Skip to content
2000
image of Design, Spectral Insights, and Enhanced Antioxidant Potential of Novel Phenothiazine Derivatives-1

Abstract

Introduction

Phenothiazine derivatives represent an important class of heterocyclic compounds known for a wide range of pharmacological activities. Their antioxidant potential has drawn considerable interest for therapeutic applications against oxidative stress-related disorders. This study focused on synthesizing a new series of phenothiazine derivatives and evaluating their antioxidant activity.

Methods

A series of phenothiazine derivatives [5a–5h] was synthesized by conjugating phenothiazine with various aryl amines an acetyl linker using standard organic synthesis techniques. The structures of the synthesized compounds were confirmed using spectroscopic techniques, including FT-IR, ^1H NMR, ^13C NMR, and mass spectrometry (MS). Antioxidant activity was assessed using two assays: the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging method and the low-density lipoprotein (LDL) oxidation inhibition assay.

Results

All synthesized compounds were successfully characterized by the aforementioned spectroscopic techniques. The antioxidant assays revealed that most of the derivatives exhibited notable antioxidant activity. Among them, Compound 5e, bearing a 4-amino-2-methoxyphenol moiety, demonstrated the highest activity, surpassing the standard antioxidants Vitamin C and butylated hydroxyanisole (BHA). Conversely, compound 5h showed comparatively lower activity.

Discussion

The findings indicate that structural variations, particularly the presence of electron-donating groups on the phenothiazine ring, significantly influence antioxidant potential. The superior performance of Compound 5e highlights the importance of specific substituent patterns in enhancing biological activity. However, further investigation into pharmacokinetics and efficacy is necessary to support potential therapeutic use.

Conclusion

The study successfully synthesized and characterized a novel series of phenothiazine derivatives, several of which exhibited potent antioxidant properties. Structure–activity relationship (SAR) analysis suggested that electron-donating substituents enhance activity, pointing to promising future applications in treating oxidative stress-related conditions.

Loading

Article metrics loading...

/content/journals/aiaamc/10.2174/0118715230378846251009082148
2026-01-02
2026-01-12
Loading full text...

Full text loading...

