope in the treatment of diabetes. Ozean J Appl Sci 2024 14 12 3748 3774
    [Google Scholar]
  17. Das D.K. Digital technology and AI for smart sustainable cities in the global South: A critical review of literature and case studies. Urban Sci 2025 9 3 72 10.3390/urbansci9030072
    [Google Scholar]
  18. Lotter W. Diab A.R. Haslam B. Kim J.G. Grisot G. Wu E. Wu K. Onieva J.O. Boyer Y. Boxerman J.L. Wang M. Bandler M. Vijayaraghavan G.R. Gregory Sorensen A. Robust breast cancer detection in mammography and digital breast tomosynthesis using an annotation-efficient deep learning approach. Nat Med 2021 27 2 244 249 10.1038/s41591‑020‑01174‑9 33432172
    [Google Scholar]
  19. Harvey W. How Artificial Intelligence is improving human communication with the processing of natural language. EPH Int J Sci Eng 2024 10 3 56 76
    [Google Scholar]
  20. Potnis K.C. Ross J.S. Aneja S. Gross C.P. Richman I.B. Artificial intelligence in breast cancer screening: Evaluation of FDA device regulation and future recommendations. JAMA Intern Med 2022 182 12 1306 1312 10.1001/jamainternmed.2022.4969 36342705
    [Google Scholar]
  21. Gupta R Tiwari S Chaudhary P. Generative AI Techniques and Models. Generative AI: Techniques, Models and Applications Cham Springer 2025 241 45 64 10.1007/978‑3‑031‑82062‑5_3
    [Google Scholar]
  22. Ramalakshmi S. Asha G. Exploring generative AI: Models, applications, and challenges in data synthesis. Asian J Res Comput Sci 2024 17 12 123 136 10.9734/ajrcos/2024/v17i12533
    [Google Scholar]
  23. Bi Q. Goodman K.E. Kaminsky J. Lessler J. What is machine learning? A primer for the epidemiologist. Am J Epidemiol 2019 188 12 kwz189 10.1093/aje/kwz189 31509183
    [Google Scholar]
  24. Barinov L. Jairaj A. Becker M. Seymour S. Lee E. Schram A. Lane E. Goldszal A. Quigley D. Paster L. Impact of data presentation on physician performance utilizing artificial intelligence-based computer-aided diagnosis and decision support systems. J Digit Imaging 2019 32 3 408 416 10.1007/s10278‑018‑0132‑5 30324429
    [Google Scholar]
  25. Mango V.L. Sun M. Wynn R.T. Ha R. Should we ignore, follow, or biopsy? Impact of artificial intelligence decision support on breast ultrasound lesion assessment. AJR Am J Roentgenol 2020 214 6 1445 1452 10.2214/AJR.19.21872 32319794
    [Google Scholar]
  26. Lalmuanawma S. Hussain J. Chhakchhuak L. Applications of machine learning and artificial intelligence for Covid-19 (SARS-CoV-2) pandemic: A review. Chaos Solitons Fractals 2020 139 110059 10.1016/j.chaos.2020.110059 32834612
    [Google Scholar]
  27. Albahri A.S. Hamid R.A. Alwan J. Al-qays Z.T. Zaidan A.A. Zaidan B.B. Albahri A.O.S. AlAmoodi A.H. Khlaf J.M. Almahdi E.M. Thabet E. Hadi S.M. Mohammed K.I. Alsalem M.A. Al-Obaidi J.R. Madhloom H.T. Role of biological data mining and machine learning techniques in detecting and diagnosing the novel coronavirus (COVID-19): A systematic review. J Med Syst 2020 44 7 122 10.1007/s10916‑020‑01582‑x 32451808
    [Google Scholar]
  28. Kadioglu O. Saeed M. Greten H.J. Efferth T. Identification of novel compounds against three targets of SARS CoV-2 coronavirus by combined virtual screening and supervised machine learning. Comput Biol Med 2021 133 104359 10.1016/j.compbiomed.2021.104359 33845270
    [Google Scholar]
  29. Kowalewski J. Ray A. Predicting novel drugs for SARS-CoV-2 using machine learning from a >10 million chemical space. Heliyon 2020 6 8 04639 10.1016/j.heliyon.2020.e04639 32802980
    [Google Scholar]
  30. Ho T.K. Random decision forests. Proc Int Conf Doc Anal Recognit 1995 1 278 282 10.1109/ICDAR.1995.598994
    [Google Scholar]
  31. Liu K. Liu M. Tang M. Zhang C. Zhu J. XGBoost-based power grid fault prediction with feature enhancement: Application to meteorology. Comput Mater Continua 2025 82 2 2893 2908 10.32604/cmc.2024.057074
    [Google Scholar]
  32. Ke G. Meng Q. Finley T. LightGBM: A highly efficient gradient-boosting decision tree. Adv Neural Inf Process Syst 2017 30 3147 3156
    [Google Scholar]
  33. Oksel C. Haider S. Fontanella S. Frainay C. Custovic A. Classification of pediatric asthma: From phenotype discovery to clinical practice. Front Pediatr 2018 6 258 10.3389/fped.2018.00258 30298124
    [Google Scholar]
  34. Brew B.K. Chiesa F. Lundholm C. Örtqvist A. Almqvist C. A modern approach to identifying and characterizing child asthma and wheeze phenotypes based on clinical data. PLoS One 2019 14 12 0227091 10.1371/journal.pone.0227091 31887128
    [Google Scholar]
  35. Pan Y. Xue Y. Fei X. Zhao L. Han L. Su H. Lin Y. Zhou Y. Zhang Y. Xie G. Kong D. Bao W. Zhang M. PLK1 mediates the proliferation and contraction of airway smooth muscle cells and has a role in T2-High asthma with neutrophilic inflammation model. J Inflamm Res 2025 18 4381 4394 10.2147/JIR.S501645 40162075
    [Google Scholar]
  36. Odeleye O.O. Agunbiade O.D. Garber A. Nylund-Gibson K. Investigating the evolution of student attitudes toward science in a general chemistry course using latent class and latent transition analysis. J Chem Educ 2025 102 5 1745 1754 10.1021/acs.jchemed.4c01247 40386653
    [Google Scholar]
  37. Zhang Y. Song Y. Lu Y. Liu T. Yin P. Atherogenic index of plasma and cardiovascular disease risk in cardiovascular-kidney-metabolic syndrome stage 1 to 3: A longitudinal study. Front Endocrinol 2025 16 1517658 10.3389/fendo.2025.1517658 39968297
    [Google Scholar]
  38. Abdi H. Williams L.J. Principal component analysis. Wiley Interdiscip Rev Comput Stat 2010 2 4 433 459 10.1002/wics.101
    [Google Scholar]
  39. Sanchez T. Stalder S. Lamperti L. Brosse S. Frossard A. Leugger F. Rozanski R. Zong S. Manel S. Medici L. Kuhn F. Han X. Mestrot A. Albouy C. Volpi M. Pellissier L. ORDNA : Deep‐learning‐based ordination for raw environmental DNA samples. Methods Ecol Evol 2025 2041-210X.70033 10.1111/2041‑210X.70033
    [Google Scholar]
  40. Cheplygina V. de Bruijne M. Pluim J.P.W. Not-so-supervised: A survey of semi-supervised, multi-instance, and transfer learning in medical image analysis. Med Image Anal 2019 54 280 296 10.1016/j.media.2019.03.009 30959445
    [Google Scholar]
  41. Yu C. Liu J. Nemati S. Yin G. Reinforcement learning in healthcare: A survey. ACM Comput Surv 2023 55 1 1 36 10.1145/3477600
    [Google Scholar]
  42. Komorowski M. Celi L.A. Badawi O. Gordon A.C. Faisal A.A. The Artificial Intelligence Clinician learns optimal treatment strategies for sepsis in intensive care. Nat Med 2018 24 11 1716 1720 10.1038/s41591‑018‑0213‑5 30349085
    [Google Scholar]
  43. Ting D.S.W. Pasquale L.R. Peng L. Campbell J.P. Lee A.Y. Raman R. Tan G.S.W. Schmetterer L. Keane P.A. Wong T.Y. Artificial intelligence and deep learning in ophthalmology. Br J Ophthalmol 2019 103 2 167 175 10.1136/bjophthalmol‑2018‑313173 30361278
    [Google Scholar]
  44. Topol E.J. High-performance medicine: The convergence of human and artificial intelligence. Nat Med 2019 25 1 44 56 10.1038/s41591‑018‑0300‑7 30617339
    [Google Scholar]
  45. Rajpurkar P. Chen E. Banerjee O. Topol E.J. Topol E.J. AI in health and medicine. Nat Med 2022 28 1 31 38 10.1038/s41591‑021‑01614‑0 35058619
    [Google Scholar]