References

  1. Jeleń M. Ying P.T.C. Hao Y.J. Balachandran A. Anamalay K. Morak-Młodawska B. Gaurav A. Lavilla C.A. Uy M.M. Billacura M.P. Okechukwu P.N. In vitro study of antioxidant, antigylycation, sugar hydrolysis enzyme inhibitory effect and molecular in silico docking study of angularly condensed diquinothiazines. J. Mol. Struct. 2024 1296 136856 10.1016/j.molstruc.2023.136856
    [Google Scholar]
  2. Singh S. Sharma H. Gohri S. A comprehensive review of the synthesis, characterization, and antioxidant potential of phenothiazine derivatives. Current Organic Chemistry 2024 e15734072334547 10.2174/0115734072334547241217042546
    [Google Scholar]
  3. Shao W.B. Liao Y.M. Luo R.S. Ji J. Xiao W.L. Zhou X. Liu L.W. Yang S. Discovery of novel phenothiazine derivatives as new agrochemical alternatives for treating plant viral diseases. Pest Manag. Sci. 2023 79 11 4231 4243 10.1002/ps.7623 37345486
    [Google Scholar]
  4. Thorat B.R. L-Proline: A Versatile Organo-Catalyst in Organic Chemistry. Comb. Chem. High Throughput Screen. 2022 10.2174/1386207325666220720105845 35864793
    [Google Scholar]
  5. Pawar S. Kumar K. Gupta M.K. Rawal R.K. Synthetic and medicinal perspective of fused-thiazoles as anticancer agents. Anticancer. Agents Med. Chem. 2020 10.2174/1871520620666200728133017 32723259
    [Google Scholar]
  6. Moreira L.K.S. Turones L.C. Campos H.M. Nazareth A.M. Thomaz D.V. Gil E.S. Ghedini P.C. Rocha F.F. Menegatti R. Fajemiroye J.O. Costa E.A. LQFM212, a piperazine derivative, exhibits potential antioxidant effect as well as ameliorates LPS-induced behavioral, inflammatory and oxidative changes. Life Sci. 2023 312 121199 10.1016/j.lfs.2022.121199 36402170
    [Google Scholar]
  7. Salaramoli S. Amiri H. Joshaghani H.R. Hosseini M. Hashemy S.I. Bio-synthesized selenium nanoparticles ameliorate Brain oxidative stress in Parkinson disease rat models. Metab. Brain Dis. 2023 38 6 2055 2064 10.1007/s11011‑023‑01222‑6 37133801
    [Google Scholar]
  8. Kulathunga J. Simsek S. Stone milling conditions and starter culture source influence phytic acid content and antioxidant activity in whole‐grain sourdough bread. Cereal Chem. 2024 101 2 313 322 10.1002/cche.10755
    [Google Scholar]
  9. Khan M.A. Shakoor S. Ameer K. Farooqi M.A. Rohi M. Saeed M. Asghar M.T. Irshad M.B. Waseem M. Tanweer S. Ali U. Mohamed Ahmed I.A. Ramzan Y. Effects of dehydrated moringa (moringa oleifera) leaf powder supplementation on physicochemical, antioxidant, mineral, and sensory properties of whole wheat flour leavened bread. J. Food Qual. 2023 2023 1 13 10.1155/2023/4473000
    [Google Scholar]
  10. Patil S.B. Medicinal significance of novel coumarin analogs: Recent studies. Results Chem. 2022 4 100313 10.1016/j.rechem.2022.100313
    [Google Scholar]
  11. Fremes S.E. Marquis-Gravel G. Gaudino M.F.L. Jolicoeur E.M. Bédard S. Masterson Creber R. Ruel M. Vervoort D. Wijeysundera H.C. Farkouh M.E. Rouleau J.L. Karkhanis R. Arora R. Graham M. Healey J. Howlett J. Kiss A. Ko D. Lee D. McGillion M. Sun L. Swartz R. Voisine P. Bax J. Crea F. Doenst T. Jolly S. Koeber L.V. Lamy A. Lansky A. van der Meer P. Milojevic M. Omerovic E. Petrie M. Reid C. Sandner S. Sousa-Uva M. Velazquez E. Verma S. Stone G.W. Spertus J. STICH3C. Rationale and Study Protocol. Circ. Cardiovasc Interv. 2023 16 8 e012527 10.1161/CIRCINTERVENTIONS.122.012527 37582169
    [Google Scholar]
  12. Fine N.B. Neuman Fligelman E. Carlton N. Bloch M. Hendler T. Helpman L. Seligman Z. Armon D.B. Integration of limbic self-neuromodulation with psychotherapy for complex post-traumatic stress disorder: Treatment rationale and case study. Eur. J. Psychotraumatol. 2024 15 1 2256206 10.1080/20008066.2023.2256206 38166532
    [Google Scholar]
  13. Lucia R.M. Huang W.L. Alvarez A. Thampy D. Elyasian M. Hidajat A. Yang K. Forman D. Pebdani A. Masunaka I. Brain S. Heditsian D. Lee V. Goodman D. Norden-Krichmar T.M. Odegaard A.O. Ziogas A. Park H.L. Rationale, study design, and cohort characteristics for the markers for environmental exposures (MEE) study. Int. J. Environ. Res. Public Health 2020 17 5 1774 10.3390/ijerph17051774 32182891
    [Google Scholar]
  14. Motoki H. Masuda I. Yasuno S. Oba K. Shoin W. Usami S. Saito Y. Waki M. Komatsu M. Ueshima K. Nakagawa Y. Son C. Yonemitsu S. Hiramitsu S. Konda M. Onishi K. Kuwahara K. Rationale and design of the EMPYREAN study. ESC Heart Fail. 2020 7 5 3134 3141 10.1002/ehf2.12825 32578353
    [Google Scholar]
  15. Kurek-Górecka A. Keskin Ş. Bobis O. Felitti R. Górecki M. Otręba M. Stojko J. Olczyk P. Kolayli S. Rzepecka-Stojko A. Comparison of the antioxidant activity of propolis samples from different geographical regions. Plants 2022 11 9 1203 10.3390/plants11091203 35567206
    [Google Scholar]
  16. Noreen S. Tufail T. Bader Ul Ain H. Ali A. Aadil R.M. Nemat A. Manzoor M.F. Antioxidant activity and phytochemical analysis of fennel seeds and flaxseed. Food Sci. Nutr. 2023 11 3 1309 1317 10.1002/fsn3.3165 36911814
    [Google Scholar]
  17. Hwang S.J. Lee J.H. Comparison of antioxidant activities expressed as equivalents of standard antioxidant. Food. Sci. Technol 2023 43 10.1590/fst.121522
    [Google Scholar]
  18. Sarhan M.O. Haffez H. Elsayed N.A. El-Haggar R.S. Zaghary W.A. New phenothiazine conjugates as apoptosis inducing agents: Design, synthesis, In-vitro anti-cancer screening and 131I-radiolabeling for in-vivo evaluation. Bioorg. Chem. 2023 141 106924 10.1016/j.bioorg.2023.106924 37871390
    [Google Scholar]
  19. Gao Y. Li H. Luo H. Ni Y. Feng Y. He L. Zhou Q. Hu J. Chen S. Purified serum igg from a patient with anti-iglon5 antibody cause long-term movement disorders with impaired dopaminergic pathways in mice. Biomedicines 2023 11 9 2483 10.3390/biomedicines11092483 37760924
    [Google Scholar]
  20. Azimullah S. Jayaraj R.L. Meeran M.F.N. Jalal F.Y. Adem A. Ojha S. Beiram R. Myrcene salvages rotenone-induced loss of dopaminergic neurons by inhibiting oxidative stress, inflammation, apoptosis, and autophagy. Molecules 2023 28 2 685 10.3390/molecules28020685 36677744
    [Google Scholar]
  21. Leem Y.H. Kim D.Y. Park J.E. Kim H.S. Necrosulfonamide exerts neuroprotective effect by inhibiting necroptosis, neuroinflammation, and α-synuclein oligomerization in a subacute MPTP mouse model of Parkinson’s disease. Sci. Rep. 2023 13 1 8783 10.1038/s41598‑023‑35975‑y 37258791
    [Google Scholar]
  22. Rodger A.T.M. ALNasser, and W. G. Carter, “Are therapies that target α-synuclein effective at halting parkinson’s disease progression? Syst. Rev. 2023 10.3390/ijms241311022 37446200
    [Google Scholar]
  23. Bouchaoui H. Mahoney-Sanchez L. Garçon G. Berdeaux O. Alleman L.Y. Devos D. Duce J.A. Devedjian J.C. ACSL4 and the lipoxygenases 15/15B are pivotal for ferroptosis induced by iron and PUFA dyshomeostasis in dopaminergic neurons. Free Radic. Biol. Med. 2023 195 145 157 10.1016/j.freeradbiomed.2022.12.086 36581060
    [Google Scholar]
  24. Swarnamughi P. Kumar M. Manikandan P. Chithra S. Jeelani A. Khaled J.M. Abbas G. Muthu S. Solvent impact on electronic, photochemical, molecular structure, topology studies, and the antihistamine activity of 2-(2-Benzylphenoxy)-N,N-dimethylethanamine. J. Mol. Liq. 2023 390 123077 10.1016/j.molliq.2023.123077
    [Google Scholar]
  25. Jung J.Y. Ha S.Y. Kim T.H. Yang J.K. Antihistamine activity of steam-exploded oak extract containing phenolic compounds. BioResources 2020 15 4 8770 8783 10.15376/biores.15.4.8770‑8783