  46. Ching T. Himmelstein D.S. Beaulieu-Jones B.K. Kalinin A.A. Do B.T. Way G.P. Ferrero E. Agapow P.M. Zietz M. Hoffman M.M. Xie W. Rosen G.L. Lengerich B.J. Israeli J. Lanchantin J. Woloszynek S. Carpenter A.E. Shrikumar A. Xu J. Cofer E.M. Lavender C.A. Turaga S.C. Alexandari A.M. Lu Z. Harris D.J. DeCaprio D. Qi Y. Kundaje A. Peng Y. Wiley L.K. Segler M.H.S. Boca S.M. Swamidass S.J. Huang A. Gitter A. Greene C.S. Opportunities and obstacles for deep learning in biology and medicine. J R Soc Interface 2018 15 141 20170387 10.1098/rsif.2017.0387 29618526
    [Google Scholar]
  47. Ngiam K.Y. Khor I.W. Big data and machine learning algorithms for health-care delivery. Lancet Oncol 2019 20 5 e262 e273 10.1016/S1470‑2045(19)30149‑4 31044724
    [Google Scholar]
  48. Jordon J. Szpruch L. Houssiau F. Synthetic data – what, why, and how? arXiv 2022 10.48550/arxiv.2205.03257
    [Google Scholar]
  49. Shorten C. Khoshgoftaar T.M. A survey on image data augmentation for deep learning. J Big Data 2019 6 1 60 10.1186/s40537‑019‑0197‑0
    [Google Scholar]
  50. Zhuang F. Qi Z. Duan K. Xi D. Zhu Y. Zhu H. Xiong H. He Q. A comprehensive survey on transfer learning. Proc IEEE 2021 109 1 43 76 10.1109/JPROC.2020.3004555
    [Google Scholar]
  51. Bhattacharya S. Hu Z. Butte A.J. Opportunities and challenges in democratizing immunology datasets. Front Immunol 2021 12 647536 10.3389/fimmu.2021.647536 33936065
    [Google Scholar]
  52. Saha M. Patil S. Cho E. Cheng E.Y. Horng C. Chauhan D. Kangas R. McGovern R. Li A. Heer J. Froehlich J.E. Visualizing urban accessibility: Investigating multi-stakeholder perspectives through a map-based design probe study. New Orleans, LA, USA, 2022, pp. 1-14. CHI '22: Proceedings of the 2022 CHI Conference on Human Factors in Computing Systems
    [Google Scholar]
  53. Alvarez-Romero C. Martínez-García A. Bernabeu-Wittel M. Parra-Calderón C.L. Health data hubs: An analysis of existing data governance features for research. Health Res Policy Syst 2023 21 1 70 10.1186/s12961‑023‑01026‑1 37430347
    [Google Scholar]
  54. Rieke N Hancox J Li W The future of digital health with federated learning. npj Digit Med 2020 3 119 10.1038/s41746‑020‑00323‑1
    [Google Scholar]
  55. Warnat-Herresthal S. Schultze H. Shastry K.L. Manamohan S. Mukherjee S. Garg V. Sarveswara R. Händler K. Pickkers P. Aziz N.A. Ktena S. Tran F. Bitzer M. Ossowski S. Casadei N. Herr C. Petersheim D. Behrends U. Kern F. Fehlmann T. Schommers P. Lehmann C. Augustin M. Rybniker J. Altmüller J. Mishra N. Bernardes J.P. Krämer B. Bonaguro L. Schulte-Schrepping J. De Domenico E. Siever C. Kraut M. Desai M. Monnet B. Saridaki M. Siegel C.M. Drews A. Nuesch-Germano M. Theis H. Heyckendorf J. Schreiber S. Kim-Hellmuth S. Balfanz P. Eggermann T. Boor P. Hausmann R. Kuhn H. Isfort S. Stingl J.C. Schmalzing G. Kuhl C.K. Röhrig R. Marx G. Uhlig S. Dahl E. Müller-Wieland D. Dreher M. Marx N. Nattermann J. Skowasch D. Kurth I. Keller A. Bals R. Nürnberg P. Rieß O. Rosenstiel P. Netea M.G. Theis F. Mukherjee S. Backes M. Aschenbrenner A.C. Ulas T. Angelov A. Bartholomäus A. Becker A. Bezdan D. Blumert C. Bonifacio E. Bork P. Boyke B. Blum H. Clavel T. Colome-Tatche M. Cornberg M. De La Rosa Velázquez I.A. Diefenbach A. Dilthey A. Fischer N. Förstner K. Franzenburg S. Frick J-S. Gabernet G. Gagneur J. Ganzenmueller T. Gauder M. Geißert J. Goesmann A. Göpel S. Grundhoff A. Grundmann H. Hain T. Hanses F. Hehr U. Heimbach A. Hoeper M. Horn F. Hübschmann D. Hummel M. Iftner T. Iftner A. Illig T. Janssen S. Kalinowski J. Kallies R. Kehr B. Keppler O.T. Klein C. Knop M. Kohlbacher O. Köhrer K. Korbel J. Kremsner P.G. Kühnert D. Landthaler M. Li Y. Ludwig K.U. Makarewicz O. Marz M. McHardy A.C. Mertes C. Münchhoff M. Nahnsen S. Nöthen M. Ntoumi F. Overmann J. Peter S. Pfeffer K. Pink I. Poetsch A.R. Protzer U. Pühler A. Rajewsky N. Ralser M. Reiche K. Ripke S. da Rocha U.N. Saliba A-E. Sander L.E. Sawitzki B. Scheithauer S. Schiffer P. Schmid-Burgk J. Schneider W. Schulte E-C. Sczyrba A. Sharaf M.L. Singh Y. Sonnabend M. Stegle O. Stoye J. Vehreschild J. Velavan T.P. Vogel J. Volland S. von Kleist M. Walker A. Walter J. Wieczorek D. Winkler S. Ziebuhr J. Breteler M.M.B. Giamarellos-Bourboulis E.J. Kox M. Becker M. Cheran S. Woodacre M.S. Goh E.L. Schultze J.L. Swarm Learning for decentralized and confidential clinical machine learning. Nature 2021 594 7862 265 270 10.1038/s41586‑021‑03583‑3 34040261
    [Google Scholar]
  56. Markus AF Kors JA Rijnbeek PR The role of explainability in creating trustworthy artificial intelligence for health care: A comprehensive survey of the terminology, design choices, and evaluation strategies. J Biomed Inform 2021 113 103655 10.1016/j.jbi.2020.103655
    [Google Scholar]
  57. Aggarwal N. Ahmed M. Basu S. Curtin J.J. Evans B.J. Matheny M.E. Nundy S. Sendak M.P. Shachar C. Shah R.U. Thadaney-Israni S. Advancing artificial intelligence in health settings outside the hospital and clinic. NAM Perspect 2020 2020 10 31478 10.31478/202011f 35291747
    [Google Scholar]
  58. Hassija V. Chamola V. Mahapatra A. Singal A. Goel D. Huang K. Scardapane S. Spinelli I. Mahmud M. Hussain A. Interpreting black-box models: A review on explainable artificial intelligence. Cognit Comput 2024 16 1 45 74 10.1007/s12559‑023‑10179‑8
    [Google Scholar]
  59. Amann J. Blasimme A. Vayena E. Frey D. Madai V.I. Explainability for artificial intelligence in healthcare: A multidisciplinary perspective. BMC Med Inform Decis Mak 2020 20 1 310 10.1186/s12911‑020‑01332‑6 33256715
    [Google Scholar]
  60. Nazar M. Alam M.M. Yafi E. Su’ud M.M. A systematic review of human-computer interaction and explainable artificial intelligence in healthcare with artificial intelligence techniques. IEEE Access 2021 9 153316 153348 10.1109/ACCESS.2021.3127881
    [Google Scholar]
  61. Tjoa E. Guan C. A survey on explainable artificial intelligence (XAI): Toward medical XAI. IEEE Trans Neural Netw Learn Syst 2021 32 11 4793 4813 10.1109/TNNLS.2020.3027314 33079674
    [Google Scholar]
  62. Min J. Tu J. Xu C. Lukas H. Shin S. Yang Y. Solomon S.A. Mukasa D. Gao W. Skin-interfaced wearable sweat sensors for precision medicine. Chem Rev 2023 123 8 5049 5138 10.1021/acs.chemrev.2c00823 36971504
    [Google Scholar]
  63. Ribeiro M.T. Singh S. Guestrin C. Why should I trust you? Explaining the predictions of any classifier. San Diego, California, June 2016, pp. 97-101. Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Demonstrations 10.18653/v1/N16‑3020
    [Google Scholar]
  64. Zhou B. Khosla A. Lapedriza A. Oliva A. Torralba A. Learning deep features for discriminative localization. Proc IEEE Conf Comput Vis Pattern Recognit 2016 2921 2929
    [Google Scholar]
  65. Zama D. Paccapelo A. Betti L. Manieri E. Paglione M. Rinaldi M. Dondi A. Battelli E. Biagi C. Marchegiani Rizzolli C. Manzoni P. Piglia G. Nicolini G. Lanari M. Carbone C. The influence of air pollutants on the risk of emergency department presentations of infants with bronchiolitis in an European air quality hotspot. Pediatr Allergy Immunol 2025 36 4 70077 10.1111/pai.70077 40171967
    [Google Scholar]
  66. Dughmi S. PAC Learning is just Bipartite Matching (Sort of). arXiv 2025
    [Google Scholar]
  67. Kaur H. Kumari V. Predictive modelling and analytics for diabetes using a machine learning approach. Applied Computing and Informatics 2022 18 1/2 90 100 10.1016/j.aci.2018.12.004
    [Google Scholar]
  68. Alowais S.A. Alghamdi S.S. Alsuhebany N. Alqahtani T. Alshaya A.I. Almohareb S.N. Aldairem A. Alrashed M. Bin Saleh K. Badreldin H.A. Al Yami M.S. Al Harbi S. Albekairy A.M. Revolutionizing healthcare: The role of artificial intelligence in clinical practice. BMC Med Educ 2023 23 1 689 10.1186/s12909‑023‑04698‑z 37740191
    [Google Scholar]
  69. Rajkomar A. Dean J. Kohane I. Machine learning in medicine. N Engl J Med 2019 380 14 1347 1358 10.1056/NEJMra1814259 30943338
    [Google Scholar]
  70. Patel D. Hall G.L. Broadhurst D. Smith A. Schultz A. Foong R.E. Does machine learning have a role in the prediction of asthma in children? Paediatr Respir Rev 2022 41 51 60 10.1016/j.prrv.2021.06.002 34210588
    [Google Scholar]
  71. Berisha V. Krantsevich C. Hahn P.R. Hahn S. Dasarathy G. Turaga P. Liss J. Digital medicine and the curse of dimensionality. NPJ Digit Med 2021 4 1 153 10.1038/s41746‑021‑00521‑5 34711924
    [Google Scholar]
  72. IBM's Watson recommended “unsafe and incorrect” cancer treatments – STAT. Available from:https://www.statnews.com/2018/07/25/ibm-watson-recommended-unsafe-incorrect-treatments/ 2018
  73. Ebrahimian S. Kalra M.K. Agarwal S. Bizzo B.C. Elkholy M. Wald C. Allen B. Dreyer K.J. FDA-regulated AI algorithms: Trends, strengths, and gaps of validation studies. Acad Radiol 2022 29 4 559 566 10.1016/j.acra.2021.09.002 34969610
    [Google Scholar]
  74. Hussain W. Mabrok M. Gao H. Rabhi F.A. Rashed E.A. Revolutionising healthcare with artificial intelligence: A bibliometric analysis of 40 years of progress in health systems. Digit Health 2024 10 20552076241258757 10.1177/20552076241258757 38817839
    [Google Scholar]
  75. Price W.N. Cohen I.G. Privacy in the age of medical big data. Nat Med 2019 25 1 37 43 10.1038/s41591‑018‑0272‑7 30617331
    [Google Scholar]
  76. Liu X. Cruz Rivera S. Moher D. Calvert M.J. Denniston A.K. Ashrafian H. Beam A.L. Chan A-W. Collins G.S. Deeks A.D.J.J. ElZarrad M.K. Espinoza C. Esteva A. Faes L. Ferrante di Ruffano L. Fletcher J. Golub R. Harvey H. Haug C. Holmes C. Jonas A. Keane P.A. Kelly C.J. Lee A.Y. Lee C.S. Manna E. Matcham J. McCradden M. Monteiro J. Mulrow C. Oakden-Rayner L. Paltoo D. Panico M.B. Price G. Rowley S. Savage R. Sarkar R. Vollmer S.J. Yau C. Reporting guidelines for clinical trial reports for interventions involving artificial intelligence: The CONSORT-AI extension. Lancet Digit Health 2020 2 10 e537 e548 10.1016/S2589‑7500(20)30218‑1 33328048
    [Google Scholar]
  77. Rajpurkar P. Lungren M.P. The current and future state of AI interpretation of medical images. N Engl J Med 2023 388 21 1981 1990 10.1056/NEJMra2301725 37224199
    [Google Scholar]
  78. Plana D. Shung D.L. Grimshaw A.A. Saraf A. Sung J.J.Y. Kann B.H. Randomized clinical trials of machine learning interventions in health care: A systematic review. JAMA Netw Open 2022 5 9 2233946 10.1001/jamanetworkopen.2022.33946 36173632
    [Google Scholar]
  79. Sahiner B. Chen W. Samala R.K. Petrick N. Data drift in medical machine learning: Implications and potential remedies. Br J Radiol 2023 96 1150 20220878 10.1259/bjr.20220878 36971405
    [Google Scholar]
  80. The impact of the General Data Protection Regulation (GDPR) on artificial intelligence. Available from: 2023
  81. Corti C. Cobanaj M. Dee E.C. Criscitiello C. Tolaney S.M. Celi L.A. Curigliano G. Artificial intelligence in cancer research and precision medicine: Applications, limitations and priorities to drive transformation in the delivery of equitable and unbiased care. Cancer Treat Rev 2023 112 102498 10.1016/j.ctrv.2022.102498 36527795
    [Google Scholar]
  82. Torkzadehmahani R. Nasirigerdeh R. Blumenthal D.B. Kacprowski T. List M. Matschinske J. Spaeth J. Wenke N.K. Baumbach J. Privacy-preserving artificial intelligence techniques in biomedicine. Methods Inf Med 2022 61 S 01 e12 e27 10.1055/s‑0041‑1740630 35062032
    [Google Scholar]
  83. Torfi A. Fox E.A. Reddy C.K. Differentially private synthetic medical data generation using convolutional GANs. Inf Sci 2022 586 485 500 10.1016/j.ins.2021.12.018
    [Google Scholar]
  84. Jordon J. Yoon J. van der Schaar M. PATE- GAN: Generating synthetic data with differential privacy guarantees. Available from:https://openreview.net/forum?id=S1zk9iRqF7 2019
    [Google Scholar]
  85. Mehrabi N. Morstatter F. Saxena N. Lerman K. Galstyan A. A survey on bias and fairness in machine learning. ACM Comput Surv 2022 54 6 1 35 10.1145/3457607
    [Google Scholar]
  86. Patil N.S. Ranjan A. Gaurav Singh A. The current regulatory environment for software used in medical devices: A need for refined international strategies. Appl Drug Res Clin Trials Regul Aff 2024 10 1 230124226040 10.2174/0126673371279532240102113651
    [Google Scholar]
  87. Cirillo D. Catuara-Solarz S. Morey C. Guney E. Subirats L. Mellino S. Gigante A. Valencia A. Rementeria M.J. Chadha A.S. Mavridis N. Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ Digit Med 2020 3 1 81 10.1038/s41746‑020‑0288‑5 32529043
    [Google Scholar]
  88. Artificial Intelligence in Healthcare 2022. Available from:https://data.europa.eu/doi/10.2861/568473 2022 10.2861/568473
  89. Dael V.J. Ekechi C. Gardner A. Addressing racial and ethnic inequities in data-driven health technologies. Available from:http://hdl.handle.net/10044/1/94902 2022 10.25561/94902
  90. Boni A. York J. Boyette N. Im D. Seeking life science inno-vation opportunities and beyond: The art of blending science, medicine, and business. Med Res Arch 2023 11 2 10.18103/mra.v11i2.3443
    [Google Scholar]
  91. Daugherty S.L. Blair I.V. Havranek E.P. Furniss A. Dickinson L.M. Karimkhani E. Main D.S. Masoudi F.A. Implicit gender bias and the use of cardiovascular tests among cardiologists. J Am Heart Assoc 2017 6 12 006872 10.1161/JAHA.117.006872 29187391
    [Google Scholar]
  92. Bradshaw T.J. Boellaard R. Dutta J. Jha A.K. Jacobs P. Li Q. Liu C. Sitek A. Saboury B. Scott P.J.H. Slomka P.J. Sunderland J.J. Wahl R.L. Yousefirizi F. Zuehlsdorff S. Rahmim A. Buvat I. Nuclear medicine and artificial intelligence: Best practices for algorithm development. J Nucl Med 2022 63 4 500 510 10.2967/jnumed.121.262567 34740952
    [Google Scholar]
  93. Wolff R.F. Moons K.G.M. Riley R.D. Whiting P.F. Westwood M. Collins G.S. Reitsma J.B. Kleijnen J. Mallett S. PROBAST: A tool to assess the risk of bias and applicability of prediction model studies. Ann Intern Med 2019 170 1 51 58 10.7326/M18‑1376 30596875
    [Google Scholar]
  94. van Breugel M. Fehrmann R.S.N. Bügel M. Rezwan F.I. Holloway J.W. Nawijn M.C. Fontanella S. Custovic A. Koppelman G.H. Current state and prospects of artificial intelligence in allergy. Allergy 2023 78 10 2623 2643 10.1111/all.15849 37584170
    [Google Scholar]
  95. Zhang B.H. Lemoine B. Mitchell M. Mitigating unwanted biases adversarial learning. AIES 2018 18 335 340 10.1145/3278721.3278779
    [Google Scholar]
  96. Lee M.S.A. Singh J. The landscape and gaps in open-source fairness toolkits. Conf Hum Factors Comput Syst Proc 2021 6 1 13 10.1145/3411764.3445261
    [Google Scholar]
  97. Bellamy R.K.E. Dey K. Hind M. Hoffman S.C. Houde S. Kannan K. Lohia P. Martino J. Mehta S. Mojsilovic A. Nagar S. Ramamurthy K.N. Richards J. Saha D. Sattigeri P. Singh M. Varshney K.R. Zhang Y. AI Fairness 360: An extensible toolkit for detecting and mitigating algorithmic bias. IBM J Res Develop 2019 63 4/5 4:1 4:15 10.1147/JRD.2019.2942287
    [Google Scholar]
  98. Unal Z. Berson I. Berson M. A hands-on workshop on AI in education for faculty and researchers. Orlando, FL, USA, 2025, pp. 962-969.