    [Google Scholar]
  26. Mortara L. Coco G. Pozzi C. Biomedicine and traditional Chinese medicine: A fruitful scientific and cultural interaction. Acta Biomed. 2022 93 1 e2022070 10.23750/abm.v93i1.12093 35315400
    [Google Scholar]
  27. Yan X. McCoy C. Chapin R. Lee M. Gold H. Donohoe K. Serotonergic agents and linezolid: Impact of exposure to more than one agent concomitantly on risk of adverse effects. Antimicrob Steward Healthc Epidemiol. 2023 3 S2 s32 s33 10.1017/ash.2023.260
    [Google Scholar]
  28. Evens R. Schmidt M.E. Majić T. Schmidt T.T. The psychedelic afterglow phenomenon: A systematic review of subacute effects of classic serotonergic psychedelics. Ther. Adv. Psychopharmacol. 2023 13 10.1177/20451253231172254 37284524
    [Google Scholar]
  29. Hemalatha B. Ramnath E. Tamiljothi E. A comparison of efficacy, mechanism, and side effects of clozapine and risperidone in patients with schizophrenia. World J. Biol. Pharm. 2022 12 1 66 80 10.30574/wjbphs.2022.12.1.0151
    [Google Scholar]
  30. Haddad C. Salameh P. Sacre H. Clément J.P. Calvet B. Effects of antipsychotic and anticholinergic medications on cognition in chronic patients with schizophrenia. BMC Psychiatry 2023 23 1 61 10.1186/s12888‑023‑04552‑y 36694187
    [Google Scholar]
  31. Selvaggi P. Fazio L. Toro V.D. Mucci A. Rocca P. Martinotti G. Cascino G. Siracusano A. Zeppegno P. Pergola G. Bertolino A. Blasi G. Galderisi S. Rampino A. Stolfa G. Antonucci L.A. Giordano G.M. Bucci P. Perrottelli A. Brasso C. Del Favero E. Montemagni C. Pettorusso M. Chiappini S. D’Andrea G. Monteleone P. Corrivetti G. Del Buono G. Di Lorenzo G. Niolu C. Ribolsi M. Gramaglia C. Gambaro E. Feggi A. Effect of anticholinergic burden on brain activity during Working Memory and real-world functioning in patients with schizophrenia. Schizophr. Res. 2023 260 76 84 10.1016/j.schres.2023.08.015 37633126
    [Google Scholar]
  32. Postali E. Peroukidou P. Giaouris E. Papachristoforou A. Investigating possible synergism in the antioxidant and antibacterial actions of honey and propolis from the greek island of samothrace through their combined application. Foods 2022 11 14 2041 10.3390/foods11142041 35885284
    [Google Scholar]
  33. Sharma, Himanchal; Singh, Atul Pratap; Hak, Jiyaul; Pathak, Divya; Taumar, Dhananjay; Gujjar, Anshu; Chaudhary, Vatan; Jahan, Iram 4-methyl-N-[5-[Phenylamino]Acetyl]-2- yl]Benzenesulfonamides: Synthesis, characterization, and preliminary biological evaluation. In Press 2024 10.2174/01157340723292632410090513551
    [Google Scholar]
  34. Rajninec M. Vidiš M. Tomka M. Šedivá M. Gažiová A. Mucha J. Antimicrobial effect of silver nanoparticle-based thin films. J. Microbiol. Biotechnol. Food Sci. 2023 e10037 10.55251/jmbfs.10073
    [Google Scholar]
  35. Sharma H. Pathak D. Kumar S. Recent progress in isolating and purifying amide alkaloids from their natural habitats: A review. Curr. Bioact. Compd. 2024 20 10 e210224227226 10.2174/0115734072284841240207104403
    [Google Scholar]
  36. Shi L. Lin W. Cai Y. Chen F. Zhang Q. Liang D. Xiu Y. Lin S. He B. Oxidative stress-mediated repression of virulence gene transcription and biofilm formation as antibacterial action of cinnamomum burmannii essential oil on staphylococcus aureus. Int. J. Mol. Sci. 2024 25 5 3078 10.3390/ijms25053078 38474323
    [Google Scholar]
  37. Jang Y.S. Phytochemical investigation of marker compounds from indigenous korean salix species and their antimicrobial effects. Plants 2023 10.3390/plants12010104 36616234
    [Google Scholar]