    [Google Scholar]
  99. Verdicchio M. Perin A. When doctors and AI interact: On human responsibility for artificial risks. Philos Technol 2022 35 1 11 10.1007/s13347‑022‑00506‑6 35223383
    [Google Scholar]
  100. Kumar P. Chauhan S. Awasthi L.K. Eng Appl Artif Intell 2023 120 105894 10.1016/j.engappai.2023.105894
    [Google Scholar]
  101. Emanuel E.J. Wachter R.M. Artificial intelligence in health care: Will the value match the hype? JAMA 2019 321 23 2281 2282 10.1001/jama.2019.4914 31107500
    [Google Scholar]
  102. Khoury P. Srinivasan R. Kakumanu S. Ochoa S. Keswani A. Sparks R. Rider N.L. A framework for augmented intelligence in allergy and immunology practice and research — A work group report of the AAAAI health informatics, technology, and education committee. J Allergy Clin Immunol Pract 2022 10 5 1178 1188 10.1016/j.jaip.2022.01.047 35724763
    [Google Scholar]
  103. Kelly C.J. Karthikesalingam A. Suleyman M. Corrado G. King D. Key challenges for delivering clinical impact with artificial intelligence. BMC Med 2019 17 1 195 10.1186/s12916‑019‑1426‑2 31665002
    [Google Scholar]
  104. Roberts M. Driggs D. Thorpe M. Gilbey J. Yeung M. Ursprung S. Aviles-Rivero A.I. Etmann C. McCague C. Beer L. Weir-McCall J.R. Teng Z. Gkrania-Klotsas E. Ruggiero A. Korhonen A. Jefferson E. Ako E. Langs G. Gozaliasl G. Yang G. Prosch H. Preller J. Stanczuk J. Tang J. Hofmanninger J. Babar J. Sánchez L.E. Thillai M. Gonzalez P.M. Teare P. Zhu X. Patel M. Cafolla C. Azadbakht H. Jacob J. Lowe J. Zhang K. Bradley K. Wassin M. Holzer M. Ji K. Ortet M.D. Ai T. Walton N. Lio P. Stranks S. Shadbahr T. Lin W. Zha Y. Niu Z. Rudd J.H.F. Sala E. Schönlieb C-B. Common pitfalls and recommendations for using machine learning to detect and prognosticate for COVID-19 using chest radiographs and CT scans. Nat Mach Intell 2021 3 3 199 217 10.1038/s42256‑021‑00307‑0
    [Google Scholar]
  105. Varghese J. Artificial intelligence in medicine: Chances and challenges for wide clinical adoption. Visc Med 2020 36 6 443 449 10.1159/000511930 33442551
    [Google Scholar]
  106. Vasey B. Nagendran M. Campbell B. Clifton D.A. Collins G.S. Denaxas S. Denniston A.K. Faes L. Geerts B. Ibrahim M. Liu X. Mateen B.A. Mathur P. McCradden M.D. Morgan L. Ordish J. Rogers C. Saria S. Ting D.S.W. Watkinson P. Weber W. Wheatstone P. McCulloch P. Lee A.Y. Fraser A.G. Connell A. Vira A. Esteva A. Althouse A.D. Beam A.L. de Hond A. Boulesteix A-L. Bradlow A. Ercole A. Paez A. Tsanas A. Kirby B. Glocker B. Velardo C. Park C.M. Hehakaya C. Baber C. Paton C. Johner C. Kelly C.J. Vincent C.J. Yau C. McGenity C. Gatsonis C. Faivre-Finn C. Simon C. Sent D. Bzdok D. Treanor D. Wong D.C. Steiner D.F. Higgins D. Benson D. O’Regan D.P. Gunasekaran D.V. Danks D. Neri E. Kyrimi E. Schwendicke F. Magrabi F. Ives F. Rademakers F.E. Fowler G.E. Frau G. Hogg H.D.J. Marcus H.J. Chan H-P. Xiang H. McIntyre H.F. Harvey H. Kim H. Habli I. Fackler J.C. Shaw J. Higham J. Wohlgemut J.M. Chong J. Bibault J-E. Cohen J.F. Kers J. Morley J. Krois J. Monteiro J. Horovitz J. Fletcher J. Taylor J. Yoon J.H. Singh K. Moons K.G.M. Karpathakis K. Catchpole K. Hood K. Balaskas K. Kamnitsas K. Militello L. Wynants L. Oakden-Rayner L. Lovat L.B. Smits L.J.M. Hinske L.C. ElZarrad M.K. van Smeden M. Giavina-Bianchi M. Daley M. Sendak M.P. Sujan M. Rovers M. DeCamp M. Woodward M. Komorowski M. Marsden M. Mackintosh M. Abramoff M.D. de la Hoz M.Á.A. Hambidge N. Daly N. Peek N. Redfern O. Ahmad O.F. Bossuyt P.M. Keane P.A. Ferreira P.N.P. Schnell-Inderst P. Mascagni P. Dasgupta P. Guan P. Barnett R. Kader R. Chopra R. Mann R.M. Sarkar R. Mäenpää S.M. Finlayson S.G. Vollam S. Vollmer S.J. Park S.H. Laher S. Joshi S. van der Meijden S.L. Shelmerdine S.C. Tan T-E. Stocker T.J.W. Giannini V. Madai V.I. Newcombe V. Ng W.Y. Rogers W.A. Ogallo W. Park Y. Perkins Z.B. Reporting guideline for the early-stage clinical evaluation of decision support systems driven by artificial intelligence: DECIDE-AI. Nat Med 2022 28 5 924 933 10.1038/s41591‑022‑01772‑9 35585198
    [Google Scholar]
  107. Meskó B. Görög M. A short guide for medical professionals in the era of artificial intelligence. NPJ Digit Med 2020 3 1 126 10.1038/s41746‑020‑00333‑z 33043150
    [Google Scholar]
  108. Fontanella S. Cucco A. Custovic A. Machine learning in asthma research: Moving toward a more integrated approach. Expert Rev Respir Med 2021 15 5 609 621 10.1080/17476348.2021.1894133 33618597
    [Google Scholar]
  109. Duverdier A. Custovic A. Tanaka R.J. Data‐driven research on eczema: Systematic characterization of the field and recommendations for the future. Clin Transl Allergy 2022 12 6 12170 10.1002/clt2.12170 35686200
    [Google Scholar]
  110. Nabi F.G. Sundaraj K. Lam C.K. Palaniappan R. Characterization and classification of asthmatic wheeze sounds according to severity level using spectral integrated features. Comput Biol Med 2019 104 52 61 10.1016/j.compbiomed.2018.10.035 30439599
    [Google Scholar]
  111. Seol H.Y. Rolfes M.C. Chung W. Sohn S. Ryu E. Park M.A. Kita H. Ono J. Croghan I. Armasu S.M. Castro-Rodriguez J.A. Weston J.D. Liu H. Juhn Y. Expert artificial intelligence-based natural language processing characterises childhood asthma. BMJ Open Respir Res 2020 7 1 000524 10.1136/bmjresp‑2019‑000524 33371009
    [Google Scholar]
  112. van Breugel M. Qi C. Xu Z. Pedersen C.E.T. Petoukhov I. Vonk J.M. Gehring U. Berg M. Bügel M. Carpaij O.A. Forno E. Morin A. Eliasen A.U. Jiang Y. van den Berge M. Nawijn M.C. Li Y. Chen W. Bont L.J. Bønnelykke K. Celedón J.C. Koppelman G.H. Xu C.J. Nasal DNA methylation at three CpG sites predicts childhood allergic disease. Nat Commun 2022 13 1 7415 10.1038/s41467‑022‑35088‑6 36456559
    [Google Scholar]
  113. Wi C.I. Sohn S. Ryu E. Liu H. Park M.A. Juhn Y.J. Automated chart review for asthma ascertainment: An innovative approach for asthma care and research in the electronic medical record era. J Allergy Clin Immunol 2016 137 2 AB196 10.1016/j.jaci.2015.12.771
    [Google Scholar]
  114. Wi C.I. Sohn S. Ali M. Krusemark E. Ryu E. Liu H. Juhn Y.J. Natural language processing for asthma ascertainment in different practice settings. J Allergy Clin Immunol Pract 2018 6 1 126 131 10.1016/j.jaip.2017.04.041 28634104
    [Google Scholar]
  115. Jiang Z. Li J. Kong N. Kim J.H. Kim B.S. Lee M.J. Park Y.M. Lee S.Y. Hong S.J. Sul J.H. Accurate diagnosis of atopic dermatitis by combining transcriptome and microbiota data with supervised machine learning. Sci Rep 2022 12 1 290 10.1038/s41598‑021‑04373‑7 34997172
    [Google Scholar]
  116. Alag A. Machine learning approach yields epigenetic biomarkers of food allergy: A novel 13-gene signature to diagnose clinical reactivity. PLoS One 2019 14 6 0218253 10.1371/journal.pone.0218253 31216310
    [Google Scholar]
  117. Matricardi P. Allergen-Immuntherapie auf der Grundlage einer molekularen Allergiediagnostik: Pädiatrische Aspekte. Allergo J 2025 34 2 30 39 10.1007/s15007‑025‑6443‑1