  38. Abdul-Jabbar A.M. Hussian N.N. Mohammed H.A. Aljarbou A. Akhtar N. Khan R.A. Combined anti-bacterial actions of lincomycin and freshly prepared silver nanoparticles: Overcoming the resistance to antibiotics and enhancement of the bioactivity. Antibiotics 2022 11 12 1791 10.3390/antibiotics11121791 36551448
    [Google Scholar]
  39. Gioster-Ramos M.L. Pedrinha V.F. Barros M.C. Bezerra R.M. Andrade F.B. Kuga M.C. Vaz L.G. Antimicrobial effect of pentaclethra macroloba plant extract against enterococcus faecalis. Braz. J. Biol. 2023 83 e272095 10.1590/1519‑6984.272095 38055574
    [Google Scholar]
  40. Du W. Xu R. He Z. Yang H. Gu Y. Liu Y. Transcriptomics-based investigation of molecular mechanisms underlying synergistic antimicrobial effects of AgNPs and Domiphen on the human fungal pathogen Aspergillus fumigatus. Front. Microbiol. 2023 14 1089267 10.3389/fmicb.2023.1089267 36819018
    [Google Scholar]
  41. Akiyama H. Fujii K. Yamasaki O. Oono T. Iwatsuki K. Antibacterial action of several tannins against Staphylococcus aureus. J. Antimicrob. Chemother. 2001 48 4 487 491 10.1093/jac/48.4.487 11581226
    [Google Scholar]
  42. Abdallah R. Mostafa N.Y. Kirrella G.A.K. Gaballah I. Imre K. Morar A. Herman V. Sallam K.I. Elshebrawy H.A. Antimicrobial Effect of Moringa oleifera Leaves Extract on Foodborne Pathogens in Ground Beef. Foods 2023 12 4 766 10.3390/foods12040766 36832841
    [Google Scholar]
  43. Pascariu P. Cojocaru C. Airinei A. Olaru N. Rosca I. Koudoumas E. Suchea M.P. Innovative ag–tio2 nanofibers with excellent photocatalytic and antibacterial actions. Catalysts 2021 11 10 1234 10.3390/catal11101234
    [Google Scholar]
  44. Arce-Fonseca M. Gutiérrez-Ocejo R.A. Rosales-Encina J.L. Aranda-Fraustro A. Cabrera-Mata J.J. Rodríguez-Morales O. Nitazoxanide: A drug repositioning compound with potential use in chagas disease in a murine model. Pharmaceuticals 2023 16 6 826 10.3390/ph16060826 37375773
    [Google Scholar]
  45. Akoolo L. Rocha S.C. Parveen N. Protozoan co-infections and parasite influence on the efficacy of vaccines against bacterial and viral pathogens. Front. Microbiol. 2022 13 1020029 10.3389/fmicb.2022.1020029 36504775
    [Google Scholar]
  46. Isah M. Rosdi R.A. Wan Abdul Wahab W-N-A. Abdulla H. Sul’ain M.D. Ishak W.R.W. Phytoconstituents and biological activities of Melaleuca cajuputi Powell: A scoping review. J. Appl. Pharm. Sci. 2022 10.7324/JAPS.2023.130102
    [Google Scholar]
  47. Şahan Z. Bacteriolytic activity of ruminal protozoa is affected by rate and type of common essential oils: Effect of thyme oil. S. Afr. J. Anim. Sci. 2023 10.4314/sajas.v53i4.13
    [Google Scholar]
  48. Zhou Y. Qiu T.X. Hu Y. Liu L. Chen J. Antiviral effects of natural small molecules on aquatic rhabdovirus by interfering with early viral replication. Zool. Res. 2022 43 6 966 976 10.24272/j.issn.2095‑8137.2022.234 36257828
    [Google Scholar]
  49. Bajrai L.H. El-Kafrawy S.A. Hassan A.M. Tolah A.M. Alnahas R.S. Sohrab S.S. Rehan M. Azhar E.I. In vitro screening of anti-viral and virucidal effects against SARS-CoV-2 by Hypericum perforatum and Echinacea. Sci. Rep. 2022 12 1 21723 10.1038/s41598‑022‑26157‑3 36522420
    [Google Scholar]
  50. Tang X. Wang C. Sun W. Wu W. Sun S. Wan J. Zhu G. Ma N. Ma X. Xu R. Yang Q. Dai Y. Zhou L. Evaluating anti-viral effect of Tylvalosin tartrate on porcine reproductive and respiratory syndrome virus and analyzing the related gene regulation by transcriptomics. Virol. J. 2023 20 1 79 10.1186/s12985‑023‑02043‑w 37101205
    [Google Scholar]
  51. Niu T. Jiang Y. Fan S. Yang G. Shi C. Ye L. Wang C. Antiviral effects of Pediococcus acidilactici isolated from Tibetan mushroom and comparative genomic analysis. Front. Microbiol. 2023 13 1069981 10.3389/fmicb.2022.1069981 36704546
    [Google Scholar]