    [Google Scholar]
  118. Roberts G. Fontanella S. Selby A. Howard R. Filippi S. Hedlin G. Nordlund B. Howarth P. Hashimoto S. Brinkman P. Fleming L.J. Murray C. Bush A. Frey U. Singer F. Schoos A.M.M. van Aalderen W. Djukanovic R. Chung K.F. Sterk P.J. Adnan C. Connectivity patterns between multiple allergen specific IgE antibodies and their association with severe asthma. J Allergy Clin Immunol 2020 146 4 821 830 10.1016/j.jaci.2020.02.031 32188567
    [Google Scholar]
  119. Toivonen L. Karppinen S. Schuez-Havupalo L. Waris M. He Q. Hoffman K.L. Petrosino J.F. Dumas O. Camargo C.A. Hasegawa K. Peltola V. Longitudinal changes in early nasal microbiota and the risk of childhood asthma. Pediatrics 2020 146 4 20200421 10.1542/peds.2020‑0421 32934151
    [Google Scholar]
  120. Spacova I. Petrova M.I. Fremau A. Pollaris L. Vanoirbeek J. Ceuppens J.L. Seys S. Lebeer S. Intranasal administration of probiotic Lactobacillus rhamnosus GG prevents birch pollen‐induced allergic asthma in a murine model. Allergy 2019 74 1 100 110 10.1111/all.13502 29888398
    [Google Scholar]
  121. Bose S. Kenyon C.C. Masino A.J. Personalized prediction of early childhood asthma persistence: A machine learning approach. PLoS One 2021 16 3 0247784 10.1371/journal.pone.0247784 33647071
    [Google Scholar]
  122. Iannuzo N. Dy A.B.C. Guerra S. Langlais P.R. Ledford J.G. The impact of CC16 on pulmonary epithelial-driven host responses during Mycoplasma pneumoniae infection in mouse tracheal epithelial cells. Cells 2023 12 15 1984 10.3390/cells12151984 37566063
    [Google Scholar]
  123. Junayed M.S. Sakib A.N.M. Anjum N. Islam M.B. Jeny A.A. Eczema Net: A deep CNN-based eczema disease classification IPAS 2020 174 179 10.1109/IPAS50080.2020.9334929
    [Google Scholar]
  124. Rasheed A. Umar A.I. Shirazi S.H. Khan Z. Nawaz S. Shahzad M. Automatic eczema classification in clinical images based on hybrid deep neural network. Comput Biol Med 2022 147 105807 10.1016/j.compbiomed.2022.105807 35809409
    [Google Scholar]
  125. Kalbande D. Naik R. Jatakia J. Khopkar U. An artificial intelligence approach for the recognition of early stages of eczema. Int J Med Eng Inform 2020 12 1 52 61 10.1504/IJMEI.2020.105656
    [Google Scholar]
  126. Scheurer J. Ferrari C. Berenguer Todo Bom L. Beer M. Kempf W. Haug L. Semantic segmentation of histopathology logical slides for the classification of cutaneous lymphoma and eczema. Commun Comput Inf Sci 2020 1248 26 42 10.1007/978‑3‑030‑52791‑4_3
    [Google Scholar]
  127. Guimarães P. Batista A. Zieger M. Kaatz M. Koenig K. Artificial intelligence in multiphoton tomography: Atopic dermatitis diagnosis. Sci Rep 2020 10 1 7968 10.1038/s41598‑020‑64937‑x 32409755
    [Google Scholar]
  128. Özdemiral C. Şahiner Ü.M. Allergen Testing: Purpose, Procedure, Interpretation. Pediatric Airway Diseases Cham Springer Natur 2025 215 235
    [Google Scholar]
  129. Davis C.M. Apter A.J. Casillas A. Foggs M.B. Louisias M. Morris E.C. Nanda A. Nelson M.R. Ogbogu P.U. Walker-McGill C.L. Wang J. Perry T.T. Health disparities in allergic and immunologic conditions in racial and ethnic underserved populations: A Work Group Report of the AAAAI Committee on the Underserved. J Allergy Clin Immunol 2021 147 5 1579 1593 10.1016/j.jaci.2021.02.034 33713767
    [Google Scholar]
  130. Cerrato P. Halamka J. Pencina M. A proposal for developing a platform that evaluates algorithmic equity and accuracy. BMJ Health Care Inform 2022 29 1 100423 10.1136/bmjhci‑2021‑100423 35410952
    [Google Scholar]
  131. Parisi G.I. Kemker R. Part J.L. Kanan C. Wermter S. Continual lifelong learning with neural networks: A review. Neural Netw 2019 113 54 71 10.1016/j.neunet.2019.01.012 30780045
    [Google Scholar]
  132. Finkelstein J. Jeong I. Machine learning approaches to personalize early prediction of asthma exacerbations. Ann N Y Acad Sci 2017 1387 1 153 165 10.1111/nyas.13218 27627195
    [Google Scholar]
  133. Goto T. Camargo C.A. Faridi M.K. Yun B.J. Hasegawa K. Machine learning approaches for predicting disposition of asthma and COPD exacerbations in the ED. Am J Emerg Med 2018 36 9 1650 1654 10.1016/j.ajem.2018.06.062 29970272
    [Google Scholar]
  134. Patel S.J. Chamberlain D.B. Chamberlain J.M. A machine learning approach to predicting the need for hospitalization for pediatric asthma exacerbation at the time of emergency department triage. Acad Emerg Med 2018 25 12 1463 1470 10.1111/acem.13655 30382605
    [Google Scholar]
  135. Zein J.G. Wu C.P. Attaway A.H. Zhang P. Nazha A. Novel machine learning can predict acute asthma exacerbation. Chest 2021 159 5 1747 1757 10.1016/j.chest.2020.12.051 33440184
    [Google Scholar]
  136. Loymans R.J.B. Debray T.P.A. Honkoop P.J. Termeer E.H. Snoeck-Stroband J.B. Schermer T.R.J. Assendelft W.J.J. Timp M. Chung K.F. Sousa A.R. Sont J.K. Sterk P.J. Reddel H.K. ter Riet G. Exacerbations in adults with asthma: A systematic review and external validation of prediction models. J Allergy Clin Immunol Pract 2018 6 6 1942 1952.e15 10.1016/j.jaip.2018.02.004 29454163
    [Google Scholar]
  137. Zhang O. Minku L.L. Gonem S. Detecting asthma exacerbations using daily home monitoring and machine learning. J Asthma 2021 58 11 1518 1527 10.1080/02770903.2020.1802746 32718193
    [Google Scholar]
  138. Juhn Y. Wi C.I. Sohn S. Ryu E. Park M. Muth J.F. Seol H.Y. Moon S. King K. Wheeler P. Liu H. Ihrke K. McWilliams D. Asthma- guidance and prediction system (a-GPS) as a precision asthma care tool. J Allergy Clin Immunol 2020 145 2 AB210 10.1016/j.jaci.2019.12.231 31883846
    [Google Scholar]
  139. Seol H.Y. Shrestha P. Muth J.F. Wi C.I. Sohn S. Ryu E. Park M. Ihrke K. Moon S. King K. Wheeler P. Borah B. Moriarty J. Rosedahl J. Liu H. McWilliams D.B. Juhn Y.J. Artificial intelligence-assisted clinical decision support for childhood asthma management: A randomized clinical trial. PLoS One 2021 16 8 0255261 10.1371/journal.pone.0255261 34339438
    [Google Scholar]
  140. Lugogo N.L. DePietro M. Reich M. Merchant R. Chrystyn H. Pleasants R. Granovsky L. Li T. Hill T. Brown R.W. Safioti G. A predictive machine learning tool for asthma exacerbations: Results from a 12-week, open-label study using an electronic multi-dose dry powder inhaler with integrated sensors. J Asthma Allergy 2022 15 1623 1637 10.2147/JAA.S377631 36387836
    [Google Scholar]
  141. Bousquet J. Grattan C.E. Akdis C.A. Eigenmann P.A. Hoffmann-Sommergruber K. Agache I. Jutel M. Highlights and recent developments in allergic diseases in EAACI journals (2019). Clin Transl Allergy 2020 10 1 56 10.1186/s13601‑020‑00366‑3 33292572
    [Google Scholar]
  142. Baiardini I. Novakova S. Mihaicuta S. Oguzulgen I.K. Canonica G.W. Adherence to treatment in allergic respiratory diseases. Expert Rev Respir Med 2019 13 1 53 62 10.1080/17476348.2019.1554438 30518277
    [Google Scholar]
  143. Bohlmann A. Mostafa J. Kumar M. Machine learning and medication adherence: A scoping review. JMIRx Med 2021 2 4 26993 10.2196/26993 37725549
    [Google Scholar]
  144. Tsang K.C.H. Pinnock H. Wilson A.M. Ahmar S.S. Application of machine learning to support self-management of asthma with mHealth. Montreal, QC, Canada, 20-24 July 2020, pp. 5673-5677. Proc Ann Int Conf IEEE Eng Med Biol Soc 10.1109/EMBC44109.2020.9175679
    [Google Scholar]
  145. Chaix B. Bibault J.E. Pienkowski A. Delamon G. Guillemassé A. Nectoux P. Brouard B. When chatbots meet patients: A year-long prospective study of conversations between patients with breast cancer and a chatbot. JMIR Cancer 2019 5 1 12856 10.2196/12856 31045505
    [Google Scholar]
  146. Kadariya D. Venkataramanan R. Yip H.Y. Kalra M. Thirunarayanan K. Sheth A. KBot: Knowledge-enabled personalized chatbot for asthma self-management. Proc IEEE Int Conf Smart Comput SMARTCOMP 2019 138 143 10.1109/SMARTCOMP.2019.00043
    [Google Scholar]
  147. Tsang K.C.H. Pinnock H. Wilson A.M. Shah S.A. Application of machine learning algorithms for asthma management with mHealth: A clinical review. J Asthma Allergy 2022 15 855 873 10.2147/JAA.S285742 35791395
    [Google Scholar]
  148. Shim J.S. Kim M.H. Lee S.M. Kim S.H. Kwon J.W. Song C. Ahn K.M. Kang S.Y. Park H.K. Park H.W. Kim B.K. Yang M.S. An artificial intelligence algorithm‐based smartphone application for daily cough monitoring. Allergy 2023 78 5 1378 1380 10.1111/all.15632 36588171
    [Google Scholar]
  149. Fakotakis N.D. Nousias S. Arvanitis G. Zacharaki E.I. Moustakas K. Available from:https://gitlab.com/vvr/monitoring Revisiting audio pattern recognition for asthma medication adherence: Evaluation with the RDA benchmark suite 2022
    [Google Scholar]
  150. Alam M.Z. Simonetti A. Brillantino R. Tayler N. Grainge C. Siribaddana P. Nouraei S.A.R. Batchelor J. Rahman M.S. Mancuzo E.V. Holloway J.W. Holloway J.A. Rezwan F.I. Predicting pulmonary function from the analysis of voice: A machine learning approach. Front Digit Health 2022 4 750226 10.3389/fdgth.2022.750226 35211691
    [Google Scholar]
  151. El Azari H. Renard J.B. Lauthier J. Dudok de Wit T. A laboratory evaluation of the new automated Pollen sensor Beenose: Pollen discrimination using machine learning techniques. Sensors 2023 23 6 2964 10.3390/s23062964 36991674
    [Google Scholar]
  152. Real-time and forecast pollen count data. Available from:https://www.getam become /pollen 2023
  153. Renard J.B. Lefèvre S. Glévarec G. Low-cost pollen and allergy symptoms monitoring with beenose sampler and Livepollen App: The case study of the Metz City, France, during spring 2023. Atmosphere 2025 16 3 271 10.3390/atmos16030271
    [Google Scholar]
  154. Zewdie G.K. Liu X. Wu D. Lary D.J. Levetin E. Applying machine learning to forecast daily Ambrosia pollen using environmental and NEXRAD parameters. Environ Monit Assess 2019 191 S2 261 Suppl. 2 10.1007/s10661‑019‑7428‑x 31254085
    [Google Scholar]
  155. Cordero J.M. Rojo J. Gutiérrez-Bustillo A.M. Narros A. Borge R. Predicting the Olea pollen concentration with a machine learning algorithm ensemble. Int J Biometeorol 2021 65 4 541 554 10.1007/s00484‑020‑02047‑z 33188463
    [Google Scholar]
  156. Kuruvilla M.E. Lee F.E.H. Lee G.B. Understanding asthma phenotypes, endotypes, and mechanisms of disease. Clin Rev Allergy Immunol 2019 56 2 219 233 10.1007/s12016‑018‑8712‑1 30206782
    [Google Scholar]
  157. Lisik D. Milani G.P. Salisu M. Özuygur Ermis S.S. Goksör E. Basna R. Wennergren G. Kankaanranta H. Nwaru B.I. Machine learning-derived phenotypic trajectories of asthma and allergy in children and adolescents: Protocol for a systematic review. BMJ Open 2024 14 8 080263 10.1136/bmjopen‑2023‑080263 39214659
    [Google Scholar]
  158. Granell R. Sterne J.A. Savenije O. Kerkhof M. Smit H.A. Jongste J.C. Postma D.S. Koppelman G. Henderson J. Identification and replication of wheezing phenotypes using longitudinal latent class analysis. Am Thorac Soc 2010 2010 A6242 10.1164/ajrccm‑conference.2010.181.1_MeetingAbstracts.A6242
    [Google Scholar]
  159. Belgrave D.C.M. Simpson A. Semic-Jusufagic A. Murray C.S. Buchan I. Pickles A. Custovic A. Joint modeling of parentally reported and physician-confirmed wheeze identifies children with persistent troublesome wheezing. J Allergy Clin Immunol 2013 132 3 575 583.e12 10.1016/j.jaci.2013.05.041 23906378
    [Google Scholar]
  160. Sordillo J.E. Coull B.A. Rifas-Shiman S.L. Wu A.C. Lutz S.M. Hivert M.F. Oken E. Gold D.R. Characterization of longitudinal wheeze phenotypes from infancy to adolescence in Project Viva, a prebirth cohort study. J Allergy Clin Immunol 2020 145 2 716 719.e8 10.1016/j.jaci.2019.10.026 31705908
    [Google Scholar]
  161. Hallmark B. Wegienka G. Havstad S. Billheimer D. Ownby D. Mendonca E.A. Gress L. Stern D.A. Myers J.B. Khurana Hershey G.K. Hoepner L. Miller R.L. Lemanske R.F. Jackson D.J. Gold D.R. O’Connor G.T. Nicolae D.L. Gern J.E. Ober C. Wright A.L. Martinez F.D. Chromosome 17q12 21 variants are associated with multiple wheezing phenotypes in childhood. Am J Respir Crit Care Med 2021 203 7 864 870 10.1164/rccm.202003‑0820OC 33535024
    [Google Scholar]
  162. Ödling M. Wang G. Andersson N. Hallberg J. Janson C. Bergström A. Melén E. Kull I. Characterization of asthma trajectories from infancy to young adulthood. J Allergy Clin Immunol Pract 2021 9 6 2368 2376.e3 10.1016/j.jaip.2021.02.007 33607340
    [Google Scholar]
  163. Kim H.B. Navigating the asthma maze in children through trajectories with allergic comorbidities. Allergy Asthma Immunol Res 2025 17 1 1 4 10.4168/aair.2025.17.1.1 39895597
    [Google Scholar]
  164. Agache I. Adcock I.M. Baraldi F. Chung K.F. Eguiluz-Gracia I. Johnston S.L. Jutel M. Nair P. Papi A. Porsbjerg C. Usmani O.S. Meyers D.A. Zemelka-Wiacek M. Bleecker E.R. Personalised therapeutic approaches for asthma. J Allergy Clin Immunol 2025 S0091-6749(25)00375-6 40203996
    [Google Scholar]
  165. Saria S. Goldenberg A. Subtyping: What it is and its role in precision medicine. IEEE Intell Syst 2015 30 4 70 75 10.1109/MIS.2015.60
    [Google Scholar]
  166. Saglani S. Custovic A. Childhood asthma: Advances using machine learning and mechanistic studies. Am J Respir Crit Care Med 2019 199 4 414 422 10.1164/rccm.201810‑1956CI 30571146
    [Google Scholar]
  167. Oksel C. Granell R. Mahmoud O. Custovic A. Henderson A.J. Causes of variability in latent phenotypes of childhood wheeze. J Allergy Clin Immunol 2019 143 5 1783 1790.e11 10.1016/j.jaci.2018.10.059 30528616
    [Google Scholar]
  168. Oksel C. Granell R. Haider S. Fontanella S. Simpson A. Turner S. Devereux G. Arshad S.H. Murray C.S. Roberts G. Holloway J.W. Cullinan P. Henderson J. Custovic A. Curtin J. Colicino S. Woodcock A. Bush A. Saglani S. Lloyd C.M. Marsland B. Grigg J. Schwarze J. Shields M. Ghazal P. Power M. Distinguishing wheezing phenotypes from infancy to adolescence. A pooled analysis of five birth cohorts. Ann Am Thorac Soc 2019 16 7 868 876 10.1513/AnnalsATS.201811‑837OC 30888842