  52. Kim Y.R. Kim G.C. Nam S.H. Evaluation of the Antifungal Effect of Rhus verniciflua Stokes Extract for Oral Application Potential. Medicina 2023 59 9 1642 10.3390/medicina59091642 37763761
    [Google Scholar]
  53. Qiao S. Yao J. Wang Q. Li L. Wang B. Feng X. Wang Z. Yin M. Chen Y. Xu S. Antifungal effects of amaryllidaceous alkaloids from bulbs of Lycoris spp. against Magnaporthe oryzae. Pest Manag. Sci. 2023 79 7 2423 2432 10.1002/ps.7420 36810871
    [Google Scholar]
  54. Xu M. Wang C. Huang W. Yu H. Synergistic antifungal effect of silver nanoparticles combined with mancozeb against Botryosphaeria dothidea. Inorg Nano-Metal Chem. 2023 53 4 10.1080/24701556.2022.2072344
    [Google Scholar]
  55. Vaseghi N. Piramoon M. Khojasteh S. Abbasi K. Mohseni S. Javidnia J. Naghili B. Aslani N. Post-antifungal effect of the combination of anidulafungin with amphotericin B and fluconazole against fluconazole-susceptible and -resistant Candida albicans. Curr. Med. Mycol. 2022 8 2 8 15 10.18502/cmm.8.2.10327 36654787
    [Google Scholar]
  56. Achimón F. Leal L.E. Pizzolitto R.P. Brito V.D. Alarcón R. Omarini A.B. Zygadlo J.A. Insecticidal and antifungal effects of lemon, orange, and grapefruit peel essential oils from Argentina. Agriscientia 2022 39 1 71 82 10.31047/1668.298x.v39.n1.33777
    [Google Scholar]
  57. Karagianni K. Pettas S. Kanata E. Lioulia E. Thune K. Schmitz M. Tsamesidis I. Lymperaki E. Xanthopoulos K. Sklaviadis T. Dafou D. Carnosic acid and carnosol display antioxidant and anti-prion properties in in vitro and cell-free models of prion diseases. Antioxidants 2022 11 4 726 10.3390/antiox11040726 35453411
    [Google Scholar]
  58. Wang X. Cao J. Li Z. Xu R. Guo Y. Pu F. Xiao X. Du H. He J. Lu S. Co-amorphous mixture of erlotinib hydrochloride and gallic acid for enhanced antitumor effects. J. Drug Deliv. Sci. Technol. 2024 91 105200 10.1016/j.jddst.2023.105200
    [Google Scholar]
  59. Xie Y. Gong C. Xia Y. Zhou Y. Ye T. Mei T. Chen H. Chen J. α-Mangostin suppresses melanoma growth, migration, and invasion and potentiates the anti-tumor effect of chemotherapy. Int. J. Med. Sci. 2023 20 9 1220 1234 10.7150/ijms.80940 37575275
    [Google Scholar]
  60. Xu C. Zhu M. Wang Q. Cui J. Huang Y. Huang X. Huang J. Gai J. Li G. Qiao P. Zeng X. Ju D. Wan Y. Zhang X. TROP2-directed nanobody-drug conjugate elicited potent antitumor effect in pancreatic cancer. J. Nanobiotechnology 2023 21 1 410 10.1186/s12951‑023‑02183‑9 37932752
    [Google Scholar]
  61. Ono M. Miyamoto T. Fuseya C. Asaka R. Ando H. Tanaka Y. Shinagawa M. Yokokawa Y. Takeuchi H. Horiuchi A. Shiozawa T. Anti-tumor effect of Wasabi component, 6-(methylsulfinyl) hexyl isothiocyanate, against endometrial carcinoma cells. Discov Oncol. 2023 14 1 9 10.1007/s12672‑023‑00617‑2 36689027
    [Google Scholar]
  62. Pakarzadeh H. Rezaei S.M. Taghizadeh M. Bozorgzadeh F. Dispersion properties of single-mode optical fibers in telecommunication region: Poly (methyl methacrylate) (PMMA) versus silica. J. Opt. Commun 2023 44 s1 s607 s612 10.1515/joc‑2020‑0172
    [Google Scholar]
  63. Takuma K. Fujihara S. Fujita K. Iwama H. Nakahara M. Oura K. Tadokoro T. Mimura S. Tani J. Shi T. Morishita A. Kobara H. Himoto T. Masaki T. Antitumor effect of regorafenib on microrna expression in hepatocellular carcinoma cell lines. Int. J. Mol. Sci. 2022 23 3 1667 10.3390/ijms23031667 35163589
    [Google Scholar]
  64. Li Y. Zhang C. Jiang A. Lin A. Liu Z. Cheng X. Wang W. Cheng Q. Zhang J. Wei T. Luo P. Potential anti-tumor effects of regulatory T cells in the tumor microenvironment: A review. J. Transl. Med. 2024 22 1 293 10.1186/s12967‑024‑05104‑y 38509593
    [Google Scholar]
  65. Shehata T. Kono Y. Higaki K. Kimura T. In vivo distribution characteristics and anti-tumor effects of doxorubicin encapsulated in PEG-modified niosomes in solid tumor-bearing mice. J. Drug Deliv. Sci. Technol. 2023 80 104 122 10.1016/j.jddst.2022.104122
    [Google Scholar]
  66. Ban Y. Hoshi M. Oebisu N. Orita K. Iwai T. Yao H. Nakamura H. Anti-tumor effect and neurotoxicity of ethanol adjuvant therapy after surgery of a soft tissue sarcoma. Curr. Oncol. 2023 30 6 5251 5265 10.3390/curroncol30060399 37366882
    [Google Scholar]
  67. Hak J. Jahan I. Farooqui N.A. Singh A.P. Sharma H. Nanochips in the Field of Oncology : Advancements and Potential for Enhanced Nanochips in the Field of Oncology : Advancements and Potential for En- hanced. Cancer Ther. 2025 (January) 10.2174/0115733947343855241230115820
    [Google Scholar]
  68. Feriotto G. Tagliati F. Giriolo R. Casciano F. Tabolacci C. Beninati S. Khan M.T.H. Mischiati C. Caffeic acid enhances the anti-leukemic effect of imatinib on chronic myeloid leukemia cells and triggers apoptosis in cells sensitive and resistant to imatinib. Int. J. Mol. Sci. 2021 22 4 1644 10.3390/ijms22041644 33562019
    [Google Scholar]
  69. Calaf G.M. Crispin L.A. Quisbert-Valenzuela E.O. Noscapine and apoptosis in breast and other cancers. Int. J. Mol. Sci. 2024 25 6 3536 10.3390/ijms25063536 38542508
    [Google Scholar]
  70. Feriotto G. Tagliati F. Brunello A. Beninati S. Tabolacci C. Mischiati C. A central contribution of tg2 activity to the antiproliferative and pro-apoptotic effects of caffeic acid in k562 cells of human chronic myeloid leukemia. Int. J. Mol. Sci. 2022 23 23 15004 10.3390/ijms232315004 36499332
    [Google Scholar]
  71. Chen C. Wang Z. Jia S. Zhang Y. Ji S. Zhao Z. Kwok R.T.K. Lam J.W.Y. Ding D. Shi Y. Tang B.Z. Evoking highly immunogenic ferroptosis aided by intramolecular motion‐induced photo‐hyperthermia for cancer therapy. Adv. Sci. 2022 9 10 2104885 10.1002/advs.202104885 35132824
    [Google Scholar]
  72. Pan Y. Chen L. Li R. Liu Y. Nan M. Hou L. Tanshinone IIa induces autophagy and apoptosis via PI3K/AKT/MTOR axis in acute promyelocytic leukemia nb4 cells. Evidence-based Complement Altern Med 2021 10.1155/2021/3372403 34691211
    [Google Scholar]
  73. Soundararajan L. Dharmarajan A. Samji P. Regulation of pleiotropic physiological roles of nitric oxide signaling. Cell. Signal. 2023 101 110496 10.1016/j.cellsig.2022.110496 36252791
    [Google Scholar]
  74. Dong J. Zheng N. Wang X. Tang C. Yan P. Zhou H. Huang J. A novel HDAC6 inhibitor exerts an anti-cancer effect by triggering cell cycle arrest and apoptosis in gastric cancer. Eur. J. Pharmacol. 2018 828 67 79 10.1016/j.ejphar.2018.03.026 29563065
    [Google Scholar]
  75. Sayed R. Elrefay M. Elfiky A. Snake venom, bee venom and their components exert an anti-cancer effect by triggering apoptosis and cell cycle arrest in prostate cancer. Bull. Fac. Pharm. Cairo Univ. 2019 57 2 148 156 10.21608/bfpc.2019.101875
    [Google Scholar]
  76. Aǧagündüz D. Şahin T.Ö. Yilmaz B. Ekenci K.D. Duyar Özer Ş. Capasso R. Cruciferous vegetables and their bioactive metabolites: From prevention to novel therapies of colorectal cancer. Evid. Based Complement. Alternat. Med. 2022 2022 1534083 10.1155/2022/1534083 35449807
    [Google Scholar]
  77. Gomes M.T. Palasiewicz K. Gadiyar V. Lahey K. Calianese D. Birge R.B. Ucker D.S. Phosphatidylserine externalization by apoptotic cells is dispensable for specific recognition leading to innate apoptotic immune responses. J. Biol. Chem. 2022 298 7 102034 10.1016/j.jbc.2022.102034 35588784
    [Google Scholar]
  78. Akutsu-Suyama K. Ueda M. Shibayama M. Ishii K. Nishi N. Effective synthesis of deuterated n-octylamine and its analogues. EPJ Web Conf 2023 286 01004 10.1051/epjconf/202328601004