    [Google Scholar]
  169. Haider S. Granell R. Curtin J. Fontanella S. Cucco A. Turner S. Simpson A. Roberts G. Murray C.S. Holloway J.W. Devereux G. Cullinan P. Arshad S.H. Custovic A. Modeling wheezing spells identifies phenotypes with different outcomes and genetic associations. Am J Respir Crit Care Med 2022 205 8 883 893 10.1164/rccm.202108‑1821OC 35050846
    [Google Scholar]
  170. Haider S. Custovic A. Breaking down silos in asthma research: The case for an integrated approach. Innovations 2019
    [Google Scholar]
  171. McCready C. Haider S. Little F. Nicol M.P. Workman L. Gray D.M. Granell R. Stein D.J. Custovic A. Zar H.J. Early childhood wheezing phenotypes and determinants in a South African birth cohort: Longitudinal analysis of the drakenstein child health study. Lancet Child Adolesc Health 2023 7 2 127 135 10.1016/S2352‑4642(22)00304‑2 36435180
    [Google Scholar]
  172. Hu C. Duijts L. Erler N.S. Elbert N.J. Piketty C. Bourdès V. Blanchet-Réthoré S. Jongste J.C. Pasmans S.G.M.A. Felix J.F. Nijsten T. Most associations of early‐life environmental exposures and genetic risk factors poorly differentiate between eczema phenotypes: The Generation R Study. Br J Dermatol 2019 181 6 1190 1197 10.1111/bjd.17879 30869802
    [Google Scholar]
  173. Lopez D.J. Lodge C.J. Bui D.S. Waidyatillake N.T. Abramson M.J. Perret J.L. Su J.C. Erbas B. Svanes C. Dharmage S.C. Lowe A.J. Establishing subclasses of childhood eczema, their risk factors and prognosis. Clin Exp Allergy 2022 52 9 1079 1090 10.1111/cea.14139 35347774
    [Google Scholar]
  174. Mulick A.R. Mansfield K.E. Silverwood R.J. Budu-Aggrey A. Roberts A. Custovic A. Pearce N. Irvine A.D. Smeeth L. Abuabara K. Langan S.M. Four childhood atopic dermatitis subtypes identified from trajectory and severity of disease and internally validated in a large UK birth cohort. Br J Dermatol 2021 185 3 526 536 10.1111/bjd.19885 33655501
    [Google Scholar]
  175. Paternoster L. Savenije O.E.M. Heron J. Evans D.M. Vonk J.M. Brunekreef B. Wijga A.H. Henderson A.J. Koppelman G.H. Brown S.J. Identification of atopic dermatitis subgroups in children from 2 longitudinal birth cohorts. J Allergy Clin Immunol 2018 141 3 964 971 10.1016/j.jaci.2017.09.044 29129583
    [Google Scholar]
  176. Nakamura T. Haider S. Fontanella S. Murray C.S. Simpson A. Custovic A. Modelling trajectories of parentally reported and physician‐confirmed atopic dermatitis in a birth cohort study. Br J Dermatol 2022 186 2 274 284 10.1111/bjd.20767 34564850
    [Google Scholar]
  177. Bashir M. Milani G. De Cosmi V. Mazzocchi A. Zhang G. Basna R. Hedman L. Lindberg A. Ekerljung L. Axelsson M. Vanfleteren L. Rönmark E. Backman H. Kankaanranta H. Nwaru B. Computational phenotyping of obstructive airway diseases: A systematic review. J Asthma Allergy 2025 18 113 160 10.2147/JAA.S463572 39931537
    [Google Scholar]
  178. Suaini N.H.A. Yap G.C. Bui D.P.T. Loo E.X.L. Goh A.E.N. Teoh O.H. Tan K.H. Godfrey K.M. Lee B.W. Shek L.P. Van Bever H. Chong Y.S. Tham E.H. Atopic dermatitis trajectories to age 8 years in the GUSTO cohort. Clin Exp Allergy 2021 51 9 1195 1206 10.1111/cea.13993 34310791
    [Google Scholar]
  179. Ziyab A.H. Mukherjee N. Zhang H. Arshad S.H. Karmaus W. Sex‐specific developmental trajectories of eczema from infancy to age 26 years: A birth cohort study. Clin Exp Allergy 2022 52 3 416 425 10.1111/cea.14068 34854146
    [Google Scholar]
  180. Belgrave D.C.M. Granell R. Simpson A. Guiver J. Bishop C. Buchan I. Henderson A.J. Custovic A. Developmental profiles of eczema, wheeze, and rhinitis: Two population-based birth cohort studies. PLoS Med 2014 11 10 1001748 10.1371/journal.pmed.1001748 25335105
    [Google Scholar]
  181. Clark H. Granell R. Curtin J.A. Belgrave D. Simpson A. Murray C. Henderson A.J. Custovic A. Paternoster L. Differential associations of allergic disease genetic variants with developmental profiles of eczema, wheeze and rhinitis. Clin Exp Allergy 2019 49 11 1475 1486 10.1111/cea.13485 31441980
    [Google Scholar]
  182. Howard R. Rattray M. Prosperi M. Custovic A. Distinguishing asthma phenotypes using machine learning approaches. Curr Allergy Asthma Rep 2015 15 7 38 10.1007/s11882‑015‑0542‑0 26143394
    [Google Scholar]
  183. Lazic N. Roberts G. Custovic A. Belgrave D. Bishop C.M. Winn J. Curtin J.A. Hasan Arshad S. Simpson A. Multiple atopy phenotypes and their associations with asthma: Similar findings from two birth cohorts. Allergy 2013 68 6 764 770 10.1111/all.12134 23621120
    [Google Scholar]
  184. Krautenbacher N. Flach N. Böck A. Laubhahn K. Laimighofer M. Theis F.J. Ankerst D.P. Fuchs C. Schaub B. A strategy for high‐dimensional multivariable analysis classifies childhood asthma phenotypes from genetic, immunological, and environmental factors. Allergy 2019 74 7 1364 1373 10.1111/all.13745 30737985
    [Google Scholar]
  185. Mersha T.B. Afanador Y. Johansson E. Proper S.P. Bernstein J.A. Rothenberg M.E. Khurana Hershey G.K. Resolving clinical phenotypes into endotypes in allergy: Molecular and omics approaches. Clin Rev Allergy Immunol 2021 60 2 200 219 10.1007/s12016‑020‑08787‑5 32378146
    [Google Scholar]
  186. Kaur R. Chupp G. Phenotypes and endotypes of adult asthma: Moving toward precision medicine. J Allergy Clin Immunol 2019 144 1 1 12 10.1016/j.jaci.2019.05.031 31277742
    [Google Scholar]
  187. Wu W. Bang S. Bleecker E.R. Castro M. Denlinger L. Erzurum S.C. Fahy J.V. Fitzpatrick A.M. Gaston B.M. Hastie A.T. Israel E. Jarjour N.N. Levy B.D. Mauger D.T. Meyers D.A. Moore W.C. Peters M. Phillips B.R. Phipatanakul W. Sorkness R.L. Wenzel S.E. Multiview cluster analysis identifies variable corticosteroid response phenotypes in severe asthma. Am J Respir Crit Care Med 2019 199 11 1358 1367 10.1164/rccm.201808‑1543OC 30682261
    [Google Scholar]
  188. Meng Y. Lou H. Wang Y. Wang X. Cao F. Wang K. Chu X. Wang C. Zhang L. Endotypes of chronic rhinitis: A cluster analysis study. Allergy 2019 74 4 720 730 10.1111/all.13640 30353934
    [Google Scholar]
  189. Malizia V. Cilluffo G. Fasola S. Ferrante G. Landi M. Montalbano L. Licari A. La Grutta S. Endotyping allergic rhinitis in children: A machine learning approach. Pediatr Allergy Immunol 2022 33 S27 18 21 Suppl. 27 10.1111/pai.13620 35080305
    [Google Scholar]
  190. Robinson P.F.M. Fontanella S. Ananth S. Martin Alonso A. Cook J. Kaya-de Vries D. Polo Silveira L. Gregory L. Lloyd C. Fleming L. Bush A. Custovic A. Saglani S. Recurrent severe preschool wheeze: From prespecified diagnostic labels to underlying endotypes. Am J Respir Crit Care Med 2021 204 5 523 535 10.1164/rccm.202009‑3696OC 33961755
    [Google Scholar]
  191. Ooka T. Raita Y. Fujiogi M. Freishtat R.J. Gerszten R.E. Mansbach J.M. Zhu Z. Camargo C.A. Hasegawa K. Proteomics endotyping of infants with severe bronchiolitis and risk of childhood asthma. Allergy 2022 77 11 3350 3361 10.1111/all.15390 35620861