    [Google Scholar]
  79. Hu H.C. Yu S.Y. Tsai Y.H. Hsieh P.W. Wang H.C. Chen Y.N. Chuang Y.T. Lee M.Y. Chang H.W. Hu H.C. Wu Y.C. Chang F.R. Szatmári I. Fülöp F. Synthesis of bioactive evodiamine and rutaecarpine analogues under ball milling conditions. Org. Biomol. Chem. 2024 22 13 2620 2629 10.1039/D4OB00056K 38451121
    [Google Scholar]
  80. Guan L. Synthesis of resveratrol analogues and evaluation of their anti-diabetic activity. Chinese J. New Drugs 2023
    [Google Scholar]
  81. Zhao C. Gao Y. Qiu J. Continuous synthesis of all-inorganic low-dimensional bismuth-based metal halides Cs 4 MnBi 2 Cl 12 from reversible precursors Cs 3 BiCl 6 and Cs 3 Bi 2 Cl 9 under phase engineering. J. Mater. Chem. C Mater. Opt. Electron. Devices 2023 11 29 10025 10032 10.1039/D3TC01458D
    [Google Scholar]
  82. Marinov M. Nikolova I. Kostova I. Stoyanov N. Phenothiazine derivatives of 1,8-naphthalic anhydride: Synthesis, characterization and antimicrobial studies. Phosphorus Sulfur Silicon Relat. Elem. 2023 198 2 128 136 10.1080/10426507.2022.2116707
    [Google Scholar]
  83. Venkatesan K. Satyanarayana V.S.V. Sivakumar A. Synthesis and biological evaluation of novel phenothiazine derivatives as potential antitumor agents. Polycycl. Aromat. Compd. 2023 43 1 850 859 10.1080/10406638.2021.2021254
    [Google Scholar]
  84. Nhari L.M. Bifari E.N. Al-Marhabi A.R. Al-Zahrani F.A.M. Al-Ghamdi H.A. Al-Ghamdi S.N. Asiri A.M. El-Shishtawy R.M. Synthesis of novel phenothiazine, phenoxazine and carbazole derivatives via Suzuki-Miyaura reaction. J. Organomet. Chem. 2023 989 122648 10.1016/j.jorganchem.2023.122648
    [Google Scholar]
  85. Voronova O. Zhuravkov S. Korotkova E. Artamonov A. Plotnikov E. Antioxidant properties of new phenothiazine derivatives. Antioxidants 2022 11 7 1371 10.3390/antiox11071371 35883860
    [Google Scholar]
  86. Andac C.A. Facile microwave synthesis of a novel phenothiazine derivative and its cytotoxic activity. Organic Communications 2020 13 4 175 183 10.25135/acg.oc.86.20.10.1853
    [Google Scholar]
  87. Rajasekaran A. Devi K.S. Synthesis and biological evaluation of 1-(3-chloro-2-oxo-4-phenylazetidin-1-yl)-3-(2-oxo-2-(10H-phenothiazin-10-yl)ethyl)urea derivatives. Med. Chem. Res. 2013 22 6 2578 2588 10.1007/s00044‑012‑0255‑z
    [Google Scholar]
  88. Johnson D. Hussain J. Bhoir S. Chandrasekaran V. Sahrawat P. Hans T. Khalil M.I. De Benedetti A. Thiruvenkatam V. Kirubakaran S. Synthesis, kinetics and cellular studies of new phenothiazine analogs as potent human-TLK inhibitors. Org. Biomol. Chem. 2023 21 9 1980 1991 10.1039/D2OB02191A 36785915
    [Google Scholar]
  89. Khadieva A. Rayanov M. Shibaeva K. Piskunov A. Padnya P. Stoikov I. Towards asymmetrical methylene blue analogues: Synthesis and reactivity of 3-n′-arylaminophenothiazines. Molecules 2022 27 9 3024 10.3390/molecules27093024 35566375
    [Google Scholar]
  90. Empel A. Bak A. Kozik V. Latocha M. Cizek A. Jampilek J. Suwinska K. Sochanik A. Zieba A. Towards property profiling: Synthesis and sar probing of new tetracyclic diazaphenothiazine analogues. Int. J. Mol. Sci. 2021 22 23 12826 10.3390/ijms222312826 34884631
    [Google Scholar]
  91. Khadieva A. Mostovaya O. Padnya P. Kalinin V. Grishaev D. Tumakov D. Stoikov I. Arylamine analogs of methylene blue: Substituent effect on aggregation behavior and dna binding. Int. J. Mol. Sci. 2021 22 11 5847 10.3390/ijms22115847 34072560
    [Google Scholar]
/content/journals/aiaamc/10.2174/0118715230378846251009082148
Loading
/content/journals/aiaamc/10.2174/0118715230378846251009082148
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test