    [Google Scholar]
  192. Tyler S.R. Chun Y. Ribeiro V.M. Grishina G. Grishin A. Hoffman G.E. Do A.N. Bunyavanich S. Merged affinity network association clustering: Joint multi-omic/clinical clustering to identify disease endotypes. Cell Rep 2021 35 2 108975 10.1016/j.celrep.2021.108975 33852839
    [Google Scholar]
  193. Azim A. Rezwan F. Barber C. Harvey M. Kurukulaaratchy R. Holloway J. Howarth P. Measurement of exhaled volatile organic compounds as a biomarker for personalized medicine: Assessment of short-term repeatability in severe asthma. J Pers Med 2022 12 10 1635 10.3390/jpm12101635 36294774
    [Google Scholar]
  194. Han X. Krempski J.W. Nadeau K. Parker S.N. Kari N.C. Advances and novel developments in mechanisms of allergic inflammation. Allergy 2020 75 12 3100 3111 10.1111/all.14632 33068299
    [Google Scholar]
  195. Sikkema L. Ramírez-Suástegui C. Strobl D.C. Gillett T.E. Zappia L. Madissoon E. Markov N.S. Zaragosi L.E. Ji Y. Ansari M. Arguel M.J. Apperloo L. Banchero M. Bécavin C. Berg M. Chichelnitskiy E. Chung M. Collin A. Gay A.C.A. Gote-Schniering J. Hooshiar Kashani B. Inecik K. Jain M. Kapellos T.S. Kole T.M. Leroy S. Mayr C.H. Oliver A.J. von Papen M. Peter L. Taylor C.J. Walzthoeni T. Xu C. Bui L.T. De Donno C. Dony L. Faiz A. Guo M. Gutierrez A.J. Heumos L. Huang N. Ibarra I.L. Jackson N.D. Kadur Lakshminarasimha Murthy P. Lotfollahi M. Tabib T. Talavera-López C. Travaglini K.J. Wilbrey-Clark A. Worlock K.B. Yoshida M. Chen Y. Hagood J.S. Agami A. Horvath P. Lundeberg J. Marquette C-H. Pryhuber G. Samakovlis C. Sun X. Ware L.B. Zhang K. van den Berge M. Bossé Y. Desai T.J. Eickelberg O. Kaminski N. Krasnow M.A. Lafyatis R. Nikolic M.Z. Powell J.E. Rajagopal J. Rojas M. Rozenblatt-Rosen O. Seibold M.A. Sheppard D. Shepherd D.P. Sin D.D. Timens W. Tsankov A.M. Whitsett J. Xu Y. Banovich N.E. Barbry P. Duong T.E. Falk C.S. Meyer K.B. Kropski J.A. Pe’er D. Schiller H.B. Tata P.R. Schultze J.L. Teichmann S.A. Misharin A.V. Nawijn M.C. Luecken M.D. Theis F.J. An integrated cell atlas of the lung in health and disease. Nat Med 2023 29 6 1563 1577 10.1038/s41591‑023‑02327‑2 37291214
    [Google Scholar]
  196. Lotfollahi M. Naghipourfar M. Luecken M.D. Khajavi M. Büttner M. Wagenstetter M. Avsec Ž. Gayoso A. Yosef N. Interlandi M. Rybakov S. Misharin A.V. Theis F.J. Mapping single-cell data to reference atlases by transfer learning. Nat Biotechnol 2022 40 1 121 130 10.1038/s41587‑021‑01001‑7 34462589
    [Google Scholar]
  197. Kim H. Kim E. Lee I. Bae B. Park M. Nam H. Artificial intelligence in drug discovery: A comprehensive review of data-driven and machine learning approaches. Biotechnol Bioprocess Eng; BBE 2020 25 6 895 930 10.1007/s12257‑020‑0049‑y 33437151
    [Google Scholar]
  198. Chung K.F. Adcock I.M. Precision medicine for the discovery of treatable mechanisms in severe asthma. Allergy 2019 74 9 1649 1659 10.1111/all.13771 30865306
    [Google Scholar]
  199. Radzikowska U. Baerenfaller K. Cornejo-Garcia J.A. Karaaslan C. Barletta E. Sarac B.E. Zhakparov D. Villaseñor A. Eguiluz-Gracia I. Mayorga C. Sokolowska M. Barbas C. Barber D. Ollert M. Chivato T. Agache I. Escribese M.M. Omics technologies in allergy and asthma research: An EAACI position paper. Allergy 2022 77 10 2888 2908 10.1111/all.15412 35713644
    [Google Scholar]
  200. Ahmed Z. Mohamed K. Zeeshan S. Dong X. Artificial intelligence with multi-functional machine learning platform development for better healthcare and precision medicine. Database 2020 2020 baaa010 10.1093/database/baaa010 32185396
    [Google Scholar]
  201. Lovrić M. Banić I. Lacić E. Pavlović K. Kern R. Turkalj M. Predicting treatment outcomes using explainable machine learning in children with asthma. Children 2021 8 5 376 10.3390/children8050376 34068718
    [Google Scholar]
  202. Wu J.J. Hong C. Merola J.F. Gruben D. Güler E. Feeney C. Bhambri A. Myers D.E. DiBonaventura M. Predictors of nonresponse to dupilumab in patients with atopic dermatitis. Ann Allergy Asthma Immunol 2022 129 3 354 359.e5 10.1016/j.anai.2022.05.025 35640774
    [Google Scholar]
  203. Ray A. Das J. Wenzel S.E. Determining asthma endotypes and outcomes: Complementing existing clinical practice with modern machine learning. Cell Rep Med 2022 3 12 100857 10.1016/j.xcrm.2022.100857 36543110
    [Google Scholar]
  204. Tanoli Z Vähä-Koskela M Aittokallio T Artificial intelligence, machine learning, and drug repurposing in cancer. Expert Opin Drug Discov 2021 16 9 977 989 10.1080/17460441.2021.1883585 33543671
    [Google Scholar]
  205. Dara S. Dhamercherla S. Jadav S.S. Babu C.H.M. Ahsan M.J. Machine learning in drug discovery: A review. Artif Intell Rev 2022 55 3 1947 1999 10.1007/s10462‑021‑10058‑4 34393317
    [Google Scholar]
  206. Staszak M. Staszak K. Wieszczycka K. Bajek A. Roszkowski K. Tylkowski B. Machine learning in drug design: Use of artificial intelligence to explore the chemical structure–biological activity relationship. Wiley Interdiscip Rev Comput Mol Sci 2022 12 2 1568 10.1002/wcms.1568
    [Google Scholar]
  207. Issa N.T. Stathias V. Schürer S. Dakshanamurthy S. Machine and deep learning approaches for cancer drug repurposing. Semin Cancer Biol 2021 68 132 142 10.1016/j.semcancer.2019.12.011 31904426
    [Google Scholar]
  208. Abdulla A. Wang B. Qian F. Kee T. Blasiak A. Ong Y.H. Hooi L. Parekh F. Soriano R. Olinger G.G. Keppo J. Hardesty C.L. Chow E.K. Ho D. Ding X. Project IDentif.AI: Harnessing artificial intelligence to rapidly optimize combination therapy development for infectious disease intervention. Adv Ther 2020 3 7 2000034 10.1002/adtp.202000034 32838027
    [Google Scholar]
  209. Beck B.R. Shin B. Choi Y. Park S. Kang K. Predicting commercially available antiviral drugs that may act on the novel coronavirus (SARS-CoV-2) through a drug-target interaction deep learning model. Comput Struct Biotechnol J 2020 18 784 790 10.1016/j.csbj.2020.03.025 32280433
    [Google Scholar]
  210. Savito L. Scarlata S. Bikov A. Carratù P. Carpagnano G.E. Dragonieri S. Exhaled volatile organic compounds for diagnosis and monitoring of asthma. World J Clin Cases 2023 11 21 4996 5013 10.12998/wjcc.v11.i21.4996 37583852
    [Google Scholar]
  211. Ibrahim W. Wilde M.J. Cordell R.L. Richardson M. Salman D. Free R.C. Zhao B. Singapuri A. Hargadon B. Gaillard E.A. Suzuki T. Ng L.L. Coats T. Thomas P. Monks P.S. Brightling C.E. Greening N.J. Siddiqui S. Munton R. Le Quesne J. Goodall A.H. Pandya H.C. Reynolds J.C. Clokie M.R.J. Samani N.J. Barer M.R. Shaw J.A. Visualization of exhaled breath metabolites reveals distinct diagnostic signatures for acute cardiorespiratory breathlessness. Sci Transl Med 2022 14 671 eabl5849 10.1126/scitranslmed.abl5849 36383685
    [Google Scholar]
/content/journals/aiaamc/10.2174/0118715230389406250906142050
Loading
/content/journals/aiaamc/10.2174/0118715230389406250906142050
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test